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The mean first-passage time of random walks on a network has been extensively

applied in the theory and practice of statistical physics, and its application effects

depend on the behavior of first-passage time. Here, we firstly define a graphic operation,

namely, rectangle operation, for generating a scale-free network. In this paper, we

study the topological structures of our network obtained from the rectangle operation,

including degree distribution, clustering coefficient, and diameter. And then, we also

consider the characteristic quantities related to the network, including Kirchhoff index and

mean first-passage time, where these characteristic quantities can not only be used to

evaluate the properties of our network, but also have remarkable applications in science

and engineering.
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1. INTRODUCTION

In the past several decades, some delightful properties related to complex networks have been
obtained. For example, Watts and Strogatz discovered and explained the ubiquitous small-world
property of real social networks by building small-world network models with a relatively small
diameter [1]; Barabasi and Albert constructed a scale-free network model to reveal the fact that
degree distribution obeys the power-law distribution in real networks [2, 3]. These two classical
works have inspired many scholars to devote themselves to researching about complex networks,
especially random walks in complex networks [4–9].

The random walks on complex networks was of typical interest in various kinds of scientific
fields, such as statistics physics, combinatorial mathematics, computer science, chemistry, social
and economic science as well as biological science [10–14]. Random walks were not merely an
effective instrument to solve various problems, and have found diverse applications in real-world
networks, for example, routing [15], searching [16], sampling [17] and data collection [18, 19],
community detection [20, 21], network synchronization [22, 23], random algorithm [24, 25], and
so on [26–28].

In this paper, we define a graphic operation to generate a network, then we discuss the
topological structure of our networks, such as degree distribution, clustering coefficient, diameter,
as we will shortly explain. After that, we investigate the relationship among adjacency matrix,
diagonal matrix, and Lapalican matrix. In addition, we investigate random walks on scale-free
networks, with a goal to determine solution of mean first-passage time. Besides, by taking full
advantage of the relationship between the first-passage time and effective resistance, we induce
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explicit formulas of mean first-passage time which scales linearly
with the network size. Our work provides the relationship
between mean first-passage time and network size.

The following content of this paper will be divided into the
subsequent three parts. In section 2, we introduce several relative
concepts for graphs, electrical networks, and randomwalks. After
that, in section 3, we provide the network construction process
about generating scale-free network and discuss its topological
properties in further. In addition, we present the result for mean
first-passage time on our scale-free networks. Finally, we draw a
brief conclusion and put forward some unresolved issues for next
step in section 4.

2. PRELIMINARIES

In this section, we will introduce several fundamental concepts
for graphs, electrical networks, and random walks. These
basic concepts are closely related to our work in the
coming subsections.

2.1. Several Concepts
A graph is a structure described in a set of objects, some of
which are “related” in a certain sense. These objects correspond
to mathematical abstractions called vertices (also called nodes),
and each related pair of vertices is called an edge (also called
link). Generally, a graph is depicted graphically as a set of vertices,
connected by lines or curves along the edges. In graph theory,
a graph is denoted as G = (ν, ε), and notations N = |ν| and
E = |ε| are the vertex number and edge number of G, where
ν and ε are vertex set and edge set of G, respectively. The sum
of the degree of all vertices in G is 2E, and the average degree
of a graph is the average value of all vertex degrees over the
entire graph, denoted by 2E/N. The R-graph is the graph by
creating a new vertex corresponding to each edge of G and by
adding edges between each created vertex and corresponding
edge’s end vertices, the graph R(G) appeared in [29]. Here, all
graphs are simple undirected connected graphs, namely, no loops
and no multiple edge connecting the same couple of vertices. In
this paper, there is no need to distinguish between graph and
network, because graphs are abstract representations of networks.
The meaning of these two terms is considered to be the same.

