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The product vague graph (PVG) is one of the most significant issues in fuzzy graph theory,
which has many applications in the medical sciences today. The PVG can manage the
uncertainty, connected to the unpredictable and unspecified data of all real-world
problems, in which fuzzy graphs (FGs) will not conceivably ensue into generating
adequate results. The limitations of previous definitions in FGs have led us to present
new definitions in PVGs. Domination is one of the highly remarkable areas in fuzzy graph
theory that have many applications in medical and computer sciences. Therefore, in this
study, we introduce distinctive concepts and properties related to domination in product
vague graphs such as the edge dominating set, total dominating set, perfect dominating
set, global dominating set, and edge independent set, with some examples. Finally, we
propose an implementation of the concept of a dominating set in medicine that is related to
the COVID-19 pandemic.
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1 INTRODUCTION

Graph theory began its adventure from the well-known “Konigsberg bridge problem.” This problem is
frequently believed to have been the beginning of graph theory. In 1739, Euler finally elucidated this
problem using graphs. Even though graph theory is an extraordinarily old concept, its growing
utilization in operations research, chemistry, genetics, electrical engineering, geography, and so forth
has reserved its freshness. In graph theory, it is highly considered that the nodes, edges, weights, and so
on are definite. To be exact, theremay be no question concerning the existence of these objects.However,
the real world sits on a plethora of uncertainties, indicating that in some situations, it is believed that the
nodes, edges, and weights may be additional or may not be certain. For instance, the vehicle travel time
or vehicle capacity on a road network may not be exactly identified or known. To embody such graphs,
Rosenfeld [1] brought up the idea of the “fuzzy graph” in 1975. FG-models are advantageous
mathematical tools for handling different domains of combinatorial problems embracing algebra,
topology, optimization, computer science, social sciences, and physics (e.g., vulnerability of networks:
fractional percolation on random graphs). The VS theory was defined by Gau and Buehrer [2]. Using
Zadeh’s fuzzy relation [3], Kauffman [4] illustrated FGs. Mordeson et al. [5–7] evaluated some results in
FGs. Pal et al. [8–10] investigated some remarks on bipolar fuzzy graphs and competition graphs. Akram
et al. [11, 12] epitomized new definitions in FGs. Ramakrishna [13] described the VG concepts and
examined the properties. Rashmanlou et al. [14] defined PVGs and studied new concepts such as the
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complete-PVG, complement of a PVG, and the edge regular PVG
with several examples. Shao et al. [15–20] proposed new concepts in
vague graph structures and vague incidence graphs such as the
maximal product, residue product, irregular vague graphs, valid
degree, isolated vertex, vague incidence irredundant set, Laplacian
energy, adjacency matrix, and Laplacian matrix in VGs and
investigated their properties with several examples. Also, they
described several applications of these concepts in the medical
sciences. Borzooei et al. [21–24] analyzed several concepts of VGs.
Ore [25] defined “domination” for undirected graphs and studied
its properties. Somasundaram [26] defined the DS and IDS in FGs.
Nagoorgani et al. [27, 28] represented the fuzzy DS and IDS notions
using strong arcs. Parvathi and Thamizhendhi [29] represented the
domination number, independent set, independent domination
number, and total domination number in intuitionistic fuzzy
graphs [29]. Cockayne [30] and Hedetniemi [31, 32] introduced
fundamentals of domination in graphs.

