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A 1280 x 1,024 Ing 53Gag 47As short wave infrared (SWIR) focal plane array (FPA) detector
with a planar-type back-illuminated process has been fabricated. With indium bump flip-
chip bonding techniques, the InGaAs photodiode arrays were hybrid-integrated to the
CMOS readout integrated circuit (ROIC) with correlated double sampling (CDS). The
response spectrum is 0.9—-1.7 um. The test results show that the dark current density is
2.25 nA/cm? at 25 °C, the detectivity D*is up to 1.1 x 10" cm - Hz2/W, the noise electron
is as low as 48 e~ under correlated double sampling mode, the quantum efficiency is 88%
at 15650 nm, and the operability is more than 99.9%. Moreover, the dark current and noise
electron have been studied theoretically in depth. The results indicate that the diffusion
current is the main contribution of the dark current, and the readout integrated circuit noise
electron is the main source of FPA noise.

Keywords: InGaAs SWIR FPA, readout integrated circuit, noise electron, dark current, quantum efficiency,
correlated double sampling

INTRODUCTION

PIN InGaAs shor twave infrared (SWIR) focal plane array (FPA) detectors have attracted extensive
attention due to their high detectivity [1], high quantum efficiency, room temperature operation, low
dark current, and good radiation resistance [2]. Furthermore, InGaAs FPA detectors have wide
applications in many fields, such as aviation safety [3], biomedicine [4], camouflage recognition [5],
and infrared night vision [6]. Recently, InGaAs SWIR FPAa detectors are being developed to reduce
the pitch and enlarge the format [7,8]. Aerius Photonics reported a 1,280 x 1,024 20 um InGaAs FPA
detector. The dark current density was 3.85A/cm ™ at 25°C, and the operability was 99.88% [9]. SCD
developed a 1,280 x 1,024 InGaAs FPA detector with a pitch of 10 pm. The quantum efficiency (QE)
at 1550 nm was 80%. The dark current density was 0.5 nA/cm?at 7°C, and the operability was 99.5%
[10]. FLIR researched and developed a 1,280 x 1,024 15 um InGaAs detector. The QE was up to 70%.
The noise electron was as low as 70 €™ in middle gain at 20°C, and the operability was up to 99.5%
[11]. For space application, it is critical to develop large-format PIN arrays with low pitch and low
dark current density at higher operation temperatures. However, dark current densities reported up
to now have been more than 3 nA/cm ™ at room temperature, and lower dark current density is
required to gain higher sensitivity which is very important for low light level applications.

The lattice matching of Ings53Gag 47As with an InP substrate constitutes a significant advantage that
limits defect density and reduces Shockley Read Hall generation-recombination dark currents. The high
crystalline quality material is the key point to reduce the dark current. Zn diffusion depth is another
process that affects dark current. If Zn diffusion depth exceeds the InP/InGaAs hetero-interface, the
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FIGURE 1 | Cross-section of Zn diffusion.
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FIGURE 2 | Cross-section of PDA

InGaAs is damaged and dot defects are caused by Zn impurity. The
dot defects become carrier recombination centers in the InGaAs
absorption layer precisely [12,13]. In this paper, the fabrication of a
high performance 1,280 x 1,024 InGaAs SWIR FPA detector with a
pitch of 15 pm is presented. The device was processed with a planar-
type back-illuminated process by flip-chip bonding with indium
bump. The EPI material quality was optimized and the Zn diffusion
depth was controlled precisely to reduce dark current. The test
results show that the dark current density is 2.25 nA/cm® at 25°C, the
operability is up to 99.98%, and the QE is 88% at 1550 nm.
Moreover, the contributions of various dark current and noise
electronic mechanisms are analyzed theoretically.

