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Spectral CT utilizes spectral information of X-ray sources to reconstruct energy-resolved

X-ray images and has wide medical applications. Compared with conventional

energy-integrated CT scanners, however, spectral CT faces serious technical difficulties

in hardware, and hence its clinical use has been expensive and limited. The

goal of this paper is to present a software solution and an implementation of a

framelet-based spectral reconstruction algorithm for multi-slice spiral scanning based

on a conventional energy-integrated CT hardware platform. In the present work, we

implement the framelet-based spectral reconstruction algorithm using compute unified

device architecture (CUDA) with bowtie filtration. The platform CUDA enables fast

execution of the program, while the bowtie filter reduces radiation exposure. We also

adopt an order-subset technique to accelerate the convergence. The multi-slice spiral

scanning geometry with these additional features will make the framelet-based spectral

reconstruction algorithm more powerful for clinical applications. The method provides

spectral information from just one scan with a standard energy-integrating detector

and produces color CT images, spectral curves of the attenuation coefficient at every

point inside the object, and photoelectric images, which are all valuable imaging tools

in cancerous diagnosis. The proposed algorithm is tested with a Catphan phantom and

real patient data sets for its performance. In experiments with the Catphan 504 phantom,

the synthesized color image reveals changes in the level of colors and details and the

yellow color in Teflon indicates a special spectral property which is invisible in regular CT

reconstruction. In experiments with clinical images, the synthesized color images provide

some extra details which are helpful for clinical diagnosis, for example, details about the

renal pelvis and lumbar join. The numerical studies indicate that the proposed method

provides spectral image information which can reveal fine structures in clinical images and

that the algorithm is efficient regarding to the computational time. Thus, the proposed

algorithm has a great potential in practical application.
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1. INTRODUCTION

In conventional computed tomography (CT) reconstruction
algorithms, X-rays are assumed to be monochromatic, thus the
attenuation coefficients of objects are independent of the X-ray
energy and determined by the material only. However, X-rays
are polychromatic [1]. Low-energy photons are easier to be
absorbed than high-energy photons. Ignoring the spectrum of
X-rays in reconstruction causes beam-hardening artifacts [2, 3]
which are not satisfactory for clinical diagnosis. On the other
hand, using energy information in polychromatic X-rays could
provide properties of the material being scanned, such as the
density and atomic number.

Spectral CT, which uses multiple energies of X-rays,
has attracted much attention from both clinical physicists
and researchers since last decade when the technology
became possible. Spectral imaging can provide energy-
related attenuation characteristics of the composition of the
material and quantitative tissue information to help diagnosis.
Furthermore, the radiation dose is reduced since the detection
and characterization of findings can be performed with spectral
CT in a single exam. So spectral CT has its benefits in enhancing
the accuracy of clinical diagnosis and efficiency of patient care.
The basis of spectral CT is that a CT scan can be decomposed
into a set of multiple basis materials if the projection data is
measured at different energies [4]. This leads to the development
of dual-energy CT and multi-spectral CT [5]. Dual-energy refers
to the use of two X-ray energies in scanning. Multi-spectral CT is
an extension of dual-energy CT. Currently dual-energy CT is the
most common form of spectral CT used in clinical applications
due to the limit of technology [6].

There are different technologies to utilize dual-energy CT but
mainly in two categories. One is source-based, and the other one
is detector-based. The first category utilizes X-ray beams with
different energies by employing two X-ray tubes with different
potentials or a single X-ray tube switching between low and
high potentials [7, 8]. The switch occurs during the collection
of projection data in a single scan or after a full projection scan
in two scans. The second category utilizes energy-discriminative
detectors in a single X-ray spectrum scan [9]. This involves dual-
layer detectors with a different X-ray stopping power in each
layer or a photon-counting detector. Eachmethod of dual-energy
CT has its respective advantages and disadvantages [10]. Some
spectral CT iterative reconstruction algorithms are developed for
the hardware technology methods [11–13].