We use the labels 1, 2, 3, · · · ,N, to represent the N vertices in
graph G. For a graph, it can be denoted by two different matrices,
namely, adjacency matrix and Laplacian matrix. Notice that, the
adjacency matrix AG = (aij)N×N is defined to be the N × N
constant matrix those ijth entry is 1 if vertex i and vertex j are
connected by an edge, 0 is otherwise. We use the symbol N (i) =
{x|(x, i) ∈ ε} to represent the set of neighbors of vertex i in G,
hence, the degree of vertex i is the number of edges of G incident
with i, can be regarded as di = |N (i)|. The diagonal matrix,
denoted by DG, may be defined as follows: the ith diagonal entry
is di, while all non-diagonal entries are zero. It has to be remarked
that the corresponding Laplacian matrix of G can be referred to
as LG = DG−AG. Let λ1, λ2, · · · , λN stand for the N eigenvalues
of Laplacian matrix LG, which can be rearranged in an non-
decreasing order as follows, 0 = λ1 ≤ λ2 ≤ · · · ≤ λN . From
above description, it can be said with certainty that all eigenvalues

are non-negative for G. The other standard graph theoretic
notations we used of our networks are mainly followed [30].

2.2. Electrical Networks
Before continuing, we firstly pay attention to the following several
results concerning effective networks that we need in the proofs.
A graph can be viewed as an electrical network by replacing each
edge ofGwith a unit resistance. Therefore, we also apply the G =
(ν, ε) to stand for corresponding electrical networks generated
by G. Now we have to introduce some notations about electrical
networks. The effective resistance between any two vertices i and
j, denoted by �ij, is defined as the potential difference between i
and j when the unit current is remained from i to j. If i = j, �ij is
equal to zero.

It is generally recognized that effective resistances of the
network are well-defined, which can be regarded as a measure
of distance. There are a number of scholars devoted their effort to
investigating the properties of effective resistance and discovering
fruitful results.

Lemma 2.1. (Foster’s [31]) The sum of effective resistances along
the edges of a connected graph G is equal to N − 1, namely

∑

i<j
(i,j)∈ε

�ij = N − 1 (1)

In [32, 33], Chen et al. prove the effective resistance local sum
rules by applying the inseparable relations between random
walks and electrical network, which can be described by the
following lemma.

Lemma 2.2. For an electrical network G = (ν, ε), any couple of
vertices i, j (i 6= j) belongs to ν, we have

di�ij +
∑

k∈N (i)

(�ik −�jk) = 2 (2)

The effective resistance has been defined and discussed in [34],
also referred to as, Kirchhoff index K(G). So, one arrives at the
Kirchhoff index as follows

K(G) =
∑

i∈ν,
j∈ν

�ij (3)

Lately, one finds Kirchhoff index of a graph G is closely related to
the Laplacian eigenvalue and is expressed in term of eigenvalues
in [35]

K(G) = N

N
∑

i=2

1

λi
(4)

Based on the Kirchhoff index, we now put forth on another
metrics, the average effective resistance over all vertex pairs in G,
that is,

K(G) =
K(G)

N(N − 1)
=

1

N − 1

N
∑

i=2

1

λi
(5)
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which can be applied to measure the network robustness
and stability of G: the smaller the value K(G), the more
robust the network is. In [36], Liu discuss several results of
resistance distance and Kirchhoff index of subdivision vertex
edge corona for graphs. In [37, 38], Liu et al. explore some
results of resistance distance and Kirchoff index by virture
of R-graphs.

In what follows, we will demonstrate these metrics to define
random walks through rigorous mathematical analysis.

2.3. Random Walks
We can define an unbiased, discrete time random walk on a
certain connected graph G = (ν, ε). Given a graph G and an
initial vertex, at each time step, the walker goes to a certain
neighbor of the vertex with equal probability from its current
location. The essence of stochastic process is the Markov process
[39], described by the transition matrix T = D−1A, with the ijth
element being aij/di that stands for the probability of moving to j
from i in one time step. WhenG is finite, connected, and then the
randomwalk is ergodic if there is a unique stationary distribution
π = (π1,π2 · · · ,πN)

⊤ meeting the following requirements:
πi = di/(2E),

∑N
i=1 πi = 1,π⊤T = π⊤.

A crucial quantity pertaining to random walks is first-passage
time, also known as hitting time. The first-passage time from a
given site i to destination j, denoted by Fij, is the expected time for
a walker starting from source vertex i to first reach the destination
vertex j. It has to be noticed that Fij 6= Fji in some situations.With
regarded to first-passage time, the commute time Cij starts from i
to j, then goes back, denoted by Cij = Fij + Fji, is symmetric. We
can discover the fact that the relationship between commute time
and first-passage time.

