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Differential geometry is a powerful tool to analyze the vapor–liquid critical point on the
surface of the thermodynamic equation of state. The existence of usual condition of the
critical point (zp/zV)T � 0 requires the isothermal process, but the universality of the
critical point is its independence of whatever process is taken, and so we can assume
(zp/zT)V � 0. The distinction between the critical point and other points on the surface
leads us to further assume that the critical point is geometrically represented by zero
Gaussian curvature. A slight extension of the van der Waals equation of state is to letting
the two parameters a and b in it vary with temperature, which then satisfies both
assumptions and reproduces its usual form when the temperature is approximately the
critical one.
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1 INTRODUCTION

In thermal physics, a critical point is the end point of a phase equilibrium curve, the
pressure–temperature curve that designates conditions under which a liquid phase and a vapor
phase can coexist. The critical point (TC ,VC , and pC) in the pV diagrams is determined by

(zp
zV

)
T

� 0,(z2p
zV2

)
T

� 0, (1)

together with the thermodynamic equation of state (EoS), where symbols (T ,V , and p) have their
usual meaning as in ordinary textbooks [1–5]. The phase transition exhibits critical slowing down,
universality, scaling, etc., which reflects a fact that the details of the system play an insignificant role
[6, 7]. How to characterize the essence of the critical point is always an attractive topic. We note two
seemly independent developments/facts. One is that the critical slowing down is its path-
independence [8–12], which means that starting from any thermodynamic state in the vicinity
of a critical point to approaching it, the system has inherently slow timescales whatever
thermodynamic processes are chosen. The second is that a geometrical description of a local
point on a curved surface is irrespective of either the parameters chosen to label the point on the
surface or the paths selected to approach it. The strong resemblance of these two facts suggests that a
geometrical description of the critical point is advantageous. Based on this observation, we propose
that the critical point is geometrically represented by zero Gaussian curvature on the thermodynamic
EoS surface, together with some physical assumptions. We hope to use this proposal to resolve a
long-standing problem associated with the van der Waals (vdW) EoS.
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The most prominent aspect of the vdW EoS is that it captures
many of the qualitative features of the liquid–vapor phase
transition with the possible help of Maxwell’s equal area rule.
The vdW EoS was essentially presented by van der Waals in his
1873 PhD thesis [13] (but explicitly given later [14]), and for this,
he was awarded the Nobel Prize in Physics 1910 [13–17]. The
vdW EoS is well-known as

p � nRT
V − nb

− n2a
V2

, (2)

where two parameters, a and b, can be estimated from the critical
point and considered constants, which are specific for each
substance, and other symbols (n,R) also have their usual
meaning as in ordinary textbooks [1–5]. For one mole fluid,
n � 1, and the values of TC ,VC , and pC are given in terms of a and
b parameters [1–5] as

TC � 8a
27Rb

, pC � a
27b2

, andVC � 3b. (3)

With these values, the vdW EoS can be transformed into the
following dimensionless form:

p* � 8
3

t*

v* − 1/3
− 3
v*2

, (4)

where

t* ≡
T
TC

, v* ≡
V
VC

, p* ≡
p
pC
. (5)

Eq. 4 is referred to as the law of corresponding states which
holds for all kinds of fluid substances, which was also originated
with the work of van der Waals in about 1873 [13], when he used
the critical temperature and critical pressure to characterize a
fluid. However, whether and how the vdW parameters a and b
depend on the temperature T, and even more on the volume V,
has been a problem of long history. van der Waals himself was
well-aware of it [14] and remarked in his Nobel Prize speech that
“I have never been able to consider that the last word had been
said about the equation of state and I have continually returned to
it during other studies. As early as 1873 I recognized the
possibility that a and b might vary with temperature, and it is
well-known that Clausius even assumed the value of a to be
inversely proportional to the absolute temperature” [13]. In fact,
more than one century passed since the discovery of the vdW
EoS, we do not have strong experimental evidence nor a
compelling theoretical argument to indicate how a and b
parameters might depend on the temperature and/or volume.
We have some theoretical results in statistical mechanics,
revealing some temperature dependence of a and b, for
instance, in the hard-sphere model [1–5], but these results are
frequently obtained for a dilute fluid far from the critical point,
and more importantly, they rely heavily on the specific model
without universality which is inherent to thermodynamics.