Fuzzy graph theory has a wide range of applications in various
fields. Since indeterminate information is an essential real-life
problem, mostly uncertain, modeling those problems based on
fuzzy graphs (FGs) is highly demanding for an expert. A PVG is
an indiscriminately comprehensive structure of an FG that offers
higher precision, adaptability, and compatibility to a system when
coordinated with systems running on FGs. PVGs are a very useful
tool for examining many issues such as networking, social systems,
geometry, biology, clustering, medical science, and traffic plans.
Domination is one of the most important issues in graph theory and
has found numerous applications in formulating and solving many
problems in several domains of science and technology exemplified
by computer networks, artificial intelligence, combinatorial analyses,
etc. Domination of PVGs is an interesting and powerful concept and
can play an important role in applications. Thus, in this study, we
introduce different kinds of domination in PVGs, such as the EDS,
TDS, PDS, GDS, and EIS, with some examples and also discuss the
properties of each of them. Today, almost every country in the world
is inflicted by a dangerous disease called Covid-19. Unfortunately,
many people have lost their lives due to contracting this dangerous
virus and the lack of necessary medical equipment for treatment. So,
we have tried to identify a suitable hospital for a person infected with
the coronavirus that has more appropriate medical facilities and
equipment and is in the most favorable conditions in terms of
distance and amount of traffic, so that time and money are saved,
with the help of the DS in the VG. Some basic notations introduced
in Table 1

2 PRELIMINARIES

A (crisp) graph G* � (V , E) consists of two sets called the vertices
(V) and the edge (E). The elements ofV are called vertices and the
elements of E are called edges. An FG has the form of ζ � (σ,φ),
so that σ : V → [0, 1] and φ : V × V→ [0, 1], as is defined as
φ(xy)≤ σ(x)∧σ(y), ∀x, y ∈ V , and φ is a symmetric fuzzy relation
on σ and ∧ denotes the minimum.

Definition 2.1: [2] A VS A is a pair (tM , fM) where tM and fM
are considered as real-valued functions that can be described on
V → [0, 1], such that tM(x) + fM(x)≤ 1, ∀x ∈ V.

Definition 2.2: [13] A pair ξ � (M,N) is named as a VG on G*,
such that M � (tM , fM) is a VS on V and N � (tN , fN) is a VS on
E4V ×V so that for all xy ∈E, we have tN(xy)≤min(tM(x),
tM(y)), and fN(xy)≥max(fM(x), fM(y)).

Example 2.3: Consider a VG ξ as Figure 1, so that V � {x, y, z}
and E � {xy, xz, yz}. Clearly, ξ is a VG.

Definition 2.4: [23] Let ξ � (M,N) be a VG. The cardinality,
vertex cardinality, and edge cardinality of ξ are defined as follows:

(1) |ξ| �
∣∣∣∣∣∣∣∣ ∑xi∈V

1+tM(xi)−fM(xi)
2 + ∑

xiyi∈E

1+tN(xiyi)−fN(xiyi)
2

∣∣∣∣∣∣∣∣.

(2) |V | � ∑xi∈V
1+tM(xi)−fM(xi)

2 , ∀xi ∈ V.

(3) |E| � ∑xibi∈E
1+tN(xiyi)−fN(xiyi)

2 , ∀xiyi ∈ E.

Definition 2.5: [24] Consider ξ � (M,N) as a VG. Provided
that xi, xj ∈ V, the connectedness t-strength between xi and xj is
termed as t∞N (xi, xj) � sup{tkN(xi, xj)|k � 1, 2,/, n} and the
connectedness f-strength between xi and xj is termed
as f∞N (xi, xj) � inf {f kN(xi, xj)|k � 1, 2,/, n}.

Definition 2.6: [22]An edge xy in aVG ξ � (M,N)will be a strong
edge provided that tN(xy)≥(tN )∞(xy) and fN(xy)≤(fN)∞(xy).

Definition 2.7: [23] A VG ξ � (M,N) is called complete
provided that tN(xixj) �min{tM(xi), tM(xj)} and fN(xixj) �
max{fM(xi), fM(xj)}, ∀xi,xj ∈V.

A VG ξ is called strong provided that tN(xixj) �
min{tM(xi), tM(xj)} and fN(xixj) �max{fM(xi), fM(xj)}, ∀xixj ∈ E .

Definition 2.8: [22] Consider ξ as a VG. Assuming x, y ∈ V, we
state that x dominates y in ξ, provided that there is a strong edge
between them.A subset K4V will be named a DS in ξ provided
that for every x ∈ V − S, there exists y ∈ K so that x dominated y.
A DS K of a VG ξ is referred to as an MI-DS, provided that no
proper subset of K is a DS.