Lemma 2.3. The communte time Cij between any pair of vertices
i and j(i 6= j) has a relationship with the effective resistance, so
we have

Cij = 2E�ij (6)

The mean first-passage time F(G) of a network is the average
value of first-passage times over all vertex pairs, namely

F(G) =
1

N(N − 1)

N
∑

i6=j

N
∑

j=1

Fij (7)

As is the simple particular case, the mean first-passage
time can be determined exactly. For example, it is generally
recognized that the mean first-passage time for the complete
graph with N vertices is N − 1. It indicates that the
mean first-passage time of complete graph scales linearly
with N.

However, due to the high density of the complete graph, it is
impossible to extend to real networks, most of which are sparse
with the average degree tends to a fixed constant [40, 41], and also
display scale-free properties [42, 43].

Combining with above discussions, the mean first-passage
time of a network G can be represented as the expression related
to the eigenvalues of its Laplacian matrix.

Lemma 2.4. The mean first-passage time F(G) has a relationship
with the eigenvalues of Laplacian matrix of G, so we have

F(G) =
EK(G)

N(N − 1)
=

2E

N − 1

N
∑

i=2

1

λi
(8)

Taking full advantage of above statement, let us turn our sight
into calculating mean first-passage time F(St) of our scale-
free networks.

3. MEAN FIRST-PASSAGE TIME OF
SCALE-FREE NETWORKS

In this section, we study the mean first-passage time of our
network with remarkable scale-free property. To this end,
firstly, we introduce rectangle operation in graphic operation to
generate a class of scale-free networks and discuss the topological
properties of our networks. Then, we illustrate three matrices
of our network, including, Laplacian matrix, diagonal matrix,
and adjacent matrix; and derive the relationship among them. In
addition, to evaluate themean effective resistance of our network,
we show the effective resistance between any two vertices in our
networks. Finally, for our networks, we calculate the mean first-
passage time and prove that mean first-passage time is linearly
proportional to the number of vertices. In what follows, we will
present critical constituents in the coming subsections.

3.1. Network Construction and Topological
Properties
Before proceeding, we have to introduce a graphic operation,
referred to as rectangle operation in this paper, which is explained
in more detail, as follows

3.1.1. Rectangle Operation
For a certain edge uv with two end-vertices u and v, we create
an edge xy with two end-vertices x and y, and attach the
vertices u to x and v to y using two new edges, respectively.
Then, we generate a cycle C4. Such an operation process
is called a rectangle operation. Figure 1 gives the rectangle
operation process.

FIGURE 1 | The illustration of graph operation, rectangle operation, where

each edge is formed a cycle on right-hand of arrow, where blue vertices

represent new vertices.
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FIGURE 2 | The illustration of the network generation process when the time

step is t = 0, 1, 2, respectively.

Taking useful advantage of rectangle operation, let us turn
our attention to constructing our networks St , which has been
discussed in [40]. Let St = (νt , εt) represent the network after t
time steps. Then the networks are constructed in the following
process: at t = 0, the initial network S0 is a graph in which
two vertices are attached to an edge. At t ≥ 1, St is created
from St−1 by conducting the rectangle operation for each edge
of network St−1. The generation process is repeated t times to
obtain St from S0. Figure 2 shows three networks with time step
t = 0, t = 1, t = 2, respectively. Besides, we also give the
Construction Pseudo-code to describe the network generation
process in Algorithm 1. The time complexity of the Algorithm
1 depends on time t and the number of edges of St .