In either source based or detector based methods, spectral
CT needs more complicated equipment for data requisition
and requires longer time for data requisition and image
reconstruction than conventional CT. Besides, for a hospital,
adding a new spectral CT scanner to its lab which has facilitated
a conventional CT scanner involves practical issues in cost
and space. Recently, a framelet-based iterative reconstruction
algorithm is proposed to solve the spectral CT reconstruction
problem from the aspect of software in the current CT hardware
platform [14–18] by our group. The key technique is the sparse
representation of X-ray attenuation coefficients in a framelet
system. The method provides spectral information from just one

scan with a standard energy-integrating detector and produces
color CT images, spectral curves of the attenuation coefficient at
every point inside the object, and photoelectric images, which are
all valuable imaging tools in cancerous diagnosis.

In this paper, we extend the framelet-based spectral
reconstruction algorithm from fan-beam geometry to multi-slice
spiral scanning and implement the algorithm using compute
unified device architecture (CUDA) with bowtie filtration. The
platform CUDA allows fast execution of the program, while the
bowtie filter reduces the radiation exposure by shaping an X-ray
beam. Therefore, the multi-slice spiral scanning geometry with
these additional features will make the framelet-based spectral
reconstruction algorithmmore powerful for clinical applications.

The rest of the paper is organized as follows. In section
2, we describe the methodology and the implementation of
the framelet-based iterative reconstruction algorithm for multi-
slice spiral scanning. In section 3, the results from extensive
experiments on a Catphan phantom and real patient datasets are
summarized. Discussions and conclusions are given in section 4.

2. METHOD

2.1. Methodology
In this section we extend the framelet-based spectral
reconstruction algorithm from fan-beam geometry [14–18]
to multi-slice spiral scanning with the bowtie filtering making it
more practical in clinical applications.

Let µ (r,E) be the X-ray attenuation coefficient at point r ∈ �

for energy level E, where � is the image domain. The attenuation
coefficient can be approximated by [19].

µ (r,E) = φ (r)E−3 + θ (r) fKN (E), (1)

where the photoelectric component φ (r) and the Compton
scatter component θ (r) are independent of energy E, and the
Klein-Nishina function fKN (E) is given by

fKN(E) =
1+ ε

ε2

(

2(1+ ε)

1+ 2ε
−

1

ε
ln(1+ 2ε)

)

+
1

2ε
ln(1+ 2ε)−

1+ 3ε

(1+ 2ε)2
, (2)

with ε = E/511 keV.
We consider a polychromatic acquisition model in this paper.

Let L be an X-ray beam and I0 (E) be the known spectrum of the
X-ray tube. The intensity measured by a detector bin after the
beam L passes through the image is

I =

∫ ∞

0
I0 (E) exp

(

−

∫

L
µ (r,E) dr

)

dE. (3)

In our previous work [14, 15], I0 (E) is constant for all X-ray
beams. Here we assume I0 (E) varies with respect to positions
of X-ray beams and take bowtie filtering into consideration.
Then the x-ray spectrum distribution after passing the bowtie
filtering is

I0 (E, L) = I0 (E) exp (−µbowtie (r,E) t (L)), (4)
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where µbowtie indicates the linear attenuation coefficient of the
bowtie material (e.g., aluminum), and t (L) denotes the bowtie
thickness along the X-ray path L.

Due to the relative position relationship of the X-ray tube, the
bowtie filter, and the detector, the bowtie filter and the detector
are fixed during a scan, and the distribution of filtered X-ray
spectrum are also fixed on the detector. Let di,j be the detector
bin at the position (i, j) which receives the X-ray beam L. Then
Equation (4) can be rewritten as

I0
(

E, di,j
)

= I0 (E) exp
(

−µbowtie (r,E) t
(

di,j
))

. (5)

Consequently, Equation (3) can be expressed as

I =

∫ ∞

0
I0

(

E, di,j
)

exp

(

−

∫

L
µ (r,E) dr

)

dE. (6)

In the discrete setting, we denote the photon energies by Ek, k =
1, 2, . . . ,K, the observed measurements by yi, i = 1, 2, . . . ,M,
and the linear attenuation coefficients by µjk, j = 1, 2, . . . , J, and
k = 1, 2, . . . ,K, where i, j, k are indexes of the detector, pixel, and
energy, respectively. Then Equation (1) can be rewritten as

