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Propose: The purpose of this study was to compare the performance of deep learning
networks trained with complex-valued and magnitude images in suppressing the aliasing
artifact for highly accelerated real-time cine MRI.

Methods: Two3DU-netmodels (Complex-Valued-Net andMagnitude-Net)were implemented
to suppress aliasing artifacts in real-time cine images. ECG-segmented cine images (n � 503)
generated from both complex k-space data and magnitude-only DICOM were used to
synthetize radial real-time cine MRI. Complex-Valued-Net and Magnitude-Net were trained
with fully sampled and synthetized radial real-time cine pairs generated fromhighly undersampled
(12-fold) complex k-space and DICOM images, respectively. Real-time cine was prospectively
acquired in 29 patients with 12-fold accelerated free-breathing tiny golden-angle radial sequence
and reconstructed with both Complex-Valued-Net and Magnitude-Net. Cardiac function, left-
ventricular (LV) structure, and subjective image quality [1(non-diagnostic)-5(excellent)] were
calculated from Complex-Valued-Net– and Magnitude-Net–reconstructed real-time cine
datasets and compared to those of ECG-segmented cine (reference).

Results: Free-breathing real-time cine reconstructed by both networks had high correlation
(all R2 > 0.7) and good agreement (all p > 0.05) with standard clinical ECG-segmented cine
with respect to LV function and structural parameters. Real-time cine reconstructed by
Complex-Valued-Net had superior image quality compared to images from Magnitude-Net
in terms of myocardial edge sharpness (Complex-Valued-Net � 3.5 ± 0.5; Magnitude-Net �
2.6 ± 0.5), temporal fidelity (Complex-Valued-Net � 3.1 ± 0.4; Magnitude-Net � 2.1 ± 0.4), and
artifact suppression (Complex-Valued-Net � 3.1 ± 0.5; Magnitude-Net � 2.0 ± 0.0), which
were all inferior to those of ECG-segmented cine (4.1 ± 1.4, 3.9 ± 1.0, and 4.0 ± 1.1).

Conclusion: Compared to Magnitude-Net, Complex-Valued-Net produced improved
subjective image quality for reconstructed real-time cine images and did not show any
difference in quantitative measures of LV function and structure.
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INTRODUCTION

Cardiovascular MR (CMR) is the clinical gold-standard imaging
modality for evaluation of cardiac function and structure. Breath-
hold ECG-segmented cine imaging using balanced steady-state
free-procession readout (bSSFP) allows for accurate and
reproducible measurement of left-ventricular (LV) and right-
ventricular (RV) function and volume [1–3]. In this technique,
k-space is divided into different segments collected over
consecutive cardiac cycles within a single breath-hold scan.
However, ECG-segmented cine acquisition has limited spatial
and temporal resolution, is sensitive to changes in heart rate, and
requires repeated breath-holds [4–6]. Alternatively, free-
breathing real-time cine has been proposed and pursued using
rapid real-time imaging or multiple averaging with or without
motion correction [7–12]. Using free-breathing real-time cine is
advantageous because it does not require multiple breath-holds
and is insensitive to heart rate variations. However, real-time cine
has lower temporal and spatial resolution than ECG-segmented
cine [10, 11]. Therefore, there is a need to further accelerate data
collection for real-time cine MRI.

Over the past three decades, there has been considerable
progress in the development of accelerated real-time cine
imaging including parallel imaging and compressed sensing
[13–18]. Parallel imaging is almost always used in cine
imaging for both real-time and ECG-segmented acquisition
with robust and highly reliable image quality [13]. However,
the acceleration rate of parallel imaging cannot be more than
three without compromising image quality [19–21]. Compressed
sensing has recently been integrated into applications by vendors
enabling higher acceleration rates than parallel imaging; however,
reconstruction time is long, and acceleration rates beyond four
can result in degradation of image quality [17]. Alternative
techniques that exploit spatial–temporal correlation and
sparsity of cine data have also been explored [22–26];
however, these approaches can suffer from temporal data
filtering, often removing information that is crucial to cardiac
cine evaluation. Therefore, despite considerable interest from the
image reconstruction community, these techniques are rarely
clinically used.