Algorithm 1: Construction Pseudo-code

Input : The initial network S0 is a graph with two vertices
connected by an edge, t stands for time step

Output: The network St

1 for i← 0 to t do
2 for each edge in Si do
3 do rectangle operation;
4 end

5 end

Nowwe calculate several fundamental quantities, for example,
the number of all vertices and edges in St . Let Nt = |νt| and
Et = |εt| be the vertex number and edge number of St , where νt
and εt are vertex set and edge set of St . For St , letWt = νt \ νt−1
and Wt = |Wt| represent the set of new vertices created at time
step t and the number of these vertices, respectively. Together
with the construction process, it is not difficult to obtain Et =
4Et−1, Wt = 2Et−1, and Nt = Nt−1 +Wt−1 = Nt−1 + 2Et−1.
Due to N0 = 2,E0 = 1, we can easily obtain the following the
expressions Et = 4t ,Wt = 2 · 4t−1, and Nt =

2
3 (4

t + 2) hold for

all t ≥ 0. By the definition of average degree, we have 〈k〉 = 2Et
Nt

,
which tends to 3 for large time step t. It has to be noticed that the
network with identical average degree has been explored in [42].

Besides, armed with the definition of sparsity, we call a

network is sparse if Et ≪
Nt(Nt−1)

2 , namely, the value is close to
a constant, which is obtained by the number of edges divides
the number of vertices. So, we assert that the resulting network

St is sparse network. Let d
(t)
i indicate the number of edges

connected to vertex i in St , which is created at iterations ti(ti ≥
0). Then for any vertex i, its degree satisfies the following

expression d
(t)
i = 2d

(t−1)
i .

By virture of generation process of networks aforementioned,
it goes without saying that the degree spectrum of our networks
is a series of discrete positive integers. Armed with probability
theory, it has to be noticed that the degree distribution exhibits
a unique power-law distribution P(k) ∼ k−γ with a constant
value γ = 3, where P(k) is the probability that a randomly
selected vertex is with degree k. It is clearly recognized that the
same exponent has been studied in other references, for instance,
[41, 42], to name but a few. What is noteworthy is that both
sparsity and scale-free property can normally be found in many
complex networks, such as [2, 28, 40–42]. In addition, it is easily
to note that our network is not a homogeneous network, because
the degree distribution obeys the power-law distribution, and
there are few nodes with larger degrees in our network, it is a
heterogeneous network.

Moreover, for the sake of understanding the behavior of
network, we have to turn attention to the clustering coefficient.
The clustering coefficient ci of vertex i is a measure of the number
of edges “around” the vertex i. ci is given by the average fraction
of pairs of neighbors of the same vertex that are also neighbors
of each other, i.e., ci = 2Ei/[ki(ki − 1)], where Ei represents the
number of actual edges between the vertex neighbors. Since our
rectangle operation always obtain a cycle C4. At time step t, it
can be said with certainty that the clustering coefficient of every
vertex in St is 0, namely, we have ci = 0 for every vertex. Thus, we
get the result that clustering coefficient of entire network is also
zero. It can be noted that the same clustering coefficient has been
obtained in the networks [40, 42].

In addition, network diameter is an important index to
measure the size of the network. It is defined as the maximum
distance between any two vertices in the network, where the
distance refers to the length of the shortest path. We may
find that diameter Dia(St) is approximately equal to lnNt ,
directly showing Dia(St) is a relatively small. Evidently, the
diameter increases logarithmically withof the number of vertices.
The diameter of our network has been thoroughly investigated
in [40, 42].

3.2. Relations Between Matrices
We use the notation At represent the adjacency matrix of
St . At(i, j) is an element of the adjacency matrix at row i
and column j of At , At(i, j) = 1 if there exists an edge
connecting vertices i and j in St , At(i, j) = 0 otherwise. We
regard the diagonal degree matrix of St as the notation Dt ,

with the ith diagonal is denoted by d
(t)
i , the degree of vertex i.

Then, let Lt = Dt − At stand for Laplacian matrix Lt of St .
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Next, we will deduce the recursive relationship among At , Dt ,
and Lt .