µjk = φj8(Ek)+ θj2(Ek), (7)

where 8(Ek) = E30/E
3
k

for a reference energy E0, and
2(Ek) = fKN (Ek) /fKN (E0). Note that φj and θj are unknowns,
representing photoelectric and Compton scatter terms at energy
E0, respectively. Substituting Equation (7) into (6), we get an
acquisition model

ŷi =

K
∑

k=1

bikexp



−

J
∑

j=1

lij
(

φj8(Ek)+ θj2(Ek)
)



, (8)

where bik is the total intensity detected by detector at
the ith projection and the kth energy. The measured data
yi approximately follow a Poisson distribution [20] with
expectation ŷi, where the probability density function is

p
(

yi
)

=
ŷ
yi
i

yi!
exp

(

−ŷi
)

. (9)

The log-likelihood is given by

L (φ, θ) =

M
∑

i=1

(

yi log
(

ŷi
)

− ŷi
)

. (10)

The minimization problem becomes

min
φ,θ
−L (φ, θ) , subject to image sparsity of φ and θ . (11)

For the sparsity constraint, we use the discrete framelet transform
given by [14]

D =







h0∗
...

hs∗






, (12)

where hi∗, i = 0, 1, . . . , s, is the matrix form of the discrete
convolution with kernel hi. In this work, we apply the following
filters in bivariate Harr wavelet framelet system:

h0 =
1

4

[

1 1
1 1

]

, h1 =
1

4

[

1 −1
1 −1

]

,

h2 =
1

4

[

1 1
−1 −1

]

, h3 =
1

4

[

1 −1
−1 1

]

.

To solve the optimization problem (11), the coefficients φ and
θ should be non-negative and sparse in the framelet domain.
Therefore, the iterative reconstruction can be split into the
following three steps.

(1) Data fidelity:







φ
n+ 1

3
j = φn

j − δ1
∂L
∂φj

(φn, θn)

(

∑J
h=1

(

∂2L
∂φj∂φh

+ ∂2L
∂φj∂θh

)

(φn, θn)

)−1

θ
n+ 1

3
j = θnj − δ2

∂L
∂θj

(φn, θn)

(

∑J
h=1

(

∂2L
∂θj∂φh

+ ∂2L
∂θj∂θh

)

(φn, θn)

)−1
.

(13)

(2) Nonnegativity:















φ
n+ 2

3
j = max

{

φ
n+ 1

3
j , 0

}

θ
n+ 2

3
j = max

{

θ
n+ 1

3
j , 0

}

.
(14)

(3) Sparsity:














φn+1
j =WTTλ1

(

Wφ
n+ 2

3
j

)

θn+1j =WTTλ2

(

Wθ
n+ 2

3
j

)

.
(15)

where W denotes the tight frame analysis transform, and Tλ is a

soft-thresholding operator, defined as Tλ (x) = |x|−λ
|x| x if |x| > λ,

otherwise Tλ (x) = 0.

2.2. Algorithm and Implementation
We implement our method for multi-slice spiral scanning using
both Matlab and CUDA. CUDA is a software development
platform enabling general purpose C-like programs on the
NVIDIA graphics processing unit (GPU) [21]. Since the
operations of forward and backward projections are time
consuming, we use CUDA in GPU card to perform forward
and backward projections. Matlab is user-friendly for fast
development of new methods, so we conduct non-negativity and
sparsity constraints on Matlab and sync the results from CUDA
with the embedded “mex” functions in Matlab1.

To accelerate the convergence, we adopt the ordered-subset
(OS) technique [22]. We uniformly divide total projections
into 16 subsets and update photoelectric and Compton scatter
volumes on every subset’s iteration. The reconstruction stops
after a preset number of iterations, which is set to 10 in this study.

Our algorithm for spiral scanning spectral reconstruction is
summarized as follows.