Deep learning–based reconstruction has been recently
proposed to enable rapid reconstruction of accelerated cine
MRI. Hauptmann et al. [27] showed that a 3D U-net was
capable of reconstructing accelerated (acceleration rate � 13)
real-time cine MRI. Schlemper et al. [28] showed that a trained
cascade network was able to rapidly reconstruct accelerated
(acceleration rate � 11) cine MRI. Kustner et al. [29] showed
that (3 + 1)-dimensional complex-valued spatio-temporal
convolutions and multi-coil data processing (CINENet) could
reconstruct accelerated (9 ≤ acceleration rate ≤15) 3D ECG-
segmented cine. El-Rewaidy et al. [30] reconstructed accelerated
radial cine MRI (acceleration rate � 14) using a complex-valued
network (MD-CNN) designed to process MR data in both
k-space and image space. Daming et al. [31] used a complex
U-net with a combined mean-squared error and perceptual loss
(PCNN) to reconstruct real-time cine MRI (acceleration
rate � 15).

While promising, popular deep learning–based
reconstructions methods [27–32] for cine MRI rely on
supervised learning and, as such, require training with large
and diverse patient datasets. However, prospectively acquiring
large patient datasets within a clinical setting can be difficult
due to long scanning times, respiratory/cardiac motion, or
contrast washout. To overcome these limitations, Hauptmann
et al. proposed training a deep learning network using
synthetic data generated from DICOMs (Digital Imaging
and Communications in Medicine) [27]. The use of
DICOM imaging is advantageous because it is readily
available in large numbers at centers with cardiac MR
expertise. While promising, DICOM usage during training
is theoretically non-optimal given that DICOM images are
magnitude images, which lack phase and multi-coil
information; furthermore, vendors often apply different
filtering techniques to improve image quality in the DICOM
creation process. The effect of using DICOM images for
training on the performance of a deep learning model has
not yet been rigorously studied.

In this study, we sought to investigate differences in
performance between two deep learning–based models trained
to suppress artifacts in 12-fold accelerated real-time cine. Paired
complex-valued k-space data and DICOM images of ECG-
segmented cine (n � 503) were used to synthetize highly
undersampled radial real-time cine data. Both artifact
suppression models were made using 3D U-net architectures.
One model was trained with synthetic radial real-time cine
images generated from complex k-space data (Complex-
Valued-Net), while the other model was trained with synthetic
radial real-time cine images generated from DICOM images
(Magnitude-Net). The performance of the two models was
evaluated against prospectively collected free-breathing real-
time cine CMR with radial acquisition.

METHODS

Figure 1 summarizes our study which was designed to compare
the performance of deep learning–based networks trained to
suppress aliasing artifacts in highly accelerated real-time cine
using complex-valued images (derived from k-space data) and
magnitude-only images (derived from DICOM images). We
prepared a dataset containing both complex k-space data and
corresponding magnitude images (i.e., DICOM) scanned by
breath-holding ECG-segmented cine using a Cartesian
trajectory to synthesize radial real-time cine data (Figure 1A)
[27]. Two 3D U-net models [33], Complex-Valued-Net and
Magnitude-Net, were developed to remove aliasing artifacts in
complex-valued and magnitude images of highly accelerated
radial real-time cine, respectively. Complex-Valued-Net and
Magnitude-Net were trained using synthetized radial real-time
cine with aliasing artifacts generated from complex-valued
k-space and magnitude-only images, respectively. “Artifact-
free” images used to produce synthetized radial cine were used
as the ground truth (Figure 1B). Finally, the performance of both
networks was compared using prospectively acquired free-

Frontiers in Physics | www.frontiersin.org September 2021 | Volume 9 | Article 6841842

Haji-Valizadeh et al. Complex-Valued vs. Magnitude-Only Deep-Learning Reconstruction

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


breathing highly accelerated (12x) radial real-time cine in 29
patients. Quantitative functional and structural parameters of the
LV and qualitative visual assessments of the LV were compared
against reference values derived from ECG-segmented cine
images (Figure 1C).