For network St , the notations α and β are the set of old vertices
that are all vertices in St−1 and the set of new vertices in Wt ,
respectively. Then, we represent At with block form as follows

At =

(

Aα,α
t A

α,β
t

A
β ,α
t A

β ,β
t

)

=

(

At−1 A
α,β
t

A
β ,α
t 0

)

(9)

where Aα,α
t = At−1, A

β ,β
t is equal to zero matrix with order

Wt ×Wt , and A
α,β
t = (A

β ,α
t )⊤ which are obvious according to

construction process.
Let I stand for the identity matrix. After that, the diagonal

matrix Dt holds

Dt =

(

Dα,α
t 0

0 D
β ,β
t

)

=

(

2Dt−1 0
0 2I

)

(10)

which is based on the result that during the recursive procedure
of network construction from time step t − 1 to time step t, the
degree of each vertex in set α is increased by 2 times, yet the
degree of all vertices in set β is 2. Hence, it goes without saying
that the Laplacian matrix Lt can be written as

Lt = Dt − At =

(

2Dt−1 − At−1 −A
α,β
t−1

−A
β ,α
t−1 2I

)

(11)

According to above analysis, we have completed the recursive
relations among At ,Dt , and Lt .

3.3. Relations Between Effective
Resistances
As stated in the previous paragraph, the mean first-passage time
of a certain connected graph is related to its effective resistance.
To calculate the mean effective resistance of scale-free networks,
what calls for special attention is the iterative process of effective
resistance for any pair of old vertices.

Before continuting further, we attempt to introduce some
concepts of {1}-inverse of a matrix. Matrix M is said to be a
inverse of X if M satisfies XMX = X. Let X† represent one of
the {1}-inverses of X. We present a result associated with the
{1}-inverse of the block matrix.

Lemma 3.1. For a block matrix X =

(

A B

BT C

)

, where the

determinant of C is not equal to zero, if there exists a {1}-inverse
R† for R = A− BC−1B⊤, we have

X† =

(

R† −R†BC−1

−C−1BTR† C−1BTR†BC−1 + C−1

)

(12)

which is a {1}-inverse of X.

Proof: In order to verify the fact that X has a {1}-inverse, it is
sufficient to illustrate that there exists three matrixes P,Q,Y with
appropriate order meets PXQ = Y , where P and Q are non-
singular, and Y has a {1}-inverse. There is no doubt that we can

account for as follows. If the above conditions are holded, we
may as well find a matrix X† = QY†P. It may be safely said that
XX†X − X = 0, which indicates that X† = QY†P is a {1}-inverse
of X. Consequently, we turned the issue of solving a {1}-inverse
of X into solving matrices P,Q, and Y .

Let P =

(

I −BC−1

0 I

)

, Q =

(

I 0

−C−1BT I

)

, and Y =
(

R 0
0 C

)

. Together with known condition, namely, P and Q are

invertible, Y has a {1}-inverse, and PXQ = Y . Thus,

X† =

(

I 0

−C−1BT I

)(

R† 0
0 C−1

)(

I BC−1

0 I

)

=

(

R† −R†BC−1

−C−1BTR† −C−1BTR†BC−1 + C−1

) (13)

Hence, we complete the proof of Lemma 3.1.

Lemma 3.2. Let L†
ij represent the (i, j)th entry of any {1}-inverse

L† of its Laplacian matrix L. Then, for any pairs of vertices i, j ∈ ν,
the effective resistance �ij is given by

�ij = L†
ii + L†

jj − L†
ij − L†

ji (14)

Lemma 3.3. For our scale-free networks St after t time steps,
we have

A
α,β
t A

β ,α
t = 2(Dt−1 + At−1) (15)

Proof: In order to prove A
α,β
t A

β ,α
t = 2(Dt−1 + At−1), it is

necessary to prove that the corresponding elements in the two
matrices are the same. LetQt = 2(Dt+At), the elements of which

are: Qt(i, j) = 2d
(t)
i if i = j and Qt(i, j) = 2At(i, j) otherwise. Let

Zt−1 = A
α,β
t A

β ,α
t . Below we verify that the elements Zt−1(i, j) of

Zt is equal to the element of Qt .