Definition 2.9: [14] Let ξ � (M,N) be a VG. If
tN(xy)≤ tM(x) × tM(y) and fN(xy)≥ fM(x) × fM(y), ∀x, y ∈ V,
then the VG ξ is called a PVG. Note that a PVG ξ is not
necessarily a VG. A PVG ξ is called complete-PVG if tN(xy) �
tM(x) × tM(y) and fN(xy) � fM(x) × fM(y), ∀x, y ∈ V.

The complement of a PVG ξ � (M,N) is ξ � (M,N), where
M � M � (tM , fM) and N � (tN , fN ) so that tN(xy) � tM(x) ×
tM(y) − tN(xy) and fN(xy) � fN(xy) − fM(x) × fM(y).

Example 2.10: Consider the PVG ξ as Figure 2.For the xy edge,
we have the following:

0.01 � tN(xy)≤ tM(x) × tM(y) � 0.02,

FIGURE 1 | VG ξ.

Frontiers in Physics | www.frontiersin.org July 2021 | Volume 9 | Article 6806342

Shi and Kosari Domination in Product Vague Graphs with Application

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


0.15 � fN(xy)≥ fM(x) × fM(y) � 0.01.

In the same way, we can show that both conditions of Definition
2.9 are true for other edges. So, ξ is a PVG.

Definition 2.11: [14] An edge xy in a PVG ξ is named an effective
edge if tN(xy) � tM(x)× tM(y) and fN(xy) � fM(x)× fM(y).

Definition 2.12: [14] If ξ is a PVG, then the vertex cardinality of
K4V is described as follows:

|K| �
∣∣∣∣∣∣∣∣∣
∑
x∈K

1 + tM(x) − fM(x)
2

∣∣∣∣∣∣∣∣∣
.

Definition 2.13: [14] Let ξ � (M,N) be a PVG; then the edge
cardinality of S4E is defined as follows:

|S| �
∣∣∣∣∣∣∣∣∣∣
∑
xy∈S

1 + tN(xy) − fN(xy)
2

∣∣∣∣∣∣∣∣∣∣
.

Definition 2.14: [14] Two edges xy and zw in a PVG ξ are
named adjacent if they are neighbors. Also, they are independent if
they are not adjacent.

Definition 2.15: [22] Let ξ be a PVG. K4V(ξ) is called a DS of
ξ if ∀ x ∈ V − K, and there exists a vertex y ∈ K so that the
following occurs:

tN(xy) � tM(x) × tM(y) and fN(xy) � fM(x) × fM(y).

A DS K of a PVG ξ is said to be a minimal-DS if no proper subset
of K is a DS.

Definition 2.16: [5] Let ξ � (M,N) be a PVG. Then we have
deg(x) � (degt(x),degf (x)) � (M1,M2), where M1 �∑x≠ytN(xy)
and M2 �∑x≠yfN(xy), for xy ∈ E.

Two vertices, xi and xj, are said to be strong neighbors if
tN(xixj) �min{tM(xi), tM(xj)} and fN(xixj) �max{fM(xi), fM(xj)}.

Definition 2.17: [22] Two vertices, xi and xj, are said to be
independent vertices if there is no strong arc among them. K4V is
called an independent set if every two vertices of K are independent.

3 NEW KINDS OF DOMINATION IN
PRODUCT VAGUE GRAPHS

Definition 3.1: Let ξ � (M,N) be a PVG and mi and mj be two
adjacent edges of ξ. We say that mi dominates mj if mi is an
effective edge in ξ.

Definition 3.2: D4E is named an EDS in ξ if for every
mj ∈ E − D, there is an mi ∈ E − D, so that mi dominates mj.

Definition 3.3: An EDS D of a PVG ξ is named anMI-EDS if no
proper subset of D is an EDS.

Definition 3.4: Minimum cardinality between all MI-EDSs is
named an EDN of ξ and is denoted by c′(ξ).

