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The error propagation of Capon’s minimum variance estimator resulting from
measurement errors and position errors is derived within a linear approximation. It
turns out, that Capon’s estimator provides the same error propagation as the
conventionally used least square fit method. The shape matrix which describes the
location depence of the measurement positions is the key parameter for the error
propagation, since the condition number of the shape matrix determines how the
errors are amplified. Furthermore, the error resulting from a finite number of data
samples is derived by regarding Capon’s estimator as a special case of the maximum
likelihood estimator.
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1 INTRODUCTION

The reconstruction of model parameters from a given set of measurements is one of the most
important tasks in geophysical and space science studies. The measurements are always
affected by measurement errors which result in estimation errors for the wanted model
parameters. The Capon method [1–3], also known as minimum variance distortionless
response estimator (MVDR), is currently being considered as a robust inversion method
for the analysis of planetary magnetic fields. In the past, the method has successfully been
applied to the analysis of waves [1, 4] and therefore, specific attention has been paid to errors
of the spectrum resulting from random perturbations in the amplitude and phase of sensor
arrays [5]. Since Capon’s method is based on the evaluation of statistically averaged data, the
spectrum is also affected by errors resulting from a finite number of samples [6]. Within the
estimation of the frequency-wavenumber spectrum, the difference between static structures
and waves or their combination can be discerned through dispersion relation analysis [7–12].
Concerning the application of the Capon method for the analysis of planetary magnetic fields,
the error propagation of Capon’s estimator itself is of major importance for assessing the
quality of the reconstructed model parameters. In general, two essential types of errors are
expectable. On the one hand, the measured magnetic field data are affected by e.g., offsets,
gains resulting from thermal variations and spacecraft magnetic disturbances [13]. On the
other hand, the determination of the spacecraft’s positions can be defective (measurement
position errors), which results in a defective shape matrix. As a follow-up of the generalized
derivation of Capon’s method [3] and the error estimation of the power spectrum [6], in this
work the effects of measurement errors, measurement position errors as well as finite sample
sizes on Capon’s estimator are considered.
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2 CAPON’S METHOD

Before deducing the error propagation of Capon’s method, the
main ideas of the method are shortly revisited [2, 3]. Due to the
complexity of several physical problems, the entire
parametrization of experimental data is unrealizable. Thus, it
is useful to decompose the measurements B into parametrized
parts H g, where g contains the corresponding wanted model
coefficients and the shape matrix H describes the distribution of
the measurement positions with respect to the underlying model,
non-parametrized parts v as well as measurement noise n, so that

B � H g + v + n (1)

is valid. The measurement noise is assumed to be Gaussian with
variance σn and zero mean (〈n〉 � 0). Since the shape matrixH is
not invertible and the non-parametrized parts are unknown, the
exact solution for the wanted model coefficients g is not available
in general. Capon’s method delivers an estimator g

C
for the ideal

solution g. The method is based on the construction of a filter
matrix w, that minimizes the output power

tr[w†M w] (2)

with respect to the distortionless constraint

w†H � I (3)

where tr [w†Mw] is the trace of the matrix w†Mw and I is the
identity matrix. The matrix M � 〈B+B〉 denotes the data
covariance matrix. Capon’s estimator realizing the minimal
output power results in

g
C
� w†〈B〉 � [H†M− 1H]− 1H†M− 1〈B〉. (4)

The robustness of the method can be improved by the diagonal
loading technique M→M + σ2dI, where σd is the so called
diagonal loading parameter [3]. Thus, the estimator depends
on the measurements and on the measurement positions so that
measurement errors as well as measurement position errors
transfer onto the estimator.

3 ERROR PROPAGATION

In the following, the error propagation of Capon’s estimator is
deduced. Since it is expectable that the errors are much smaller
than the measurements themselves, the error propagation is
derived by making use of a linearization. For the
approximation of the matrix inversions that are necessary for
calculating Capon’s estimator, the Neumann series bears of
essential meaning for which reason we discuss it in a seperate
section.

3.1 Neumann Series
The Neumann series is a special case of the functional calculus for
linear operators or matrices, respectively, [14] and enables the
approximation of matrix inversions.