It has to be noticed that matrix A
β ,α
t can be divided into

Nt−1 column vectors xi = (xi,Nt−1+1, xi,Nt−1+2 · · · , xi,Nt )
⊤(i =

1, 2, · · · ,Nt−1) as

A
β ,α
t = (x1, x2, · · · , xNt−1 )

where let xi represent the connection between the vertex i ∈ α

and all vertices belongs to β . From A
α,β
t = (A

β ,α
t )⊤, one has

A
α,β
t = (x1, x2, · · · , xNt−1 )

⊤. Thus,

A
α,β
t A

β ,α
t = (x1, x2, · · · , xNt−1 )

⊤(x1, x2, · · · , xNt−1 )

= (x⊤i xj)Nt−1×Nt−1

(16)

according to which the elements Zt−1(i, j) of A
α,β
t A

β ,α
t can be

discussed by dividing two different cases, namely, i = j and i 6= j.
When i = j, the diagonal element of Zt−1 is

Zt−1(i, i) = x⊤i xi, i.e., the number of all new created
vertices in β that are connected with vertex i. Henceforth,

Zt−1(i, i) = d
(t)
i − d

(t−1)
i = 2d

(t−1)
i = Qt−1(i, i).
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When i 6= j, the non-diagonal element of matrix Zt−1 can be
expressed as

Zt−1(i, j) = x⊤i xj =
∑

k∈β

(xi,k · xj,k)

=
∑

k∈β

(At(i, k))(At(j, k))

=
∑

At(i,k)=1
At(j,k)=1

At(i, j)

= 2At−1(i, j) = Qt−1(i, j)

(17)

here we apply the construction rule, that is, each edge in St−1
produces 2 new vertices at time steps t.

This completes the proof of Lemma 3.3.

We use the notations �
(t)
ij and L† to represent the effective

resistance for any couple of vertices i and j and the {1}-inverse
of Laplacian matrix Lt of St , respectively.

Lemma 3.4. Let i, j ∈ νt−1 be a couple of old vertices in St .

Then, �
(t−1)
ij follows the relation

�
(t)
ij =

1

2
�

(t−1)
ij (18)

Proof: Arbitrary {1}-inverse L†
t of Laplacian matrix Lt is

expressed by

L†
t =

(

L†
α,α L†

α,β

L†
β ,α L†

β ,β

)

(19)

By Equation (11) and Lemma 3.1 and Lemma 3.3,

L†
α,α =

(

2Dt−1 − At−1 − (−A
α,β
t−1)(2I)

−1(−A
β ,α
t−1)

)†

=

(

2Dt−1 − At−1 −
1

2
× 2(Dt−1 + At−1)

)†

= L†
t−1

(20)

By Lemma 3.2 and Equation (20), for i, j ∈ νt−1,

�
(t)
ij

= L†
α,α(i, i)+ L†

α,α(j, j)− L†
α,α(i, j)− L†

α,α(j, i)

=
1

2
(L†

t−1(i, i)+ L†
t−1(j, j)− L†

t−1(i, j)− L†
t−1(j, i))

=
1

2
�

(t−1)
ij

(21)

which provides the recursive process for effective resistance
between any pair of old vertices in St .

In the following, we will display that the effective resistance
between arbitrary two vertices in St can be expressed by effective
resistance of the pair of vertices in St−1. Because Lemma 3.4

provides the recursive rule of effective resistance between any
pairs of vertices in St−1, we merely like to believe that the effective
resistance between any two vertices in St can be expressed by pairs
of vertices in St−1. To achieve our objective, we first define several
other parameters. For arbitrary two subsets X and Y belongs to
νt−1 in St−1, we define

�
(t−1)
X,Y =

∑

i∈X,j∈Y

�
(t−1)
ij

For a vertex i ∈ Wt in St , we use 1i = {p, q} to denote the set of
neighbors of i. Apparently, p, q ∈ νt−1. Then, we define

�
(t)
1i
= �

(t)
pq

Lemma 3.5. For t ≥ 0, i ∈Wt ,

�
(t)
i,1i
= 1+

1

2
�

(t)
1i

(22)

Proof: According to Lemma 2.2, for every i ∈Wt , combined with
the neighbor vertex set 1i = {p, q}, we have

2�
(t)
ip +�

(t)
i,1i
−�

(t)
p,1i
= 2

and

2�
(t)
iq +�

(t)
i,1i
−�

(t)
q,1i
= 2

summing the above two equations gives

2�
(t)
i,1i
+ 2�

(t)
i,1i
−�

(t)
1i ,1i
= 4

that is,

�
(t)
i,1i
= 1+

1

4
�

(t)
1i ,1i
= 1+

1

2
�

(t)
1i

as desired.

