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Editorial on the Research Topic

Magnetic Resonance-Guided Focused Ultrasound: Physical Principles and Biomedical

Applications

Magnetic resonance-guided focused ultrasound (MRgFUS) is a non-invasive technique used
in more than ninety clinical trials as an alternative to standard treatments for neurological,
oncological and musculoskeletal diseases. Indeed, magnetic resonance (MR)-guidance allows
targeted treatments through a wide range of focused ultrasound (FUS) intensities inducing
mechanical, thermal, and neuroelectric effects on the tissue while preserving surrounding
organs-at-risk. This Research Topic gathered contributions from experts in MRgFUS and
summarized recent and impactful results supporting clinical and preclinical research obtained with
high and low acoustic intensities regimes.

The application ofMR-guidance in thermal ablations through high-intensity focused ultrasound
(HIFU) is currently the subject of a number of studies and clinical trials aiming at treating
medically refractory essential tremor, Parkinson’s disease, neuropathic pain [1] as well as breast,
liver, prostate, and brain cancers [2]. Gagliardo et al. present a retrospective analysis of patient- and
sonication-related parameters in a group of patients undergoing unilateral ventral intermediate
nucleus (Vim) thalamotomy through HIFU using a system integrated into a 1.5-T magnetic
resonance imaging (MRI) unit. Their results confirm that the skull density ratio (SDR) is critical
in determining thermal effects induced during sonication. Also, the authors suggest that energy
deposition and SDR dependence need careful consideration and should be prescribed in a
personalized manner.

At the other end of the acoustic spectrum, low-intensity focused ultrasound (LIFU) is
frequently used under MR-guidance for locally and reversibly eliciting excitatory and inhibitory
neuromodulation [3, 4] or to facilitate drug and gene delivery through the permeabilization of
the blood-brain barrier (BBB) [5–9]. The emergent idea of using FUS to modulate brain activity
and neurovascular coupling demonstrates great potential to help understand brain functioning and
treat brain diseases. Kamimura et al. describe the main potential mechanisms of ultrasound-based
neuromodulation and how combining MRI with multimodal stimulation approaches can help
advance the field. There are multiple hypotheses about the potential mechanisms through
which ultrasound induces neuromodulation, mainly based on depolarization through mechanical
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deformation of the cell membrane and heat deposition. Other
forms of ultrasound interactions with tissue can also be
obtained with non-linear frequency mixing [10] generated
by specifically designed transducers [11]. In this context,
multimodal stimulation, coupled with neuroelectric or MRI,
may provide an opportunity to understand the multiple factors
that play a role in neuron functioning and how FUS interferes
with it. In turn, this may elucidate the spatial and temporal
scales of the mechanisms of action involved, the differential
effect of FUS neuromodulation on different types of brain cells,
and therefore the role of specific white matter pathways to
neuronal network dynamics and animal behavior. In addition,
a multimodal approach involving the combination of genetic,
magnetic, ultrasonic, and other stimulation techniques to excite,
inhibit, or regulate neuronal activity could be beneficial for both
main symptoms and comorbidities. In turn, this may lead to
patient-specific customization of neuromodulation interventions
according to overall anamnestic picture. Furthermore, the
use of MRI can provide insights into brain structure and
activity and hence support FUS-based neuromodulation through
targeting, safety evaluation, and the evaluation of brain function
and mechanisms.

The intersection of engineering and health science enables
the investigation of FUS’s ability to interfere with brain activity
in a safe, customized, and non-invasive manner. FUS can
probe spatially specific brain regions non-invasively [4, 12], and
in the case of peripheral nerves, the pulsing regime dictates
excitatory or inhibitory effects [13–16]. Pouget et al. demonstrate
that transcranial ultrasound stimulation using a repetitive
pulse sequence can modulate the visuomotor behavior of non-
human primates, demonstrating for the first time that repetitive
transcranial ultrasound (rTUS) assisted by neuronavigation [17]
can have a sustained effect on monkey behavior with a quantified
return-time to baseline (18–31 min).

Since its discovery in 2001, MR-guided LIFU-induced drug
delivery has received widespread attention. LIFU, in conjunction
with intravenously injected gas-encasing microbubbles (MBs),
can reversibly disrupt the blood-brain barrier (BBB), hence
allowing the targeted delivery of drugs or other active biological
molecules in the brain. Conti et al. revise the state of the art
in current MRI hardware and methods used in BBB opening
protocols both in preclinical and clinical settings. The authors
show that FUS systems developed for preclinical experiments
are mostly constituted by single-element transducers, compatible
with MRI field strength between 7T and 9.4T [8, 18, 19]. On the
other hand, most clinical trials use a commercial 1024-element
US phased array (INSIGHTEC, Haifa, Israel), which can be
integrated into MRI scanners operating both at 1.5T and 3T [20].
These systems allow the delivery of nanometer-scale particles to
the brain tissue [21, 22] to treat amyotrophic lateral sclerosis
[23], Alzheimer’s and Parkinson’s disease [20, 24], as well as
glioblastoma [25].

Cancer therapy can also be enhanced by applying MR-guided
LIFU to deliver nanovectors capable of encapsulating drugs and
releasing them following acoustic stimuli. Patrucco and Terreno

present an overview of preclinical studies illustrating the in

vivo potential of MRI-guided drug release protocols triggered
by thermal and mechanical ultrasound-induced effects, where
MRI is used to monitor release processes but also to evaluate
therapeutic outcomes.

Microbubble specifications play a major role in LIFU-
induced BBB disruption [26]. Originally designed as imaging
contrast agents, microbubbles can be engineered specifically
for therapeutic applications with increased stability and
penetration into the blood or loaded with MRI contrast
agents to image their biodistribution [27]. Also, microbubble
characteristics such as size, concentration, gas and shell
composition, dissolution, and clearance rate can influence BBB
permeability and inflammatory response [28]. Pouliopoulos
et al. describe an original study on the temporal stability of
lipid-shelled microbubbles during therapeutic LIFU exposure.
Storage time decreases in vitro microbubble stability, reducing
stable cavitation response and promoting microbubble
collapse. Considering the natural concentration decay of
their microbubbles, the authors demonstrate that efficient
BBB opening could be performed over a period of 3 weeks
after homemade microbubble activation. These findings
suggest that repeated treatments using stored microbubbles
are possible for both pre-clinical and clinical applications over
several weeks.

Although most parts of MR-compatible US systems are
developed to exploit MR images for US targeting, planning and
confirmation, MR-compatible acoustic instrumentation can also
be used for developing multimodal imaging improving both
spatial and temporal resolution of MR and ultrasound imaging
[29]. Hasegawa et al. present a flexible-shape ultrasonic array
probe suitable for ultrasonic imaging of the brain and compatible
with high-field MR environments. This probe can be easily
adapted to fit head shape while its curved-surface and, in turn,
the coordinates of the elements can be employed to correct
B-mode images.

In conclusion, this Research Topic illustrates different uses of
MR-guidance for FUS-based therapeutic strategies. MR is mostly
used to create treatment planning and confirm targeting. In
contrast, US can be used inmanifold ways, e.g., by exploiting high
intensities for non-invasive surgery or by inducing through low
intensity, transient modulation of vasculature permeability and
neural activity.

The ever-increasing use of various MRgFUS techniques for
surgery and drug delivery suggests that we will witness their
swift introduction into novel experimental clinical paradigms, as
recently demonstrated by novel HIFU application such as e.g., in
treatment of brain tumors, stroke, epilepsy, pain, and functional
disorders as well as by LIFU applications for immunotherapy,
gene, and cell therapy [30, 31].
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