Let T denote a bounded matrix with norm
����T����< 1. Then,

[I − T]− 1 � ∑∞
k�0

T k � I + T +O(���T���2) (5)

where I is the identity matrix and T k denotes the k’th power of
the matrix T . The demand

����T����< 1 guarantees the convergence of
the series. Thus, the Neumann series can be understood as a
generalization of the geometric series for linear operators.

As a direct consequence it follows that

[I + T]− 1 � [I − (−T )]− 1 � ∑∞
k�0

(−1)k T k � I − T +O(����T����2).
(6)

For the estimation of Capon’s error propagation a generalized
formulation of the Neumann series is required. To expand the
inverse of the sum of a matrix S and a matrix T , where it is
assumed that S is invertible, the sum can be rewritten as

S + T � S(I + S− 1T). (7)

If
����S− 1T����< 1, the Neumann series can be applied to the sum I +

S− 1T resulting in

[S + T]− 1 � [S(I + S− 1T)]− 1 � (I + S− 1T)− 1S−1
� ⎡⎣∑

k�0

∞

(−1)k (S− 1T)k⎤⎦S−1
� S−1 − S−1T S−1 +O(����S− 1T����2).

(8)

3.2 Measurement Errors
In the following, the error of Capon’s estimator resulting from
measurement errors is derived. The model for the (temporal)
statistically averaged accurate data 〈B〉 without measurement
errors is given by

〈B〉 � H g + 〈v〉, (9)

where g is the wanted coefficient vector, H denotes the shape
matrix which describes the spatial dependence of the
measurement positions with respect to the underlying model
and 〈v〉 denotes the (temporal) statistically averaged parts of the
measurements that are not parametrized by the model H g [3].
The corresponding accurate estimator resulting from Capon’s
method is given by

g
C
� w†〈B〉 (10)

where

w† � [H†M− 1H]− 1H†M− 1 (11)

denotes the accurate filter matrix composed of the shapematrixH
and the data covariance matrix M � 〈B+B〉 [3].

The perturbed measurements ~B can be rewritten as

~B � B + δB, (12)

where δB denotes the measurement error. Because of the linearity
of the averaging process, the perturbed averaged measurements
〈~B〉 are given by
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〈~B〉 � 〈B〉 + 〈δB〉 (13)

where 〈δB〉 denotes the statistically averaged measurement error.
The corresponding perturbed estimator results in

~g
C
� ~w †〈~B〉 (14)

where

~w † � [H† ~M
− 1
H]− 1H† ~M

− 1
(15)

denotes the perturbed filter matrix. Thus, the difference between
the accurate and the perturbed estimator results in

g
C
− ~g

C
� w†〈B〉 − ~w †〈~B〉 � w†〈~B〉 − w†〈δB〉 − ~w †〈~B〉

� (w† − ~w †)〈~B〉 − w†〈δB〉
(16)

Within the practical application only the perturbed
measurements 〈~B〉 are known and thus, only the filter matrix
~w † is known. For the calculation of the difference between the
two filter matrices, in the following a linearized approximation is
applied. By means of Eq. 12, the unknown accurate data
covariance matrix can be rewritten as

M � 〈B+B〉 � 〈(~B − δB)+(~B − δB)〉
� ~M − 2〈~B 〉+〈δB〉 + 〈δB+δB〉

(17)

where ~M � 〈~B+~B 〉. We assume, that the measurement errors
are much smaller than the measurements themselves, i.e.,∣∣∣δB∣∣∣≪ ∣∣∣∣~B ∣∣∣∣. This assumption is surely justified in the majority
of applications. Considering for example the analysis of
planetary magnetic fields, the measurement errors are smaller
than 1 nT, so that

∣∣∣δB∣∣∣/∣∣∣∣~B ∣∣∣∣< 1%. Thus, in the following all terms
being quadratic within the errors (e.g., 〈δB+δB〉) will be
neglected, so that the data covariance matrix results in

M � ~M − 2〈~B 〉+〈δB〉 �: ~M + ΔM. (18)