The present paper thus addresses two problems. One is why
we assume (zp/zT)V � 0 that is complementary to the first
formula of Eq. (1) and why we propose that the critical point
is geometrically represented by zero Gaussian curvature on the
thermodynamic EoS surface. Another is to use the above

assumptions to discuss the long-standing problem within
thermodynamics. This paper is organized as follows. In
Section 2, we prove a theorem stating that the local shape of
the vapor–liquid critical point on the thermodynamic surface can
never be an elliptic point, and in order to completely characterize
the local shape of the critical point, we need two more response
functions which are assumed to vanish at the critical point,
implied by the critical slowing down observed in either the
realistic experiments or the computer simulation of the phase
transition [8–12]. The vanishing response functions lead to the
zero Gaussian curvature. In Section 3, the vdW EoS is slightly
extended such that the parameters a and b vary with the
temperature T, which is thus capable of giving zero Gaussian
curvature at the critical point, while the usual form of the vdW
EoS fails. In Section 4, a brief summary of the present study
is given.

In the present paper, we concentrate on the (interior) Gaussian
curvature that is sufficient to specify the local shape of the two-
dimensional thermodynamic EoS surface, but we will also give the
(exterior) mean curvature as a contrasting quantity. In geometry,
the curvature is usually referred to as the interior one.

2 LOCAL SHAPE OF THE VAPOR–LIQUID
CRITICAL POINT ON THE EQUATION OF
STATE SURFACE AND A PROPOSAL
In differential geometry, the local shapes of a two-dimensional
curved surface are completely classified into three types:
elliptic, hyperbolic, and parabolic, corresponding to the
Gaussian curvature greater than, smaller than, or equal to
zero, respectively [18–20]. For a thermodynamic EoS p �
p(T ,V) that can be treated as a two-dimensional surface in
the three-dimensional flat space of coordinates p, T, and V, we
now show that the vapor–liquid critical point cannot be an
elliptic point.

In geometry, it is preferable to use the dimensionless equation
of the EoS surface p � p(T ,V). The straightforward calculations
can, respectively, give H and Gaussian curvature K:

H �
(z2p
zV2)

T
((zpzT)2V + 1) + (z2p

zT2)
V
((zp

zV)2T + 1) − 2 (zp
zV)T(zpzT)V( z2p

zVzT)
2 ((zp

zV)2T + (zpzT)2V + 1)3/2 ,

(6)

K �
(z2p
zV2)

T
(z2p
zT2)

V
− ( z2p

zVzT)
2

((zp
zV)2T + (zpzT)2V + 1)2 . (7)

At the critical point the conditions in Eq. (1) apply, we have
the mean curvature HC and Gaussian curvature KC , respectively,
as follows:

HC �
(z2p
zT2)

V

2((zpzT)2V + 1)3/2,KC � −
( z2p
zVzT)

2

((zpzT)2V + 1)2, (8)
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which shows that K ≤ 0. Thus, we in fact prove a theorem that the
local shape of the vapor–liquid critical point on the
thermodynamic surface can never be an elliptic point.

To illustrate the mean and Gaussian curvature of the surface of
the thermodynamic EoS, let us first consider two simple systems.
For an incompressible liquid EoS: V � const., which is a flat
plane, both curvatures are zero. The ideal gas EoS surface,
p � nRT/V , can be rewritten as a dimensionless one p*v* � tp

with a reference point (p0, V0, T0(� p0V0/(nR))), where
t* ≡ T/T0, v* ≡ V/V0, and p* ≡ p/p0. The mean curvature H
and Gaussian curvature K are, respectively,

H � t*v*3

(tp2 + v*2 + v*4)3/2,K � − v*4

(tp2 + vp2 + v*4)2. (9)

Since the Gaussian curvature K < 0 is negative definite, every
point on the ideal gas EoS surface is saddle.

Now, we examine the vdW EoS surface [Eq. (2)], and it is
preferable to use the dimensionless form [Eq. (4)]. The mean
curvature H and Gaussian curvature K are, respectively,

H � 9v*5(3v* − 1)3 F1(t*, v*)
(F2(t*, v*))3/2

,K � − 576(3v* − 1)4v*12
(F2(t*, v*))2 , (10)

where

F1(t*, v*) � 8t*v*4 − 27v*3 + 27v*2 − 73v* + 65, (11)

F2(t*, v*) � 576t*2v*6 − 2592t*v*5 + 1728t*v*4 − 288t*v*3

+ 81v*10 − 108v*9 + 630v*8 − 396v*7 + 65v*6

+ 2916v*4 − 3888v*3 + 1944v*2 − 432v* + 36.
(12)

At the critical point (t*, v*) � (1, 1), we have, respectively,

HC � 0, KC � − 36
289

≈ − 0.125. (13)

The negative Gaussian curvature KC ≈ − 0.125 indicates that
the critical point is a hyperbolic point, more precisely, a saddle
point [20].