Training Datasets
We retrospectively collected short-axis (SAX) cine data from
503 patients (286 males, 55.4 ± 15.8 years) who underwent
clinical scans at BIDMC from October 2018 to May 2020.
Imaging was performed on a 3T MR scanner (MAGNETOM
Vida Siemens Healthineers, Erlangen, Germany) using a
breath-hold ECG-segmented sequence with the following
parameters: bSSFP readout, FOV � 355 × 370 mm2, in-
plane resolution � 1.7 × 1.4 mm2, slice thickness � 8 mm,
TE/TR � 1.41/3.12 ms, flip angle � 42°, GRAPPA acceleration
rate � 2–3, ∼18 cardiac phases at a temporal resolution of
∼55.3 ms, receiver bandwidth � 1,502 Hz/pixel, Cartesian
sampling pattern, and slices per volume � 11 ± 1 (from 9 to
17). Cine’s paired raw k-space data and DICOM images were
used in this study. This study protocol was approved by the
institutional review board, and written consent was waived.
Patient information was handled in compliance with the
Health Insurance Portability and Accountability Act.

Synthesizing Real-Time Cine Training Data
Supplementary Figure S1 shows the data preparation workflow
for producing synthetic accelerated radial real-time cine datasets
from ECG-segmented cine data acquired using the Cartesian
trajectory. The complex-valued multi-coli k-space data with an

acceleration rate of 2–3 were first reconstructed by GRAPPA [21]
offline. Offline GRAPPA reconstruction was implemented with
the code made available by Dr. Chiew (https://users.fmrib.ox.ac.
uk/∼mchiew/Teaching.html).

Then, GRAPPA-reconstructed images and the original
DICOM images exported from the scanner were interpolated
to achieve 2 × 2 mm2 in-plane resolution with a temporal
resolution of 37.7 ms. We chose these interpolated spatial and
temporal resolutions to match the temporal and spatial
resolutions used during prospective real-time cine scanning
(see below). These GRAPPA-reconstructed or DICOM images
were also used as the ground truth in training of two neural
networks, respectively. Subsequently, backward non-uniform fast
Fourier transform (NUFFT) [34] was applied to GRAPPA-
reconstructed and DICOM images to produce complex-valued
radial k-space. Twelve lines per frame, which were distributed
over the whole k-space with a tiny golden-angle rotation (32.049°)
[35, 36], were chosen to simulate highly accelerated radial k-space
of real-time cine.

For both Complex-Valued-Net andMagnitude-Net, simulated
highly accelerated radial k-space data were transformed into
image space using forward NUFFT. Specifically, for complex-
valued multi-coil k-space, the above procedures were performed
on a coil-by-coil basis. Finally, a coil-combined image was
generated using sensitivity-encoding coil combination [37]. An
auto-calibrated sensitivity profile for each coil was produced as
previously described [38]. Note that a GPU-based implementation of
NUFFT (https://cai2r.net/resources/gpunufft-an-open-source-gpu-
library-for-3d-gridding-with-direct-matlab-interface/) was used for
synthetic MRI generation.

FIGURE 1 |Overview of this study. (A) Cine images of 503 patients with both raw k-space data and DICOMs were collected. These images were scanned using a
breath-holding cine sequence with a Cartesian trajectory. (B) Raw k-space data and DICOMs of ECG-segmented cine were used to synthesize highly accelerated radial
real-time cine datasets for training Complex-Valued-Net and Magnitude-Net, respectively. (C) Performance comparison between the two neural networks. Real-time
radial cine and corresponding ECG-segmented cine images were collected from 29 patients. The left-ventricular function, structural parameters, and subjective
image scores were used to compare the performance of both deep learning models with respect to aliasing artifact suppression. For quantitative and qualitative
evaluation, Magnitude-Net reconstruction, Complex-Valued-Net reconstruction, and ECG-segmented cine were compared to one another in pairs.
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Deep Learning Models and Training
Supplementary Figure S2 presents an in-depth description of the
3D residual U-net architecture used for Complex-Valued-Net
and Magnitude-Net. The U-net architecture of both networks
comprised five million kernels and two max-pooling layers/up-
convolutional layers. Each convolutional processing layer
consisted of 3 × 3 × 3 kernels, batch normalization, and
rectified linear activation function (ReLU) [33].

The input/output of each network consisted of paired artifact-
free ground truth images and their corresponding undersampled,
artifact-contaminated images (size: M ×N × T � 144 × 144 × 20).
Specifically, for Complex-Valued-Net, we concatenated real and
imaginary components of complex-valued input/output pairs to
enable real-valued deep learning model processing of complex-
valued data (size: 2M × N × T � 288 × 144 × 20) [39]. For
Magnitude-Net, a ReLU operator was positioned at the final layer
to force the output to be non-negative [27]. L2 loss function was
used to train both networks.