Lemma 3.6. For t ≥ 0, i ∈Wt , j ∈Wt−1,

�
(t)
ij =

1

2

(

1−
1

2
�

(t)
1i
+�

(t)
i,j

)

(23)

Proof: For i ∈Wt , j ∈Wt−1, By Lemma 2.2

d
(t)
i �

(t)
ij +�

(t)
1i ,i
−�

(t)
1i ,j
= 2

Providing dti = 2 and applying Lemma 3.5, it follows that

�
(t)
ij =

1

2

(

2−�
(t)
1i ,i
+�

(t)
1i ,j

)

=
1

2

(

1+�
(t)
1i ,j
−

1

2
�

(t)
1i

)

we complete the proof.
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Lemma 3.7. For t ≥ 0, i, j ∈Wt , i 6= j,

�
(t)
ij = 1−

1

4

(

�
(t)
1i
+�

(t)
1j

)

+
1

4
�

(t)
1i ,1j

(24)

Proof: For a pair of different vertices i and j in Wt , armed with
Lemma 2.2

d
(t)
i �

(t)
ij +�

(t)
1i ,i
−�

(t)
1i ,j
= 2

considering dti = 2 and using Lemma 3.5 and Lemma 3.6,

�
(t)
ij =

1

2

(

2−�
(t)
1i ,i
+�

(t)
1i ,j

)

=
1

2



2−�
(t)
1i ,i
+
∑

k∈1i

�
(t)
j,k





=
1

2



2−�
(t)
1i ,i
+
∑

k∈1i

1

2

(

1−
1

2
�

(t)
1j
+�

(t)
1j,k

)





=
1

2

(

1−
1

2
�

(t)
1i
+

(

1−
1

2
�

(t)
1j
+

1

2
�

(t)
1i ,1j

))

= 1−
1

4

(

�
(t)
1i
+�

(t)
1j

)

+
1

4
�

(t)
1i ,1i

Thus we complete the proof.

3.4. Mean First-Passage Time
Our next task is to discuss the mean first-passage time for our
scale-free networks St , by applying the relationship between first-
passage time and average effective resistance. To achieve our task,
we present several parameters in following descriptions. For the
two subsets X and Y of set of vertices νt in St , we have

KX,Y =
∑

i∈X,j∈Y

�
(t)
ij

where KX,Y is the Kirchhoff index of St , for the sake of obtaining
this result, we give the following results.

Lemma 3.8. For t ≥ 0,

∑

i∈Wt

�
(t)
1i
=

(Nt−1 − 1)

2
(25)

Proof: It has to be noted that each edge of St−1 produces exactly
two new vertices of St , summing �t−1

1i
over 1i of all new vertices

i ∈ Wt in St is equal to summing �t
x,y times over all edges (x, y)

in St−1. Then, on the basis of Lemma 2.1, we have

∑

i∈Wt

�
(t)
1i
= 2

∑

(x,y)∈εt−1

�(t)
x,y

= 2
∑

(x,y)∈εt

1

2
�(t−1)

x,y

=
(Nt−1 − 1)

2

we have done.

Lemma 3.9. For t ≥ 0, and Y ⊂ νt−1

∑

i∈Wt

�
(t)
1i ,Y
=

∑

x∈νt−1

d(t−1)x �
(t)
x,Y (26)

Proof: For any vertex x ∈ νt−1, there are d
(t)
x − d

(t−1)
x = d

(t−1)
x

new vertices in Wt that are adjacent to i, so �
(t)
x,Y is summed

d
(t−1)
x times.