Definition 3.5: The strong neighborhood of an edge mi

in a PVG ξ is defined as Ns(mi) � {mj ∈E(ξ)
∣∣∣∣mj

is effective edge and neighbor to mi in ξ}.
Example 3.6: Consider a PVG ξ � (M,N) on V � {x, y, z,w},

as shown in Figure 3.
Here, {m1,m3}, {m3,m4}, {m2,m4}, and {m1,m2} are EDSs and

c′(ξ) � 0.91.
Definition 3.7: Let ξ � (M,N) be a PVG. Two edges, mi andmj,

are called edge independent, if mi ∉ Ns(mj) and mj ∉ Ns(mi)
Definition 3.8: Let ξ � (M,N) be a PVG. A subset S of E is

called an EIS of ξ if any two edges in S are edge independent.
Definition 3.9: An EIS S of a PVG ξ is called an MA-EIS if for

every edge m ∈ E − S, the set S∪ {m} is not independent. The
minimum cardinality between all MA-EISs is called an EIN of ξ
and is denoted by β′(ξ).

FIGURE 3 | PVG ξ with effective edges.FIGURE 2 | product vague graph ξ.

FIGURE 4 | PVG ξ with MA-EISs.
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Example 3.10: Consider the example of a PVG ξ � (A,B) as
shown in Figure 4. Clearly, {m1,m5} and {m2,m4} are MA-EISs of
ξ and β′(ξ) � 0.84.

Definition 3.11: If all the edges are effective edges in a PVG ξ,
then it is called an effective-PVG.

Definition 3.12: Assume that E’ is a subset of edge set E. Then,
the node cover of E’ is defined as the set of all nodes incident to
every edge in E’.

Example 3.13: Consider the PVG ξ as shown in Figure 5.
Obviously, ξ is an effective-PVG.

Theorem 3.14: Node cover of an EDS of a PVG ξ is a DS of ξ.
Proof: Let ξ be a PVG. Suppose that S is a node cover of an EDS

K. We prove that S is a DS. Let y ∈ V − S, since K is an EDS; then
there is a strong edgem ∈ K such thatm is incident to y. Since S is
a node cover of K, there is an x ∈ S so that x dominated y or x
covers m. Hence, S is a DS of ξ.

Definition 3.15: An edge in a PVG ξ is called an isolated edge if
it is not a neighbor to any effective edge in ξ.

Example 3.16: Consider the PVG ξ as shown in Figure 6. It is
obvious that m1 is an isolated edge.

Theorem 3.17: Let ξ be a PVG without isolated edges, and there
exists no edge mi ∈ E so that Ns(mi)4S. If S is an MI-EDS, then
K − S is an EDS where K is the set of all effective edges in ξ.

Proof: Let S be an MI-EDS of a PVG ξ. Suppose that K − S is
not an EDS. Then, there exists at least one edge mi ∈ S that is not
dominated by K − S. Because ξ has no isolated edges and there is
no edge mi ∈ E so that Ns(mi)4S, mi neighbors at least one
effective edge mj in K. Since K − S is not an EDS of ξ, mj ∉ K − S.
So mj ∈ S. Hence, mj ∈ S. Therefore, S − {mi} is an EDS that is a

contradiction of the fact that S is an MI-EDS. Hence, each edge in
E − K is dominated by an edge in K − S. Thus, K − S is an EDS.

Theorem 3.18: An EIS of a PVG ξ having only effective edges is
an MA-EIS if and only if it is edge independent and an EDS.

Proof: Suppose that S is an EIS of a PVG ξ having only effective
edges. Consider that S is an MA-EIS of ξ. Then, ∀mi ∈ E − S, and
the set S∪ {mi} is not an EIS, that is, for every mi ∈ E − S, there is
an edge mj so that mj ∈ Ns(mi). Hence, S is an EDS of ξ.
Conversely, suppose that S is both edge independent and an
EDS of ξ. We have to prove that S is an MA-EIS having only
effective edges. Because S is an EDS of ξ, it has only effective edges.
Assume that S is not an MA-EIS. Then, there is an edgemi ∉ S so
that S∪ {mi} is an EIS, and there is no edge in S belonging to
Ns(mi) and hence, mi is not dominated by S. So, S cannot be an
EDS of ξ; that is a contradiction. Therefore, we conclude that for
every edge m ∈ E − S, the set S∪ {m} is not independent. Thus, S
is an MA-EIS of ξ having only effective edges.