Both networks were implemented using PyTorch (Facebook,
Menlo Park, California) and trained on a DGX-1 workstation
(NVIDIA Santa Clara, California, United States) equipped with
88 Intel Xeon central processing units (2.20 GHz), eight
NVIDIA Tesla V100 graphics processing units (GPUs), and
504 GB RAM. Each GPU has 32 GB memory and 5120 Tensor
cores. Each network was trained with 2,900 iterations using an
ADAM optimizer and with a 15% drop-out rate. Each iteration
randomly chose cine images of 16 LV slices from different
patients (batch size). For synthetized real-time cine with ≥20
frames, the starting frame was randomly selected to achieve 20
consecutive frames. For <20 timeframes, the dynamic series was
circularly padded to 20. Both input and output images were
normalized by the 95th percentile magnitude pixel intensity
within the central region (i.e., 48 × 48) across 20 frames. The
initial learning rate was 0.001, which decreased by 5% after every
100 iterations. The cost function and optimizer were selected to
match parameters proposed by Hauptmann et al. [27] for neural
network training using DICOM-derived simulated real-
time cine.

Real-Time Cine Performance Evaluation
Twenty-nine patients (16males, 58 ± 16 years) were prospectively
recruited. Free-breathing radial real-time cine research sequences
in addition to clinically indicated CMR sequences were collected
from each patient. Written informed consent was obtained from
each patient prior to CMR imaging. Clinical indications and
characteristics of these patients are listed in Supplementary
Table S1. Breath-hold ECG-segmented cine was performed
using the same imaging parameters as those detailed in
Training Datasets. Free-breathing radial real-time cine was
collected with the following parameters: bSSFP readout,
FOV � 288 × 288 mm2, resolution � 2 × 2 mm2, slice
thickness � 8 mm, TE/TR � 1.3/3.2 ms, flip angle � 43°,
receiver bandwidth � 1,085 Hz/pixel, radial lines per phase �
12, and temporal resolution � 37.7 ms. The rotating angle of
the radial line was 32.049° [36]. Both sequences imaged a stack
of 14 SAX slices covering the entire LV. Breath-holding
ECG-segmented cine was reconstructed by the scanner. For

free-breathing real-time cine, NUFFT first transformed radial
k-space data into complex-valued and magnitude images.
Subsequently, two neural networks were used to remove
aliasing artifacts.

Data Analysis
We used both quantitative imaging parameters and qualitative
assessments of image quality to compare the performance of
both deep learning reconstructions. ECG-segmented cine
images collected using the standard clinical protocol were
used as a reference. For each patient in our independent
validation dataset, one reader (HH), trained by a clinical
reader (SK) with 5 years of experience, calculated the
following cardiac function and structural parameters: LV
ejection fraction (LVEF), LV end-diastolic volume
(LVEDV), LV end-systolic volume (LVESV), LV stroke
volume (LVSV), and LV mass (LVMass). All quantifications
were performed using CVI42 (v5.9.3, Cardiovascular Imaging,
Calgary, Canada). Linear regression and Bland–Altman
analysis were performed to evaluate correlation and
agreement between real-time cine and ECG-segmented cine.
A paired Student’s t-test was conducted to compare the
difference between two approaches in measures of LV
function and structural parameters. p < 0.05 was considered
statistically significant. Three pairwise group comparisons
were assessed using the t-test with Bonferroni correction,
with p less than 0.0167 considered significant.

Subjective image quality was graded by one reader (SK) with
5 years of CMR experience. Cine images of all patients
obtained from the three methods were randomized and de-
identified. For each method, whole LV cine images from each
subject were scored with respect to conspicuity of endocardial
borders (1: non-diagnostic, 2: poor, 3: adequate, 4: good, 5:
excellent), temporal fidelity of wall motion (1: non-diagnostic,
2: poor, 3: adequate, 4: good, 5: excellent), and artifact level on
the myocardium (1: non-diagnostic, 2: severe, 3: moderate, 4:
mild, 5: minimal). Supplementary Figure S3 shows
representative graded images. The z-test was used to
compare image quality between every two methods, and a
p-value < 0.05 was considered significant. SAS version 9.4 (SAS
Institute, Cary, NC, United States) was utilized for all above
analyses. Note that we elected not to quantitatively and
qualitatively analyze real-time cine reconstructed with
gridding because gridding alone did not produce diagnostic
image quality.