Lemma 3.10. For our scale-free networks, the Kirchhoff index is

Kνt ,νt (t) =
1

2
Kνt−1 ,νt−1 (t − 1)+ Nt−1

(

Wt −
Nt−1 − 1

2

)

+

Wt

(

Wt − 1−
Nt−1 − 1

2

)

(27)

Proof: By definition,

Kνt ,νt (t) = Kα,α(t)+ 2Kα,β (t)+ Kβ ,β (t)

=
1

2
Kνt−1 ,νt−1 (t − 1)+ 2Kα,β (t)+

1

4
Kβ ,β (t)

(28)

We have

Kα,β (t) = Kβ ,α(t)

=
∑

i∈Wt ,
j∈νt

�
(t)
i,j

=
∑

i∈Wt ,
j∈νt

1

2

(

1−
1

2
�

(t)
1i

)

=
1

2
Nt−1

(

Wt −
Nt−1 − 1

2

)

(29)

and

Kβ ,β (t) = 4Wt(Wt − 1)− 2(Nt−1 − 1)Wt

= 4Wt

(

Wt − 1−
Nt−1 − 1

2

)

(30)

Then, inserting Equations (29) and (30) into Equation (28) yields
the recursive relation for Kνt−1 ,νt−1 (t − 1)

Kνt ,νt (t) =
1

2
Kα,α(t)+ 2Kα,β (t)+ Kβ ,β (t)

=
1

2
Kνt−1 ,νt−1 (t − 1)+ 2Kα,β (t)+

1

4
Kβ ,β (t)

(31)

using Lemma 3.9, 3.10 and initial condition Kν0 ,ν0 (0) = 1,
Equation (31) is solved to yield Equation (27).

We are now ready to present the result for mean first-passage
time of St , denoted as F(St).
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Theorem 3.11. For t ≥ 0, the mean first-message time of
scale-free network St is

F(St) =
( 32Nt − 2)

Nt(Nt − 1)
·

[

1

2
Kνt−1 ,νt−1 (t − 1)

+ Nt−1

(

Wt −
Nt−1 − 1

2

)

+

Wt

(

Wt − 1−
Nt−1 − 1

2

)

]

=
4t−1

9(4t + 2)(4t + 1)
· [
2

9
(4t−1 + 2)(2 · 4t−1 − 1)

+
2

3
4t−1(4t−1 − 2)]

(32)

when t→∞

F(St) ∼
62

9
Nt (33)

Proof: By Lemma 2.2,

F(St) =
EtKνt ,νt (t)

Nt(Nt − 1)
(34)

Considering Et = 4t = 3
2Nt − 2, we have

F(St) =
( 32Nt − 2)Kνt ,νt (t)

Nt(Nt − 1)
(35)

Substituting Equation (27) into Equation (35) yields
Equation (32).

So far, we have proved this theorem.

We continue to express F(St) as a function of the network order

Nt . FromNt =
2
34

t+ 4
3 , we have 4

t = 3
2Nt−2 and t =

ln( 32Nt−2)

ln 4
.

Hence, the mean first-passage time F(St) can be written as

F(St) =
4t−1

9(4t + 2)(4t + 1)
· [
2

9
(4t−1 + 2)(2 · 4t−1 − 1)

+
2

3
4t−1(4t−1 − 2)]

(36)

Therefore, we have

F(St) ∼
62

9
Nt

for t→∞. Our results provide some new insights that can easily
distinguish the structure of important categories in our network.

Theorem 3.11 implies that the mean first-passage time of
our scale-free networks St scales linearly with the number of
vertices. We have verified our precise result in Equation (32)
against numerical calculations by Equation (20) and network
size. Consequencely, our results provide some new insights that
can easily distinguish the structure of significant categories in
our network. Figure 3 illustrates the relationship between the
mean first-passage time and the vertex number of networks.

In [44], the author consider the mean community time.

FIGURE 3 | Mean first-passage time for scale-free network vs. the number of

vertices Nt.

4. CONCLUSION AND DISCUSSION

In summary, we have proposed our scale-free networks by
introducing a graphic operation, i.e., rectangle operation. And
then, we have presented a comprehensive and systematical
analysis of mean first-passage time on randomwalks of our scale-
free networks. We have provided an explicit expression of mean
first-passage time on random walks, which is associated with
effective resistances for the network. Our networks demonstrate
the importance and influence of heterogeneous network topology
in random walk behavior, there by providing insights for
designing real networks with small mean first-passage time. We
believe that our methods will not only allow for the extension of
random walks analysis to some of the very large networks, but
also provide another perspective for understanding the property
of networks.
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