A comparison of the Gaussian curvatures in Eq. (9) for the
ideal gas EoS and Eq. (13) for the vdW EoS suggests that there is
no qualitative difference in between. It is a little bit odd, for we
believe that a realistic EoS differs from the ideal gas EoS in the
qualitative sense, rather than a quantitative one. By the critical
point in the PV diagram, we mean a stationary inflection point in
the constant-temperature line, critical isotherm, whose location is
determined by two equations in Eq. (1). However, if one
approaches this point from an isobaric process or an
isovolumetric process, or a more complicated process, we do
not know whether such a point exhibits the same singularity.
Therefore, we must seek for a general condition for the critical
point, independently of thermodynamic paths.

At the local point of the thermodynamic EoS surface
p � p(T ,V), the tangential plane is spanned by two
independent vectors (zT , zV ). At the critical point (TC ,VC), we
have (zp/zV)T � 0 in Eq. (1) which means the existence of a limit
along the isotherm. Such a limit must exist along the isotherm
(T � const.) or along the isovolumetric line (V � const.), implying
that we can further impose (zp/zT)V � 0 at the critical point.

Another condition is inspired by the Gaussian curvature that is
independent of the detailed structure of matter, and the simplest
assumption is KC � 0, implying z2p/zVzT � 0. In sum, we
propose two additional conditions for the critical point on the
EoS surface p � p(T ,V):

(zp/zT)V � 0, z2p/zVzT � 0. (14)

It is worth mentioning that, in contrast to the realistic
experiments which seem hard to measure these two response
functions near the critical point, the computer simulations are
more feasible [8–11], which shows that the critical slowing down
is really an overall phenomenon no matter what path is chosen to
approach the critical point.

3 THE PROPOSAL AND TEMPERATURE
DEPENDENCE OF VAN DER WAALS
PARAMETERS A AND B
We are confident that the vdW EoS with the constant parameters a
and b is not satisfactory for the following two senses. The first is that
the Gaussian curvature at the critical point is KC ≈ − 0.125 in Eq.
(13)which is not qualitatively different from other points except the
limiting situation. The second is that the value KC ≈ − 0.125
manifestly depends on a special thermodynamic path,
i.e., isotherm in Eq. (1). Fortunately, the vdW EoS can be
adapted for removal of these weaknesses.

The slightest extension of the vdW EoS is to let the two
constants a and b in the vdW EoS, Eq. (2), depend on the
temperature as a→ a(T) and b→ b(T). The critical values of
TC ,VC , and pC are entirely determined by a(TC) and b(TC):

TC � 8a(TC)
27Rb(TC), pC � a(TC)

27b(TC)2,VC � 3b(TC). (15)

With introduction of the dimensionless α(t*) and β(t*) instead of
a(T) and b(T) in the following:

α(t*) ≡ a(T)
a(TC) �

a(t*TC)
a(TC) , β(t*) ≡

b(T)
b(TC) �

b(t*TC)
b(TC) , (16)

the law of corresponding states does not hold true anymore
except in the special case, α � const. and β � const., and we have
instead the dimensionless extended vdW EoS:

p* � 8
3

t*

v* − β(t*)/3 −
3α(t*)
v*2

. (17)

Near the critical point, we assume that a(T) and b(T)
parameters take the following forms:

a(T) ≈ a(TC) + a′(TC)(T − TC) + 1
2
a″(TC)2(T − TC)2, (18a)

b(T) ≈ b(TC) + b′(TC)(T − TC) + 1
2
b″(TC)2(T − TC)2, (18b)

where

g ′ � dg
dT

, g � a, b, a′, b′, . . . . (19)
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The relations between set (α′(TC), β′(TC)) and set
(a′(TC), b′(TC)) are