FABRICATION OF INGAAS SWIR FPA

EPI Structure Growth
The typical PIN InGaAs/InP heterostructure was grown by
metal-organic chemical vapor deposition on 4-inch n* type

InP substrates. The EPI structure consisted of a 0.4 um n*-InP
buffer layer, a 2.8 um In, 53Gag 47As absorption layer, and a 1 um
n-InP cap layer. The defect density of the EPI was 0.1 /cm®.

InGaAs FPA Fabrication

The development and design of InGaAs FPA are common for all
array formats. The active region is composed of PIN photodiodes
and surrounded by common N-contact pixels to apply a uniform
polarization voltage. First, a SiN layer was deposited on the EPI
wafer by ICPECVD after pre-cleaning with 1%HCI, then the Zn
diffusion hole was fabricated with SiN dry and wet etching, and
Zn diffusion with Zn;P, in tube. Figure 1 shows a cross-section of
Zn diffusion from a scanning electron microscopic (SEM). After
that, the second SiN layer was deposited on the wafer for Zn
activation anneal and SiN dry-etched for p-metal evaporation.
Second, the InP and InGaAs around the active region were etched
to exposed n"-InP buffer layer for n-type metal evaporation with
E-beams, then P-metal and N-metal were annealed for ohmic
contact. Third, the connecting metal was deposited with E-beams,
and then InP substrate was lapped and polished for anti-reflection
coating layer deposition. Figure 2 shows an SEM cross-section of
the PDAs. The fourth step is indium bump evaporation and
reflow, and an SEM image of the indium bump after reflow is
shown in Figure 3. During the whole process, the Zn diffusion
depth was controlled to the InGaAs/InP hetero-interface
precisely by optimizing the diffusion time and temperature.
The contact resistance of P-metal and N-metal are 2.69 X
10° Qcm?® and 2.81 x 1077 Q cm?, respectively. Finally, after
wafer dicing, the InGaAs PDAs were hybrid-integrated to CMOS
ROIC with indium bump by flip-chip bonding. The ROIC circuit
adopts snapshot mode, supporting integral-then-readout and
integral-while-readout modes, and CDS mode. CDS mode is
used to reduce KTC noise and fixed pattern noise. Figure 4 is

Frontiers in Physics | www.frontiersin.org

October 2021 | Volume 9 | Article 678192


https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Zhang et al.

FIGURE 3 | The In bump after reflow.

the schematic diagram of the ROIC circuit. Finally, the 15 um
1,280 x 1,024 InGaAs FPA detector was packaged with high
vacuum integrity metallic packaging and thermoelectric coolers.
Figure 5 is the packaged FPA chip assembly. According to the
above process, the smaller format 640 x 512 15 pm InGaAs SWIR
detectors were fabricated and applied in space exploration
in 2019.

Test Results

With the Pulse Instruments 7700 FPA test system and EMVA
1288 standard method, we tested the electrical characteristics
and spectral response characteristics of the detector. The
operability is up to 99.98%. The response non-uniformity is
4.2%. The quantum efficiency is 88% @1550nm. The
detectivity D* reaches 1.1 x 10'* cm-Hz"?/W under CDS
mode, and the readout noise electron is 48 ¢~ under CDS
mode. The dark current density is measured as low as
2.25nA/cm®> and 5.06fA/pixel @ 25°C, as shown in
Figure 6. The histogram of the dark current is shown in
Figure 7, which is from a third party. The mean dark

InGaAs FPAs Detector

current of the pixels is about 10 fA/pixel at 33°C. Because
of the high temperature, the result is different from our
measurements, but both results indicate that the dark
current is very low. The dynamic range is 64dB. The
responsivity is 1.1A/W. Table 1 is the performances
compared with other detectors.