Theorem 3.19: Node cover of an MA-EIS of a PVG ξ having
only effective edges is a DS of ξ.

Proof: Let S be an MA-EIS of a PVG ξ having only effective
edges. Let V ’ be the node cover of S. We know that each MA-EDS
having only effective edges is a minimal DS of ξ. Then, V ’ is a
node cover of a PVG ξ. According to Theorem 3.14, the node
cover of an EDS of a PVG ξ is a DS of ξ. Hence, V ’ is a DS of ξ.

Definition 3.20: Consider ξ � (M,N) as a PVG on V without
isolated nodes. A subset S4V is a TDS provided that for each node
y ∈ V, ∃ a node x ∈ S, x ≠ y, so that x dominates y.

Definition 3.21: A TDS S of a PVG ξ is called an MI-TDS if no
proper subset of S is a TDS. The minimum cardinality of an MI-
TDS is named a lower-TDN of ξ and is shown by ct(ξ).

Example 3.22: In Figure 7, {x, y}, {x,w}, {y, z}, and {y,w} are
TDSs and ct(ξ) � 0.85.

Theorem 3.23: Let ξ � (M,N) be a PVGwithout isolated nodes
and S is a minimal-DS of ξ; then V − S is a DS of ξ.

Proof: Let S be a minimal-DS and s ∈ S. Since ξ has no isolated
nodes, there is a node y ∈ N(s) so that ymust be dominated by at
least one node in S − {s}, that is, S − {s} is a DS and y ∈ V − S.
Thus, each node in S is dominated by at least one node in V − S,
and so V − S is a DS.

Definition 3.24: A DS S in a PVG ξ is called a PDS if for each
node y ∈ V − S, there is exactly one node x ∈ S so that x
dominates y.

FIGURE 5 | Effective PVG ξ.

FIGURE 6 | PVG ξ with isolated edge.

FIGURE 7 | PVG ξ with TOSs.
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Definition 3.25: A PDS S in a PVG ξ is said to be an MI-PDS if
for every y ∈ S, S − {y} is not a PDS in ξ. The minimum
cardinality among all MI-PDSs is called a PDN of ξ and is
denoted by cp(ξ).

Example 3.26: In Figure 8, {x, y}, {x,w}, {y, z}, and {z,w} are
MI-PDSs and cp(ξ) � 0.75.

Theorem 3.27: Every DS in a complete PVG ξ is a PDS.
Proof: Let S be a minimal-DS of a PVG ξ. Since ξ is complete,

every edge in ξ is an effective edge and every node y ∈ V − S is
exactly neighboring one node x ∈ S. Hence, every DS in ξ is
a PDS.

Theorem 3.28: A PDS S in a PVG ξ is an MI-PDS if and only if
for each node y ∈ S, one of the following conditions is present:

(i) N(y)∩S � ∅ ,
(ii) ∃ a node x ∈ V − S so that N(x)∩S � {b}.

Proof: Let S be an MI-PDS and y ∈ S. Then, S � S − {y} is not a
DS and hence ∃ a node x ∈ V − S so that x is not dominated by an
element of S. If x � y, we get (i) and if x ≠ y, we get (ii). On the
contrary, suppose that S is a PDS and for every vertex x ∈ S, one of
the two conditions is met. We prove that S is an MI-PDS. Assume
that S is not an MI-PDS. So, there exists a vertex x ∈ S such that
S − x is a PDS. Thus, x is a perfect dominated by exactly one
vertex in S − x. Therefore, condition (i) is not held. Also, if S − x is
a PDS, then every vertex in V − S is dominated by exactly one
vertex in S − x. So, condition (ii) is not held and this is a
contradiction.