1https://www.mathworks.com/help/parallel-computing/accessing-advanced-

cuda-features-using-mex.html (2021).
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Algorithm 1 : (Spectral CT reconstruction)

1. Input: Projection data, spectrum distribution, number of
subsets (16), number of iterations (10), parameters δ1, δ2, λ1,
λ2

2. Output: Volumes 8 and 2

3. Initialize volumes 8 and 2

4. loop:
5. for Iter← 1 to 10
6. for OS← 1 to 16
7. (1) Execution in CUDA:
8. Transfer projections and volumes to GPU

memory;
9. Update volumes with the data fidelity in

Equation (13);
10. Transfer projections and volumes to global

memory;
11. (2) Execution in Matlab:
12. Update volumes with the non-negativity in

Equation (14);
13. Update volumes with the sparsity in Equation (15).

3. RESULTS

In this section, the proposed algorithm is evaluated with
a Catphan phantom and real patient data sets. Numerical
experiments are conducted on an Xeon Gold 6242R @3.1
GHz/NVIDIA Quadro RTX 8000 workstation in Matlab R2017b
& CUDA 9.0. The spiral CT scanning has 960 projections per
rotation, and the pitch is 1. There are 16 rows of detectors and
each row consists of 896 detector bins. Each reconstructed slice
consists of 512×512 pixels. The slice thicknesses of reconstructed
volumes are 5 mm for chest and abdomen, and 2.5 mm for
head data in this work. We use the proposed algorithm to
reconstruct the photoelectric coefficients φ and the Compton
scatter coefficients θ . In the experiments presented in this paper,
we choose step size δ1 = 0.5 for φ, δ2 = 1 for θ , and threshold
parameters λ1 = 1.5× 10−4 for φ, λ2 = 4.5× 10−4 for θ .

3.1. Experiment With Catphan Phantom
Experiments are conducted with the Catphan 504 phantom
designed for multi-slice spiral CT algorithm evaluation
by the Phantom Laboratory2. The image reconstructed at
monochromatic 70 keV labeled with different materials and
the color image overlaid by the attenuation coefficients at
monochromatic 40, 50, and 100 keV are shown in Figure 1.
From the synthesized color image, changes in the level of colors
and details are visible. In specific, the yellow shown in Teflon
indicates a special spectral property which is invisible in regular
CT reconstruction. In addition, acrylic is more clear in the
synthesized color image.

To evaluate the quantitative performance of the proposed
method, we compute the mean values and standard deviations of
CT numbers of specific materials in the reconstructed Catphan
504 phantom. Table 1 lists the mean CT numbers µ with their

2https://www.phantomlab.com/ (2021).

FIGURE 1 | Experiment with Catphan 504. From left, (A) reconstructed image

at monochromatic 70 keV with labels of various materials; (B) synthesized

color image.

standard deviations σ computed at monochromatic 40, 50,
and 100 keV, together with reference CT numbers provided
by manufacturer’s manual. It is remarkable that the standard
deviations σ are relatively small in most of the cases, in the
sense that the length of 95% confidence interval is much smaller
than the corresponding CT number range given in the manual,
except for LDPE. For example, the 95% confidence interval
(µ− 2σ ,µ+ 2σ ) for the CT number of polystyrene at 100 keV
is (−72.2,−51.8). Its length of 20.4 is significantly smaller than
36, the length of the corresponding interval (−65,−29) in the
manual. This is a manifestation of the accuracy of our spectral
reconstruction algorithm.

Note that manufacturer’s reference CT numbers are obtained
from polychromatic X-ray systems. It is known that CT numbers
depend largely on energy levels and spectra of X-ray sources [23].
Since the X-ray spectra used for Catphan reference CT numbers
are not known, there are no direct ways to compare the CT
numbers reconstructed by our algorithm and the manufacturer’s
reference CT numbers. What Table 1 shows, however, is a clear
trend of dependence of CT numbers on X-ray energy levels.
Except for Delrin, the 95% confidence intervals of our CT
numbers overlap with the corresponding reference intervals at
least at some energy levels.

3.2. Experiment With Clinical Images
Experiments are also conducted with clinical data. Conventional
FBP reconstructed images of patients’ head, chest, and abdomen
images are obtained from a CT scanner XHCT-16 manufactured
by Shinva Medical Instrument Limited Co. Then the images
reconstructed and synthesized from the proposed algorithm
are compared with the images reconstructed directly from the
Shinva XHCT-16.