RESULTS

Figures 2A,B show images obtained from the basal, mid, and
apical cavities of one subject at end-systole and -diastole by ECG-
segmented cine and free-breathing real-time cine via gridding,
Complex-Valued-Net, and Magnitude-Net reconstruction.
Supplementary Videos S1–S4 show the corresponding movies
for dynamic display. We also show representative end-systolic
images for three patients in Supplementary Figure S4. In both
Figure 2 and Supplementary Figure S4, free-breathing real-time
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cine reconstructed by Magnitude-Net had more artifacts in the
myocardial wall and greater blurring than ECG-segmented cine
and real-time cine by Complex-Valued-Net.

Supplementary Table S2 summarizes LV structure and
cardiac function values from ECG-segmented cine and free-
breathing real-time cine in 29 patients. The mean difference and
95% CI between every two methods are listed in Supplementary
Table S3. According to Bland–Altman analysis (Figures 3A–C),
mean differences between ECG-segmented cine and real-time
cine by Complex-Valued-Net reconstruction were −0.9 ± 6.5%
(p � 0.48) for LVEF, 0.9 ± 13.6 ml (p � 0.73) for LVEDV, and
2.2 ± 12.5 ml (p � 0.34) for LVESV. Correspondingly, mean
differences between real-time cine by Magnitude-Net and ECG-
segmented cine images were −2.3 ± 5.1% (p � 0.02), −0.5 ±
15.5 ml (p � 0.85), and 3.7 ± 9.8 ml (p � 0.05) for LVEF,
LVEDV, and LVESV, respectively (Figures 3D–F).
Supplementary Figure S5 compares real-time cine and ECG-
segmented cine according to LVSV and LVMass using
Bland–Altman analysis. For real-time cine images
reconstructed by Complex-Valued-Net, the mean difference
was −1.4 ± 16.3 ml (p � 0.65) for LVSV and 2.2 ± 15.2 g
(p � 0.43) for LVMass. For Magnitude-Net real-time cine,
the mean difference was −4.2 ± 15.4 ml (p � 0.15) and 1.6 ±
18.0 g (p � 0.64) for LVSV and LVMass, respectively. Free-
breathing real-time cine reconstructed by both Complex-
Valued-Net and Magnitude-Net had high correlation with
ECG-gated segmented cine on quantification of LV function
and structure (all R2 ≥ 0.74 and all slope ≥ 0.88) (Figures 3G–I
and Supplementary Figures S5C, F). The difference between
real-time cine images reconstructed by Complex-Valued-Net
and Magnitude-Net in quantification of LV function and
structure was 1.4 ± 5.1% (p � 0.15) for LVEF, 1.4 ± 8.1 ml
(p � 0.36) for LVEDV, −1.4 ± 8.7 ml (p � 0.39) for LVESV, 2.8 ±
12.1 ml (p � 0.22) for LVSV, and 0.7 ± 10.8 g (p � 0.74) for
LVMass.

Figure 4 shows the mean/standard deviation and distribution
of image quality scores across all patients. Supplementary

Table S4 lists the percentages as two grades (1–3 and 4–5) of
image quality scores across all patients by each method. The
corresponding differences in the percentage of two grade groups
(1–3 and 4–5) among three methods are listed in Table 1. The
table shows that 79% of ECG-segment cine images had good or
excellent scores (>3) for myocardial edge (4.1 ± 1.4) and temporal
fidelity (3.9 ± 1.0). In contrast, 50% of real-time cine images
reconstructed by both Complex-Valued-Net and Magnitude-Net
scored less than or equal to 3 (myocardial edge: 3.5 ± 0.5 vs 2.6 ±
0.5; temporal fidelity: 3.1 ± 0.4 vs 2.1 ± 0.4), suggesting poor
image quality. ECG-segment cine had less artifact (4.0 ± 1.1) than
real-time cine (Complex-Valued-Net: 3.1 ± 0.5; Magnitude-Net:
2.0 ± 0.0). All z-tests were found to be significant (p < 0.05).