Theorem 3.29: Let ξ � (M,N) be a connected PVG and S be an
MI-PDS of ξ. Then, V − S is a DS of ξ.

Proof: Let S be an MI-PDS of ξ, and V − S is not a DS. Then, ∃
a node y ∈ S so that y is not dominated by any node in V − S.
Since ξ is connected, y is a strong neighbor of at least one node in
S − {y}. Then, S − {y} is a DS, which contradicts the minimality of
S. Thus, for each node b in S, there is at least one node x in V − S
so that tN(xy) � tM(x) × tM(y) and fN(xy) � fM(x) × fM(y).
Hence, V − S is a DS.

Definition 3.30: A DS S of a PVG ξ is named a GDS if S is a DS
of ξ, too. The minimum cardinality between all GDSs is called a
GDN, and is described by cg(ξ).

Example 3.31: Let ξ and ξ be PVGs in Figure 9.It is obvious
that {x,w} and {y, e} are GDSs and cg(ξ) � 0.9.

Theorem 3.32:ADS S in a PVG ξ is called a GDS if and only if ∀
y ∈ V − S, ∃ a vertex x ∈ S such that x and y are not dominating
each other.

Proof: Suppose that S is a GDS in a PVG ξ. Let x in S be
dominated by y inV − S; then S is not a DS, contradicting Swhich
is a DS of ξ. Conversely, let ∀ b ∈ V − S, ∃x ∈ S so that x and y will
not be dominating each other; then S is a DS in both ξ and ξ,
which indicates that S is a GDS of ξ and so the result.

4 APPLICATION OF DOMINATION IN
MEDICAL SCIENCES

Today, almost every country in the world is affected by a dangerous
disease called COVID-19, which is also commonly referred to as
Corona. COVID-19 is an infectious disease caused by the
coronavirus of acute respiratory syndrome. Its common
symptoms are fever, cough, shortness of breath, and, most
recently, infertility. Although the majority of cases of the disease
cause mild symptoms, some cases progress to pneumonia and
multiple sclerosis. The mortality rate is appraised at 22%–5%5%

FIGURE 8 | PVG ξ with MI-PDSs.

FIGURE 9 | ξ and ξ.
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but varies with age and other health conditions. The pathogenicity
of the virus touches the respiratory system and instigates
symptoms similar to those of the common cold, which can be
very precarious for a patient because the patient assumes that the
condition is not very serious. Over time, the disease progresses and
can easily derail the patient and lead to poor health. But the issue
that can be very important is how to find out when a person is
infected with this dangerous virus (with the help of medical
diagnostic kits) and what medical facilities and equipment
should be used to treat this patient. Considering that this virus
has appeared in just one year, most countries are not equipped with
the necessary facilities to treat it, and this point can be very critical
and threatening for a patient. Accordingly, in this study, we have
tried to locate a suitable hospital for a person infected with the

coronavirus, which has more appropriate medical facilities and
equipment and is in the most favorable condition in terms of
distance and amount of traffic, so that the patient can regain his or
her health faster and also save time and money. To do so, we
consider four hospitals in Iran (Sari city) named Shafa, Fatemeh
Zahra, Amir Mazandarani, and Hekmat, which are shown in the
graph with the symbols Y, Z, W, and K. The patient’s home is
located at point X. In this vague graph, one vertex illustrates the
patient’s home and other vertices represent the hospitals in the city.
The edges specify the accumulation of cars in the city. The location
of hospitals is shown in Figure 11. Weight of nodes and edges
defined in Table 2 and Table 3.