In the case of
������� ~M − 1ΔM

�������2 < 1, where ‖.‖2 denotes the spectral

norm, the application of the Neumann series (Section 3.1)

delivers

M− 1 � ( ~M + ΔM)− 1
≈ ~M

− 1 − ~M
− 1ΔM ~M

− 1
(19)

as well as

P � [H†M−1H]−1 �(19)[H† ~M
−1
H −H† ~M

−1ΔM ~M
−1
H]−1

� [H† ~M
−1
H]−1 +[H† ~M

−1
H]−1H† ~M

−1ΔM ~M
−1
H[H† ~M

−1
H]−1

� ~P + ~P H† ~M
−1ΔM ~M

−1
H ~P

(20)

for the unknown coefficient matrix P [3]. Using

H†M− 1 � H† ~M
− 1 −H† ~M

− 1ΔM ~M
− 1

(21)

it follows that

w† � PH†M−1

� [~P + ~P H† ~M
−1ΔM ~M

−1
H ~P ] ·[H† ~M

−1 −H† ~M
−1ΔM ~M

−1]
� ~P H† ~M

−1 − ~P H† ~M
−1ΔM ~M

−1+
~P H† ~M

−1ΔM ~M
−1
H ~P H† ~M

−1 +O(������Δ ~M
������2)

� ~w† − ~w†ΔM ~M
−1 + ~w†ΔM ~M

−1
H ~w†

� ~w† + ~w†ΔM ~M
−1(H ~w† − I),

(22)

where I again denotes the identity matrix. Thus, the difference
between the filter matrices can be approximated by

w† − ~w† � ~w†ΔM ~M
− 1(H ~w† − I). (23)

Inserting this approximation into Eq. 16 delivers

g
C
− ~g

C
� ~w†ΔM ~M

− 1(H ~w† − I)〈~B 〉 − w†〈δB〉 (24)

where

w†〈δB〉 � [~w† + ~w†ΔM ~M
−1(H ~w† − I)]〈δB〉 � ~w†〈δB〉 (25)

within the linear approximation. Further
transformation for estimating the relative error of the
estimator delivers

g
C
− ~g

C
� ~w†ΔM ~M

−1(H ~w† − I)〈~B 〉 − ~w†〈δB〉

� ~w†ΔM ~M
−1(H ~w†〈~B 〉 − 〈~B 〉) − ~w†〈δB〉

� ~w†ΔM ~M
−1(H ~g

C
− 〈~B 〉) − ~w†〈δB〉

� ~w†ΔM ~M
−1/2 ~M

−1/2(H ~g
C
− 〈~B 〉) − ~w†〈δB〉.

(26)

Making use of the Cauchy-Schwarz inequality yields

∣∣∣∣g
C
− ~g

C

∣∣∣∣2 ≤ �������~w†ΔM ~M
− 1/2

�������22 ·
����H ~g

C
− 〈~B 〉

����2
~M

−1 +
∣∣∣∣∣∣∣~w†〈δB〉

∣∣∣∣∣∣∣2,
(27)

where
����H ~g

C
− 〈~B 〉

����2~M −1 �
∣∣∣∣∣∣∣ ~M − 1/2(~H ~g

C
− 〈~B 〉)∣∣∣∣∣∣∣2. For the

calculation of Capon’s estimator, the weighted difference∣∣∣∣∣∣∣ ~M − 1/2(~H ~g
C
− 〈~B 〉)|2 is minimized with respect to

the unknown set of model parameters ~g , resulting in∣∣∣∣∣∣∣ ~M − 1/2 (~H ~g
C
− 〈~B 〉)|2 ∼ 10− 7 [3]. A discussion about the

calculation of the matrix M− 1/2 is given within the Appendix.
Assuming that the weighted model mismatches are neglibigly
small compared to the measurement errors, the deviation can
be estimated upwards via

∣∣∣∣g
C
− ~g

C

∣∣∣∣2 ≤ ∣∣∣∣∣∣∣~w†〈δB〉
∣∣∣∣∣∣∣2 ≤

�������~w†

�������22 · ∣∣∣〈δB〉∣∣∣2, (28)

or equivalently
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∣∣∣∣g
C
− ~g

C

∣∣∣∣∣∣∣∣g
C

∣∣∣∣ ≤

�������~w†

�������2 · ∣∣∣〈δB〉∣∣∣∣∣∣∣g
C

∣∣∣∣ �

�������~w†

�������2 · ∣∣∣〈δB〉∣∣∣∣∣∣∣g
C

∣∣∣∣
∣∣∣〈B〉∣∣∣∣∣∣〈B〉∣∣∣ (29)

for the relative error. When the measurements are adequately
described by the underlying model, i.e., 〈B〉 ≈ H g