PERFORMANCE ANALYSES

Dark Current

Dark current is a key parameter which must be decreased to
improve signal to noise ratio and minimize the noise equivalent
power. Dark current is composed of diffusion current, generate-
recombination current, tunneling current, surface leakage current
31 Dark current density Jep is 225nA/cm? at —0.1V with
EMVA1288 standard method, as shown in Fig 6. At the same
time, the dark current was measured on test cells for photodiode
diameters varying from 6 um to 200pm, as shown in Fig 8.
Diffusion current density Jdiff, generated-recombined current
density Jgr and the sum of them Jtotal are calculated with the
formulae (1) and (2)[13], respectively. Intrinsic carrier
concentration ni is given by formula (3) and depletion width
Wd is given by formula (4)[13]. From calculation, the diffusion
current density Jq is 1.82nA/cm® and the generated-recombined
dark current density J, is 0.39nA/cm® at —0.1V. Hence, the
generated-recombined dark current density Jg is about one fifth
of the diffusion dark current density. The diffusion current density
Jdiff is the main contribution of the dark current density. The gap
between Jiora1 a0d J e, comes from tunneling current density and the
surface leakage current density, and becomes bigger with reverse
bias increase, as shown in Fig 9. The further experimental analyses
demonstrate the gap is main contributed by the tunneling current
which becomes bigger with reverse bias increase.

The dark current density can also be expressed as formula
(5)"41, where P is the pixel perimeter and A is the pixel area, Jj, is
the bulk current, and J; is the surface-related current. Different
size diodes with varying active diameter were prepared, Fig 10
shows the measured dark current density J4 vs. P/A taken from

_Vx | Vint
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SV

SUBPV Cint Cshl RswA
X Lo T i e I
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FIGURE 4 | The circuit of ROIC.
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FIGURE 5 | Packaged FPA chip.
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FIGURE 6 | The dark value versus exposure time.

InGaAs FPAs Detector

variable size test diodes at room temperature. The red line in
Fig 10 is the fitting line of the experimental datum. J, the slope of
fitting line, is 0.3pA/cm, and Jp, the intercept of fitting line, is
2.29nA/cm. Therefore, we could exclude influence of surface
leakage current. The results also indicate good surface passivation
by SiN and precise Zn diffusion process.

]diff = qnle(B + CNd + (NdTSHR)_1)<e% - 1) (1)

Wal av
Jor = anHRd [eﬁq B 1] )
T

n = NCNve'% (3)

| 2&0& (Vo= V) :
Wy = [ aNa ] (4)

P

Ja = ]sz +Jb (5)

where q is the electric quantity, n, is the intrinsic carrier concentration of
InGaAs, H is the thickness of InGaAs, B is the radiation recombination
coefficient, C is the Auger recombination coefficient, Ny is the doping
concentration of InGaAs, T is the SHR lifetime, V, is the voltage of
built-in electric field, V is the bias, k is the Boltzmann constant, T is
temperature, Nc is the effective conduction band density of states, Nv is
the effective valence band density of states, and Eg is the energy gap. All
the parameters used are given in Table 2.

Noise Electron

The noise electron of InGaAs FPAs contains PDA noise, ROIC
noise, and the combined noise of PDAs and ROIC. The PDA
noise mainly comes from thermal noise and the shot noise of dark
current. The ROIC noise electron and FPA noise electron are
measured under CDS mode and non-CDS mode, respectively.
The results show the ROIC noise electron is 42 e, and the
InGaAs FPA noise electron is 72 e~ under non-CDS mode,
while the ROIC noise electron is 20 e~ and the InGaAs FPA
noise electron is 48 ¢~ under CDS mode. The thermal noise
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FIGURE 7 | Histograms of the dark current at 33°C.
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TABLE 1 | Performance comparison of 1Kx1KInGaAs FPA.