The vertex E(0.4, 0.2) asserts that it involves 40%40% of the
prerequisite amenities and services for curing the patient and
unfortunately is short of 20%20% of the necessary tools. The edge
AC indicates that simply 10%10% of the patient’s transport route
to the hospital is not obstructed by any traffic if taken by
ambulance, and unfortunately, 60%60% of the route between
these two points is congested with cars, especially during the rush
hours. The DSs for Figure 10 will be as follows:

S1 � {X,Y},
S2 � {X,Z},
S3 � {X,W},
S4 � {X,K},
S5 � {X,Y ,Z},
S6 � {X,Y ,W},
S7 � {X,Y ,K},
S8 � {Z,W,K},

S9 � {X,Y ,Z,W},
S10 � {X,Y ,Z,K},

FIGURE 10 | Vague graph ξ for medical sciences.

FIGURE 11 | Location of hospitals in Sari city.
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S11 � {X,Z,W,K},
S12 � {Y ,Z,W,K},
S13 � {X,Y ,W,K}.

After calculating the cardinality of S1,/, S11, we have the
following:

|S1| � 1.05,

|S2| � 1,

|S3| � 1,

|S4| � 1.05,

|S5| � 1.6,

|S6| � 1.6,

|S7| � 1.65,

|S8| � 1.7,

|S9| � 2.15,

|S10| � 2.2,

|S11| � 2.15,

|S12| � 2.3,

|S13| � 2.2.

Clearly, S3 holds the smallest proportions among other DSs, so
it is concluded that it serves as the best selection since first, the free
space for the ambulance from the patient’s home to the Amir
Mazandarani hospital is higher; therefore, the patient cannot be
taken to the desired location faster, leading to the saving of money
and time. Second, considering the medical services in all the
hospitals in the region, the Amir Mazandarani hospital is the
most equipped and supplied. Therefore, we conclude that the
government should, first, allocate more funds to hospitals and
medical staff so that they can purchase respirators and diagnostic
kits for coronary heart disease from rich countries and, second,
cooperate with the roads and transportation organization to
improve the road quality, especially the routes leading to hospitals.

5 CONCLUSION

Product vague graphs are used in many sciences today, including
computers, artificial intelligence, fuzzy social networks, physics,
chemistry, and biology. Since all the data in the problem can be
considered on it, researchers use it to display the theories in their
research work well. Domination is one of themost important issues
in graph theory and has foundmany uses and functions in terms of
formulating and solving many problems in different domains of
technology and science exemplified by computer networks,
artificial intelligence, combinatorial analyses, etc. Domination
helps consider the best way to save time and money. Hence, in
this study, we introduced different concepts and properties related
to domination in product vague graphs, such as the edge
dominating set, total dominating set, perfect dominating set,
global dominating set, and edge independent set, and studied
their properties by giving some examples. Finally, an application
of domination in the field of medical sciences that is related to
COVID-19 has been introduced. In our future work, we will
introduce vague incidence graphs and study the concepts of the
connected perfect dominating set, regular perfect dominating
set, inverse perfect dominating set, and independent perfect
dominating set on the vague incidence graph.
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TABLE 2 | Weight of nodes in a VG ζ.

ξ X Y Z W K

(tM , fM) (0.2, 0.3) (0.3, 0.1) (0.3,0.2) (0.5,0.4) (0.4, 0.2)

TABLE 3 | Weight of edges in a VG ζ.

ξ X − Shafa X − Fatemeh Zahra X − Amir Mazandarani
(tN , fN) (0.1, 0.4) (0.1, 0.6) (0.2, 0.4)
ξ X − Hekmat Hekmat − Amir Mazandarani Shafa − Fatemeh Zahra
(tN , fN) (0.1, 0.5) (0.1, 0.6) (0.2, 0.6)

TABLE 1 | Some basic notations.

Notation Meaning

FG Fuzzy graph
VS Vague set
VG Vague graph
DS Dominating set
PVG Product vague graph
IDS Independent dominating set
EDS Edge dominating set
GDS Global dominating set
GDN Global dominating number
MI-EDS Minimal edge dominating set
EIS Edge independent set
MA-EIS Maximal edge independent set
EIN Edge independent number
MA-EDS Maximal edge dominating set
TDS Total dominating set
MI-TDS Minimal total dominating set
PDS Perfect dominating set
PDN Perfect dominating number
IDN Independent dominating number
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