DISCUSSION

This study compares the performance of deep learning
approaches for reconstruction of highly accelerated real-time
cine using synthetized training data generated from complex-
valued multi-coil k-space data (Complex-Valued-Net) and real-
valued DICOMs (Magnitude-Net). Our subjective assessment of
image quality demonstrates that Complex-Valued-Net yields
better image quality than Magnitude-Net. However, the
clinically relevant parameters of LV function and structure
extracted from real-time cine reconstructed by both Complex-
Valued-Net and Magnitude-Net were highly correlated and had
excellent agreement with those of clinical breath-holding ECG-
segmented cine.

There is a growing body of literature in deep learning, beyond
CMR, in which magnitude images are used for training a variety
of deep learning techniques [27, 40–42]. However, there is also
concern regarding the impact that discarded phase information
may have on the clinical interpretation of reconstructed images
[27, 29, 43–45]. Our study demonstrates that availability of
complex k-space data improves overall image quality; however,
these improvements in image quality do not necessary impact

FIGURE 2 | Images at end-systolic (A) and end-diastolic (B) phases for three short-axis slices (base, mid, apex) in one patient. Magnitude-Net exhibits more image
artifact (red arrow) and greater blurring (yellow arrow) at the myocardial wall than Complex-Valued-Net. Gridding reconstruction produces non-diagnostic image quality.
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clinical interpretation and quantification. This observation is not
unique, and it is often debated whether “prettier” images
necessarily lead to better diagnostic information. While the
resulting data do not show clinically meaningful differences in
LV function and structural parameters, an improvement in
overall image quality may still be clinically relevant. For
example, we often rely on wall motion abnormality to assess
the presence of ischemia, which can be visually assessed by
reviewing cine images [46]. One can envision that improved
image quality may still be clinically relevant and provide
additional confidence in image assessments. Further studies in
patients with different imaging indications are warranted.

In cine imaging, voxel-values are not meaningful;
however, in quantitative CMR imaging (e.g., T1/T2

mapping, quantitative perfusion, or phase-contrast), voxel-
values represent a tissue-specific meaning [47]. While
qualitative imaging such as cine imaging is more forgiving
in terms of artifact and inaccuracy during image
reconstruction, quantitative CMR imaging is very sensitive
to image artifacts. In addition, complex k-space data carry
crucial information in quantitative imaging and cannot
simply be discarded. Therefore, complex k-space data will
still be needed for quantitative CMR image reconstruction
with deep learning, despite our findings showing that

FIGURE 3 | Comparison between ECG-segmented cine and real-time cine for quantifying left-ventricular ejection fraction (LVEF), left-ventricular end-diastolic
volume (LVEDV), and left-ventricular end-systolic volume (LVESV) using Bland–Altman analysis (A–F) and linear regression (G–I). In Bland–Altman, dotted lines indicate
upper and lower 95% limits of agreement and the red line represents the mean difference. The difference was calculated as real-time cine (Complex-Valued-Net and
Magnitude-Net) minus ECG-segmented cine. In linear regression, X1 and X2 indicate real-time cine reconstructed by Complex-Valued-Net and Magnitude-Net,
respectively. The dashed line shows a reference line with a slope of 1. All three quantifications from real-time cine using both Complex-Valued-Net and Magnitude-Net
had good agreement and high correlation with quantifications by ECG-segmented cine (all p > 0.0167).
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magnitude-only images may be sufficient in real-time cine
imaging. Further studies are needed to rigorously study other
imaging sequences.

For this study, our goal was not necessarily to study or
develop a new architecture but was instead motivated by
Hauptmann et al. and their important contribution of using
readily available DICOMs for network training [27]. Raw
complex k-space data will still be needed for deep learning
models that integrate complex k-space data for image
reconstruction. However, limited availability of complex
k-space data will remain a major challenge for training
such networks on different applications, diseases, scanner
vendors, field strengths, and number of coils. On the

contrary, if one can train the model using only DICOM
images, there are vast amounts of available data for
different organs, sequences, diseases, and vendors that
could greatly impact the adoption of deep learning artifact
reconstruction techniques.