C
, it follows that∣∣∣∣g

C
− ~g

C

∣∣∣∣∣∣∣∣g
C

∣∣∣∣ ≤
�������~w†

�������2 ·
����H����2

∣∣∣〈δB〉∣∣∣∣∣∣〈B〉∣∣∣ . (30)

Comparing this expression with the relative error of the least
square fit estimator [15].∣∣∣∣g

L
− ~g

L

∣∣∣∣∣∣∣∣g
L

∣∣∣∣ ≤
����H+����2 · ����H����2

∣∣∣〈δB〉∣∣∣∣∣∣〈B〉∣∣∣ , (31)

where H+ denotes the pseudoinverse of the shape matrix H,
shows that the error propagation of Capon’s estimator follows the
structure of the error propagation of the least square fit estimator.
Since Capon’s method is based on the evaluation of averaged data,
it can be seen that Gaussian errors with a vanishing mean value
(i.e., 〈δB〉 � 0) do not influence the estimator. Making use of the
distortionless constraint [3].

~w†H � I (32)

delivers

�������~w†

�������2 � max
B

∣∣∣∣∣∣∣~w†B
∣∣∣∣∣∣∣∣∣∣B∣∣∣ � max

H ~g

∣∣∣∣∣∣∣~w†H ~g
∣∣∣∣∣∣∣∣∣∣∣H ~g
∣∣∣∣

� max
~g

∣∣∣∣~g ∣∣∣∣∣∣∣∣H ~g
∣∣∣∣ � (min

~g

∣∣∣∣H ~g
∣∣∣∣∣∣∣∣~g ∣∣∣∣ )
− 1

� 1
Σmin

� ����H+����2,
(33)

where Σmin denotes the smallest singular value of the shapematrix
H [15], i.e. 1/Σmin describes the largest singular value of H+.
Using the definition of the condition number

κ(H) � Σmax

Σmin
� ����H+����2 · ����H����2 � ����w†

����2 · ����H����2 ≥ 1, (34)

where Σmax denotes the largest singular value of the shape matrix
H, yields ∣∣∣∣g

C
− ~g

C

∣∣∣∣∣∣∣∣g
C

∣∣∣∣ ≤ κ(H) ∣∣∣〈δB〉∣∣∣∣∣∣〈B〉∣∣∣ . (35)

Thus, Capon’s estimator propagates the measurement errors in
the same way as the least square fit estimator. This mathematical
property can be interpreted as follows: These two methods differ
in the filter matricesH+ andw† which weight or eliminate parts of
the data in different ways. Since these matrices are applied to the
same set of measurements, which is characterized by a given
measurement error, the different weighting of the data or the
elimination of subsets does not reduce the errors, since the
weighted data originate from the same ensemble. The upper
bound of the relative estimation error is qualitatively sketched in
Figure 1.

Furthermore, it should be noted that the condition number of
the shape matrix determines how the measurement errors are
amplified. Thereby, the condition number depends on the
underlying model and the measurement positions, whereas the
measurement error is produced by the sensor. For a given
underlying model, the condition number solely depends on
the measurement positions. Thus, the estimation errors can be
reduced by analyzing measurements from suitable data points.
Considering the analysis of Mercury’s magnetic field, the
underlying model describes the geometry of the magnetic field,
for example the internal dipole and quadrupole field [2, 3]. For
the estimation of the corresponding Gauss coefficients [16, 17],
the data points have to cover the geometry of the field properly.
For example, the superposition of Mercury’s internal dipole field
with the quadrupole field can equivalently be described as a
northward shifted dipole field. When only measurement
positions in the northern hemisphere are available, the
condition number of the shape matrix increases, resulting in
large estimation errors so that the internal field can be
misinterpreted as a strong dipole field. The analysis of
measurement points covering the southern and the northern
hemisphere symmetrically, like that of the BepiColombo mission,
decreases the condition number and enables a more detailed
characterization of the geometry of Mercury’s internal magnetic
field [18]. The smaller the condition number of the shape matrix
becomes, the better the geometry of the field is covered by the data
points [18].