A brain image reconstructed directly by a Shinva XHCT-16
is shown in Figure 2A. The photoelectric, Compton scatter, and
attenuation coefficients reconstructed by the proposed method
at monochromatic 70 keV from the same data are shown in
Figures 2B–D. The color image overlaid by the attenuation
coefficients at monochromatic 40, 50, and 100 keV is shown in
Figure 3. The following features are observed from Figures 2,
3. Firstly, the images in Figures 2B–D reconstructed by the
proposed method provide more details about the brain tissue
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TABLE 1 | CT numbers reconstructed for materials in Catphan 504 (Unit: HU).

Material Polystyrene LDPE PMP Teflon Delrin Acrylic

CT numbers at 40 keV ± SD −98± 4.8 −120± 11.8 −254± 6.9 1052± 10.5 415± 7 134± 5.8

CT numbers at 50 keV ± SD −92± 4.3 −120± 10.8 −247± 6.0 1068± 9.6 422± 6.3 143± 5.1

CT numbers at 100 keV ± SD −62± 5.1 −100± 13.0 −215± 6.9 1146± 11.4 469± 7.3 192± 5.8

Reference CT numbers −65 :−29 −121 :−87 −220 :−172 941 : 1060 344 :387 92 :137

FIGURE 2 | Brain images reconstructed by a Shinva XHCT-16 and the proposed method at monochromatic 70 keV from the same data. From left, (A) Shinva

XHCT-16 with the display window [−150, 210] (Unit: HU); (B) reconstructed photoelectric component; (C) reconstructed Compton scatter component;

(D) reconstructed attenuation coefficients.

FIGURE 3 | Color image overlaid by the attenuation coefficients at

monochromatic 40, 50, and 100 keV, with the display window [−150, 210]

(Unit: HU) of the components at each keV.

than the image Figure 2A from the Shinva XHCT-16. For
example, there is no structure except noise displayed in the
brain tissue ditches in Figure 2A, but some details are visible
in the brain tissue ditches in Figures 2B–D. Secondly, the
green color of the brain tissue and the yellow color of head
bones in Figure 3 indicate different spectral properties of brain
tissue, skull bone, and trabecular bone. In addition to the brain
tissue, Figure 3 displays the inner layer of skull bone, the outer
layer of skull bone, and the trabecular bone between them,
while a conventional gray CT image can hardly show them
simultaneously. Thirdly, the thin green layer inside the skull bone
shows clearly the connection between meninges and the brain
tissue ditches, which is not indicated in Figure 2A anywhere. The
upper sagittal sinus connecting the central longitudinal fissure
at the back of the brain tissue displays its internal structure
and its connection with the meninges, which is not shown in

FIGURE 4 | Abdomen images with the display window [−280, 320] (Unit: HU).

From left, (A) image reconstructed by a Shinva XHCT-16; (B) synthesized color

image with components at 40 keV, 50 keV, and 100 keV.

Figure 2A. Finally, the gray ring between the skull bone and brain
tissue in Figure 2A doesn’t provide any structural information, in
particular, it is wide and uniformly gray in the forehead region. It
is remarked that the corresponding region in Figures 2B–D, 3 is
informative and provides clear structural information.

Figures 4, 5 show the images reconstructed by a Shinva
XHCT-16 and the synthesized color images by the proposed
method, for an abdomen image and a chest image, respectively.
Compared with the images by the Shinva XHCT-16, the color
images provide some extra details which are helpful for clinical
diagnosis, for example, details about the renal pelvis and lumbar
joint in Figure 4B and the rectangular region in Figure 5B.

In summary, the proposed reconstruction algorithm provides
spectral image information which reveals tiny structures in
clinical images and is helpful for clinical diagnosis.
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3.3. Computation and Convergence Speed
In this section, we compare the computational time of the
proposed algorithm with that of the fan beam spectral
reconstruction algorithm [14]. Experiments with both
algorithms are conducted on the Xeon Gold 6242R @3.1
GHz/NVIDIA Quadro RTX 8000 workstation in the same
operating environment. Chest data are selected as an example.
The reconstructed volume has 723 slices, and each slice is
with three sizes of 1,024*1,024, 768*768, and 512*512 pixels,
respectively. The total number of iterations is preset to 10
because it is observed that the algorithm converges rapidly
before the 10th iteration but changes slightly and slowly after 10
iterations, as shown in Figure 6. The average running times of an
iteration for a single slice with the previous fan beam algorithm
are 1686.5, 936.1, and 393.7 s for the three image resolutions,
respectively, while with our proposed algorithm, the average
running times of an iteration for the whole volume are 1164.2,
714.1, and 375.3 s, respectively, for the three image resolutions.
The results show that the proposed algorithm significantly
reduces the computational time.