This study has several limitations. Our training data were not
collected using prospectively acquired datasets using radial
k-space filling, but instead training data were synthesized in a
similar manner as proposed by Hauptmann et al. [27]. We used
ECG-gated cine images with Cartesian sampling to extract
reference values for different LV functional and structural
parameters for comparison with real-time radial imaging
[27]. There may be differences between the two approaches

FIGURE 4 |Distribution and average image quality scores across all cine images of 29 patients by threemethods: ECG-segmented cine, Complex-Valued-Net real-
time cine, and Magnitude-Net real-time cine. The P-values of z-tests between every two methods regarding each criterion are labeled. Real-time cine by Complex-
Valued-Net reconstruction yielded superior subjective scores for all three criteria compared to those by Magnitude-Net. ECG-segmented breath-hold cine had the
highest score across all three criteria.

TABLE 1 | Differences in percentage of two grades (1–3 and 4–5) of image quality scores between three methods.

Complex-Valued-Net vs ECG-
segmented cine

Magnitude-Net vs ECG-segmented
cine

Complex-Valued-Net vs
Magnitude-Net

Rate difference
(95% CI)

P Rate difference
(95% CI)

P Rate difference
(95% CI)

P

Myocardial edge −0.31 (−0.54, −0.08) 0.01 −0.79 (−0.94, −0.65) <0.01 0.48 (0.30, 0.66) <0.01
Temporal fidelity −0.69 (−0.87, −0.51) <0.01 −0.79 (−0.94, −0.65) <0.01 0.10 (−0.01, 0.21) 0.08
Artifact −0.62 (−0.82, −0.42) <0.01 −0.76 (−0.91, −0.60) <0.01 0.14 (0.01, 0.26) 0.04

*For myocardial edge and temporal fidelity, 1: non-diagnostic; 2: poor; 3: adequate; 4: good; 5: excellent. For artifact, 1: non-diagnostic; 2: severe; 3: moderate; 4: mild; 5: minimal.
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due to the k-space sampling scheme. Additionally, ECG-
segmented data were collected with breath-holding, while real-
time data were collected during free-breathing. The evaluation of
deep learning reconstruction methodologies was limited to image
quality assessment and quantification of left-ventricular functional
and structural parameters (i.e., EF, LVEDV, LVESV, LVSV, and
LVMass). We chose these metrics because of their clinical
importance. That said, further studies are warranted to evaluate
the capacity of the presented methods (Magnitude-Net and
Complex-Valued-Net) for diagnosis of cardiovascular diseases.
Real-time cine reconstructed with gridding was not quantitatively
or qualitatively analyzed because gridding alone produced non-
diagnostic image quality. Subjective image assessment was
performed by a single reader, and there may be differences in
image perception by different reviewers. Both Magnitude-Net and
Complex-Valued-Net suffer from reduced temporal fidelity
compared to ECG-gated segmented cine. Such a loss of
temporal fidelity can be especially problematic during systolic
phases and may be a source of error during qualitative and
quantitative evaluation. All patients in our testing cohort were
in sinus rhythm. Only a single neural network architecture (i.e., 3D
U-net) was used to compare the performance of magnitude vs
complex-valued synthetic training data. We chose this network
architecture because, to the best of our knowledge, it is the only
architecture shown to be capable of reconstructing radial real-time
cine MRI acquired with bSSFP readout [27, 31]. Other state-of-
the-art approaches such as cascade networks [28, 29] have yet to be
investigated for radial real-time cine reconstruction. Future
collaborations are warranted to first extend other state-of-the-
art methods to radial real-time cine reconstruction and then
compare the performance of different synthetic training data
(i.e., magnitude vs. complex-valued) using these methods.
ECG-segmented cine images used for training were gathered
from one cardiac MR center. As such, trained networks could
contain bias which can prevent generalization. Although we used a
relatively large number of patients for training, our testing cohort
with real-time radial imagingwas relatively small, and images were
acquired at a single clinical center. Future studies with more
patients and imaging from different centers are required to
evaluate proposed deep learning methodologies for real-time
cine reconstruction.

CONCLUSION

Despite improved subjective image quality in real-time cine
images reconstructed using a deep learning model trained with
complex k-space data when compared to magnitude-only data,

there were no differences with respect to quantitative measures of
LV function and structural parameters.
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