Before discussing the errors resulting from the perturbed
determination of the measurement positions, let us make a
general comment about the error of Capon’s estimator
resulting from measurement errors. The perturbed data can be
rewritten in the form

〈~B 〉 � 〈B〉 + 〈δB〉 � H g + 〈v〉 + 〈δB〉 � H g + 〈~v 〉, (36)

FIGURE 1 | Sketch of the upper bound for the relative estimation error
resulting from measurement errors with respect to the condition number κ(H)
of the shape matrix.
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where 〈~v 〉 � 〈v〉 + 〈δB〉. Since the filter matrix ~w† eliminates the
non-parametrized parts from the total measured field [3], one might
suppose that themeasurement errors do not influence the estimation
since these errors can as well be interpreted as non-parametrized
parts. From the elimination of the non-parametrized parts

0 � ~w†〈~v 〉 � ~w†〈v〉 + ~w†〈δB〉 (37)

it does not follow that ~w†〈δB〉 � 0. Since this term dominates the
error of the estimator (cf. Eq. 28), the measurement errors are not
eliminated by the filter matrix in general.

3.3 Measurement Position Errors
The model for the correctly determined measurement positions is
given by

〈B〉 � H g + 〈v〉. (38)

The corresponding accurate estimator results in

g
C
� w†〈B〉, (39)

where

w† � [H†M− 1H]− 1H†M− 1. (40)

The perturbed determination of the sensor’s positions transfers
onto a perturbed shape matrixH. Thus, the underlyingmodelH g
and the non-parametrized parts 〈v〉 are perturbed so that the
noisy model is given by

〈B〉 � ~H ~g + 〈~v 〉 (41)

and the corresponding perturbed estimator results in

~g
C
� ~w†〈B〉, (42)

where

~w † � [~H†
M− 1 ~H ]− 1 ~H†

M− 1. (43)

The deviation between the accurate and the perturbed estimator
results in

g
C
− ~g

C
� (w† − ~w†)〈B〉. (44)

As discussed above, only the perturbed filter matrix ~H is known.
Within a linear approximation, the unknown matrix H can be
rewritten as H � ~H + ΔH, where

����ΔH����2 ≪ ����~H ����
2
. For example,

consider the shape matrix

H �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 (RM

r1
)3

1 (RM
r2
)3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (45)

which describes the magnetic field of a current sheet superposed
with Mercury’s internal dipolar field [6], where RM indicates the
planetary radius of Mercury and r1 and r2 are the measurement
positions. The perturbed filter matrix is given by

~H �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 ( RM

r1+Δr1)
3

1 ( RM
r2+Δr2)

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

R3
M

r31(1 + Δr1/r1)3
1

R3
M

r32(1 + Δr2/r2)3
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (46)

Assuming that Δri ≪ ri, for i � 1, 2, the perturbed matrix can be
rewritten as

~H �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 (RM

r1
)3

1 (RM
r2
)3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 −3R

3
M

r31

Δr1
r1

0 −3R
3
M

r32

Δr2
r2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � H − ΔH (47)

by making use of a Taylor series expansion. It should be noted
that the shape matrix can be linearized for any underlying model
by performing a Taylor series expansion for the functions within
the model. Linearization of the error terms for the estimation of
the unknown accurate filter matrix delivers

w† �(40) [H†M− 1H]− 1
H†M−1

� [(~H † + ΔH†)M− 1(~H + ΔH)]− 1(~H † + ΔH†)M−1

� [ ~H†
M− 1(~H + ΔH) + ΔH†M− 1(~H + ΔH)]− 1(~H† + ΔH†)M−1

� [~H†
M− 1 ~H + ~H

†
M− 1ΔH + ΔH†M− 1 ~H ]− 1(~H† + ΔH†)M−1.