InGaAs FPAs Detector

R and D unit Dark current (nAcm™2) D* (cm-Hz'2W™) QE (%) Operability
Spectro lab [14] 0.7@280K >10"® 80% >99%
SuUI [15] 2@12.5 °C >10"® 65% >99%
FLIR [11] <1@15°C >10"® 70% >99.5%
Aerius Photonics [9] 3.85@RT >10"® 80% 99.88%
SCD [10] 0.5@280K >10"® 80% >99.5%
SITP [8] <5@RT 5.3x10'? 75% >99%
This work 2.25@RT 1.1x10"® 88% >99.9%
10-5 3.0 T T T T T
= - 2 .
10 6} ] 55l Jexp—2.25nA/cm @0.1V T=25°C i
10_7 r 3
108} ] = 20 |
- £
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FIGURE 8 | Dark current versus bias. FIGURE 9 | Dark current density versus reverse bias.

electron Ngerma and the shot noise electron Nij,ghor Were
calculated according to Eq. 6 and Eq. 7 [13], respectively.

2KT
2 —
thermal — ET““ (6)
2 14
Nin,shot = ET’W (7)

where q is the electric quantity, k is the Boltzmann constant, T is
temperature, I is the dark current, Ry is the pixel resistance, and
Tine is the integration time.

The calculation results of the thermal noise and shot noise of
dark current are about 14e” and 1le, respectively. The PDA
noise electrons are 25 e at room temperature. Compared with
the actual measurement results in Table 3, it is revealed that PDA
noise is the main contribution of FPA noise under CDS mode,
while the ROIC noise is the main contribution of FPA noise
under non-CDS mode operation.

Detectivity D*

The detectivity D* is up to 1.1 x 10" cm-Hz"*/W and the
signal noise ratio (SNR)is 64dB under CDS mode. But under
non-CDS mode the detectivity D* is 4.2 x 10'* cm-Hz'/*/W,
and the SNR is 52 dB. According to the previous analysis of
readout noise electron, the FPA readout noise electron under

10 (— T . v T T . .
J

8t . J
= —— fitting line
S
® ¢l y=0.0003x+2.29 ]
9 R2=0.6727
5
3 4 =
o
= . = 1
3 2+ ¢ - .

0 500 1000 1500 2000 2500 3000 3500
P/A (cm™)

FIGURE 10 | Dark current density versus P/A.

CDS mode is lower than that under non-CDS mode, which
causes the SNR under CDS mode to be larger than that under
non-CDS mode. Therefore, as shown in Eq. 7, the D* is higher
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TABLE 2 | Parameters used in calculation [13].

InGaAs FPAs Detector

Material Ng Eg eV Nc (cm™) N, B (cm®/s) C (cm®/s) SHR £
(cm™) (cm™) (s)

InGaAs 2x10'® 0.74 2.1x10"" 7.7x10"® 9.5x 107" 8.1 x 1072° 4 %107 13.9

InP 2x10"7 1.34 5.7x10"" 1.1x10"° 1.2 x 107" 9x 107 1x107° 12,5

under CDS mode than that under non-CDS mode. The ROIC
noise is the main reason that causes the SNR and the
detectivity D* to be lower under non-CDS mode.

R
D' = V—V AAF (8)

where R, is the response voltage, V,, is the noise voltage, A4 is the
photo-sensitive pixel area, and Af is the noise equivalent
bandwidth.

CONCLUSION

In summary, a high-performance 15 um 1,280 x 1,024 InGaAs
PIN short wave infrared detector was fabricated by optimizing the
EPI material quality and Zn diffusion processing. The results
indicate that the dark current is as low as 2.25 nA/cm™> at room
temperature, and the theoretical calculation datum of
dark current shows that the diffusion current is the main
contribution of dark current. Under CDS mode operation,
the response non-uniformity of the megapixel FPA is 4.2%,
the operability is more than 99.9%, the detectivity D* is up
to 1.1 x 10" cm-Hz"*/W, the SNR is 64dB, and the main
contribution of FPA noise comes from PDAs whose noise
electron is 25e. Owing to larger noise from ROIC
under non-CDS mode, the detectivity is 4.2 x 10'* cm-Hz"?/w,
and the SNR is 52dB. The test results show the ROIC noise is the
main cause of the SNR and lower detectivity D* under non-
CDS mode.
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