α′(t* � 1) � TC
a′(TC)
a(TC) , β

′(t* � 1) � TC
b′(TC)
b(TC) , (20)

where α′ � dα/dt* and β′ � dβ/dt*.
The mean curvature H and Gaussian curvature K of the

dimensionless extended vdW EoS surface have very long
expressions of the complicated structure. However, the
expressions for both H and K at the critical point (t*, v*, α, β) �
(1, 1, 1, 1) are simply

HC � 2β′(β′ + 2) − 3α″ + 2β″

2(G(t*, v*))3/2 ,KC � −36(1 − α′ + β′)2
(G(t*, v*))2 , (21)

where

G(t*, v*) � 4β′
2 + 9α′

2 − 12α′β′ + 16β′ − 24α′ + 17. (22)

The distinctive feature of the extended vdW EoS is that it
contains two possible local shapes at the critical point: hyperbolic
and parabolic, for KC ≤ 0. The case KC � 0 can be realized
provided

1 − α′ + β′ � 0. (23)

Note that two response functions (zp/zT)V , and their partial
derivative with respect to volume, (z2p/zVzT), produce values at
the critical point (TC ,VC , pC), respectively, as follows:

(zp
zT

)
V

� 9RTCb′(TC) − 4a′(TC) + 18Rb(TC)
36(b(TC))2 , (24a)

z2p
zVzT

� − 27RTCb′(TC) − 8a′(TC) + 27Rb(TC)
108(b(TC))3 . (24b)

These two values are sufficient to completely fix two
derivatives (a′(TC), b′(TC)), given that the parameter b(TC) in
Eqs. (24a,b) is given by the magnitude of the molar critical
volume via Eq. (15).

Now let us examine situations where both response functions
in Eq. (14) vanish at the critical point. First, once the second
response function vanishes at the critical point, (z2p/zVzT) � 0,
i.e., 27RTCb′(TC) − 8a′(TC) + 27Rb(TC) � 0 from Eq. (24b), we
have from the relations in Eq. (20) that

27Rb(TC)β′ − 8α′a(TC) + 27RTCb(TC) � 0, (25)

which reproduces 1 − α′ + β′ � 0 in Eq. (23) with 27TCRb(TC) �
8a(TC) in Eq. (15). Second, once the first response function in
Eq. (14) vanishes at the critical point, (zp/zT)V � 0,
i.e., 9RTCb′(TC) − 4a′(TC) + 18Rb(TC) � 0 from Eq. (24a), we
have 4 − 3α′ + 2β′ � 0. An association of two equations 1 − α′ +
β′ � 0 and 4 − 3α′ + 2β′ � 0 yields

α′ � 2, β′ � 1.i.e., a′(TC) � 2a(TC)/TC , b
′(TC) � b(TC)/TC .

(26)

With these values, we find that not only the critical point is locally
flat but also a(T) and b(T) are accurate up to the first order
of (t* − 1):

a(T) ≈ a(TC) + 2a(TC)(t* − 1) � −a(TC) + 2a(TC)t*, (27a)

b(T) ≈ b(TC) + b(TC)(t* − 1) � b(TC)t*. (27b)

When t* ≈ 1, i.e., T ≈ TC , a(T) ≈ a(TC), and b(T) ≈ b(TC),
the usual form of vdW EoS is assumed. It is important to note
that, from the two relations above, the usual vdW EoS is valid
when the thermodynamic states are very close to the critical
point, and a(T) and b(T) are also solely determined by a(TC)
and b(TC).

4 CONCLUSION

Differential geometry is a powerful tool to reveal the intrinsic
nature of the curved surface, and it is advantageous to analyze
the critical point on the EoS surface. On the tangential plane of
the critical point, the existence of limit (zp/zV)T � 0 requires
the isothermal process. However, the essence of the critical
point is its independence of whatever process is taken, and of
detailed structure of matters. We can therefore assume
(zp/zV)v � 0 and KC � 0 at the critical point on the EoS
surface.

The vdW EoS is the simplest one to understand the
liquid–gas transition. Since the vdW parameters a and b are
constant, the Gaussian curvature is negative definite, and there
is no distinction between the vdW EoS and the ideal gas EoS.
According to our assumptions, the vdW EoS is slightly modified
or extended such that the vdW parameters a and b vary with
temperature, allowing for the presence of the zero Gaussian
curvature at the critical point. Our approach sheds light on
understanding the theoretical problem how the vdW
parameters depend on the temperature.
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