(48)

Making use of the Neumann series results in

[~H†
M− 1 ~H + ~H

†
M− 1ΔH + ΔH†M− 1 ~H ]− 1

� [~H†
M− 1 ~H ]− 1 − [~H†

M− 1 ~H ]− 1

·
[~H†

M− 1ΔH + ΔH†M− 1 ~H ][~H†
M−1 ~H ]− 1

� ~P − ~P ~H
†
M−1ΔH ~P − ~P ΔH†M−1 ~H ~P ,

(49)

so that

w† � ~P ~H
†
M−1 − ~P ~H

†
M−1ΔH ~P ~H

†
M−1

−~P ΔH†M−1 ~H ~P ~H
†
M−1 + ~P ΔH†M−1

� ~w† − ~w†ΔH ~w† − ~P ΔH†M−1 ~H ~w† + ~P ΔH†M−1

� ~w† − ~w†ΔH ~w† − ~P ΔH†M−1(~H ~w† − I),
(50)

or equivalently

w† − ~w† � −~w†ΔH ~w† − ~P ΔH†M− 1(~H ~w† − I). (51)

Thus, the deviation of the estimator can be approximated via

g
C
− ~g

C
� −~w†ΔH ~w†〈B〉 − ~P ΔH†M− 1(~H ~w†〈B〉 − 〈B〉).

(52)

By ~w †〈B〉 � ~g
C
it follows that

g
C
− ~g

C
� −~w†ΔH ~g

C
− ~P ΔH†M− 1(~H ~g

C
− 〈B〉), (53)
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and therefore

∣∣∣∣g
C
− ~g

C

∣∣∣∣2 ≤ �������~w †

�������22 ·
����ΔH����2

2
· ∣∣∣∣~g

C

∣∣∣∣2 + ������~P ΔH†M− 1/2
������2
2

·
∣∣∣∣∣∣∣M− 1/2(~H ~g

C
− 〈B〉)∣∣∣∣∣∣∣2.

(54)

Within the application of Capon’s method to Mercury’s magnetic
field analysis, the first summand on the right hand side of Eq. 54

is of the order of about 10 nT2, whereas
�������~P ΔH†M− 1/2

�������22 ·∣∣∣∣∣∣∣M− 1/2(~H ~g
C
− 〈B〉)∣∣∣∣∣∣∣2 ∼ 500 · 10− 7 nT2 and thus, the

weighted model mismatches are negligibly small compared to
the measurement errors, so that the deviation can be estimated
upwards via

∣∣∣∣g
C
− ~g

C

∣∣∣∣2 ≤ �������~w†

�������22 ·
����ΔH����2

2
· ∣∣∣∣~g

C

∣∣∣∣2. (55)

The relative error results in∣∣∣∣g
C
− ~g

C

∣∣∣∣∣∣∣∣~g
C

∣∣∣∣ ≤
�������~w†

�������2 ·
������~H ������

2
·
����ΔH����2������~H ������

2

� κ(~H ) ·
����ΔH����2������~H ������

2

, (56)

where κ(~H ) denotes the condition number of the perturbed
shape matrix ~H . The upper bound for the relative error with
respect to the condition number is qualitatively sketched in

Figure 2. Since
�������~w†

�������2 �
�������~H+

�������2 (cf. Eq. 33), the error

propagation of Capon’s estimator again equals the error
propagation of the least square fit estimator [15].

∣∣∣∣g
L
− ~g

L

∣∣∣∣∣∣∣∣~g
L

∣∣∣∣ ≤
������~H+������

2
·
������~H ������

2
·
����ΔH����2������~H ������

2

� κ(~H ) ·
����ΔH����2������~H ������

2

. (57)

3.4 Measurement Errors and Measurement
Position Errors
Within the former sections the influences of measurement errors
and measurement position errors have been discussed separately.
Within the practical application it is expectable that both errors
occur simultanously. The relative error resulting from the noisy
measurements and the perturbed measurement positions is given
by the quadratic sum of the two cases discussed above∣∣∣∣g

C
− ~g

C

∣∣∣∣2∣∣∣∣~g
C

∣∣∣∣2 ≤ κ2(~H )⎛⎜⎜⎜⎜⎜⎝
����ΔH����2

2������~H ������2
2

+
∣∣∣〈δB〉∣∣∣2∣∣∣∣〈~B 〉∣∣∣∣2⎞⎟⎟⎟⎟⎟⎠. (58)

This can be derived as follows:
The accurate model is given by

〈B〉 � H g + 〈v〉, (59)

so that the corresponding accurate estimator results in

g
C
� w†〈B〉 (60)

where

w† � [H†M− 1H]− 1H†M− 1. (61)