FIGURE 5 | Chest images with the display window [−532, 166] (Unit: HU).

From left, (A) image reconstructed by Shinva XHCT-16; (B) synthesized color

image with components at 40 keV, 50 keV, and 100 keV.

4. DISCUSSIONS AND CONCLUSIONS

4.1. Comparison With Existing Spectral
Reconstruction Algorithms
In our previous method [14], the reconstruction process were
all realized in the environment of MATLAB and running on
the CPU without any acceleration technologies. Besides, it only
reconstructs a central slice from the rebined fanbeam projections.
In comparison, the method proposed in this paper reconstructs a
whole volume from the spiral multi-slice projections and adopts
GPU to significantly speed up the reconstruction, making our
method a great potential in practical application.

In DeMan et al. [24], the authors select a set of base substances
including air, water, bone, and iron. Using the photoelectric
coefficients φ and the Compton coefficients θ of these base
substances, a piecewise-linear φ–θ curve is plotted. By assuming
all other substances have their φ and θ coefficients lie on this φ–θ
curve, they effectively reduce the number of unknowns from 2J
to J after discretization as in Equation (7). De Man et al. [24]
proposes an iterative maximum-likelihood algorithm (IMPACT)
to reconstruct these J unknowns and a postreconstruction
algorithm (IBHC) for beam-hardening correction.

As opposite to [24], the algorithm presented in this paper is
a true spectral reconstruction in the sense of solving for all 2J
unknowns. We do not have codes for IMPACT and IBHC to
run on our datasets to make a direct comparison, but by looking
at [24, Figures 5–9] and our Figures 1–5, our reconstructions
appear better.

4.2. Limitations
State-of-the-art spectral CT platforms such as the detector-
based IQon Elite Spectral CT by Philips3, dual-energy spectral
CT Discovery 750 HD by GE4, and dual-source spectral CT

3https://www.usa.philips.com/healthcare/product/HC729332/iqon-elite-spectral-

ct-ct-scanner (2021).
4https://www.gehealthcare.com/-/jssmedia/c47da2e232d1498db841631ee28eb3d9.

pdf (2021).

FIGURE 6 | Root Mean Square Error (RMSE) of Teflon in Figure 1 to reveal the convergence rate of the proposed algorithm. From left, (A) RMSE of Teflon under 40

kev; (B) RMSE of Teflon under 50 kev; (C) RMSE of Teflon under 100 kev.
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SOMATOM Force by Siemens5 use sophisticated hardware
technology and produce spectral CT images of high quality. The
algorithm presented here is on the other hand a software solution
to spectral CT. Since our algorithm is based on datasets obtained
from conventional energy-integrated CT scanners, the amount
of information in our scanned data is much less than those in
footnotes 3, 4, and 5. This determines a priori that our image
quality cannot be expected to reach the levels of footnotes 3, 4,
and 5. Our algorithm, however, may provide a low-cost solution
to spectral CT and hence promote more clinical usage.

4.3. Conclusion
In this paper, we implement a framelet-based spectral
reconstruction for conventional multi-slice spiral CT using
CUDA with bowtie filtration and the OS technique. The
experiments demonstrate that the synthesized color image
produced by the proposed algorithm can reveal fine structures in
clinical images and that the algorithm is efficient regarding to the
computational time. Thus, the proposed algorithm has a great
potential in practical application. In the future, we will further
investigate the proposed method in clinical settings and study
the convergence of proposed algorithm in theory.

5https://www.siemens-healthineers.com/en-us/computed-tomography/dual-

source-ct/somatom-force (2021).
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