The measured data are not affected by the perturbed
determination of the sensor’s positions. The data are solely
affected by measurement errors 〈δB〉 so that the perturbed
model can be written as

〈~B 〉 � 〈B〉 + 〈δB〉 � ~H ~g + 〈~v 〉 + 〈δB〉 (62)

The corresponding perturbed estimator results in

~g
C
� ~w†〈~B 〉, (63)

where

~w† � [~H† ~M
− 1 ~H ]− 1 ~H† ~M

− 1
(64)

and M � ~M + ΔM. The noisy shape matrix can again be written

as H � ~H + ΔH within a linear approximation. Thus, the
deviation between the accurate and the perturbed estimator is
given by

g
C
− ~g

C
� w†〈B〉 − ~w†〈~B 〉 � w†〈~B 〉 − w†〈δB〉 − ~w†〈~B 〉
� (w† − ~w†)〈~B 〉 − w†〈δB〉. (65)

By making use of the Neumann series, the unknown filter
matrix w† can be rewritten within a linear approximation
resulting in

w† � [H†M− 1H]− 1H†M−1

� [(~H† + ΔH†)( ~M + ΔM)− 1(~H + ΔH)]− 1(~H† + ΔH†)( ~M + ΔM)− 1

� [(~H† + ΔH†)( ~M
−1 − ~M

−1ΔM ~M
−1)(~H + ΔH)]− 1(~H† + ΔH†)( ~M

−1 − ~M
−1ΔM ~M

−1).
Using

FIGURE 2 | Sketch of the upper bound for the relative estimation error
resulting from measurement position errors with respect to the condition
number κ(~H ) of the shape matrix.
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(~H† + ΔH†)( ~M
−1 − ~M

−1ΔM ~M
−1)(~H + ΔH)

� (~H† ~M
− 1 − ~H

† ~M
− 1ΔM ~M

− 1 + ΔH† ~M
− 1)(~H + ΔH)

� ~H
† ~M

−1 ~H − ~H
† ~M

−1ΔM ~M
−1 ~H + ΔH† ~M

−1 ~H + ~H
† ~M

−1ΔH
� ~P

−1 − ~H
† ~M

−1ΔM ~M
−1 ~H + ΔH† ~M

−1 ~H + ~H
† ~M

−1ΔH

(66)

and again making use of the Neumann series delivers

w† �[~P +~P ~H
† ~M

−1ΔM ~M
−1 ~H ~P −~PΔH† ~M

−1 ~H ~P −~P ~H
† ~M

−1ΔH ~P ]
·(~H† ~M

−1− ~H
† ~M

−1ΔM ~M
−1+ΔH† ~M

−1)
� ~P ~H

† ~M
−1−~P ~H

† ~M
−1ΔM ~M

−1+~PΔH† ~M
−1

+~P ~H
† ~M

−1ΔM ~M
−1 ~H ~P ~H

† ~M
−1−~PΔH† ~M

−1 ~H ~P ~H
† ~M

−1

− ~P ~H
† ~M

−1ΔH ~P ~H
† ~M

−1

� ~w†− ~w†ΔM ~M
−1+~PΔH† ~M

−1

+ ~w†ΔM ~M
−1 ~H ~w† −~PΔH† ~M

−1 ~H ~w†− ~w†ΔH ~w†.

(67)
Taking into account that

w†〈δB〉 � ~w†〈δB〉 (68)
within the linear approximation as well as

w† − ~w† � −~w†ΔM ~M
−1 + ~P ΔH† ~M

−1 + ~w†ΔM ~M
−1 ~H ~w†

− ~P ΔH† ~M
−1 ~H ~w† − ~w †ΔH ~w†,

(69)

the deviation between the estimators can be approximated by

g
C
−~g

C
�(w† − ~w†)〈~B〉−w†〈δB〉

�−~w†ΔM ~M
−1〈~B〉+ ~P ΔH† ~M

−1〈~B〉+ ~w†ΔM ~M
−1 ~H ~w†〈~B〉

− ~P ΔH† ~M
−1 ~H ~w†〈~B〉− ~w†ΔH ~w†〈~B〉− ~w†〈δB〉

(70)

Using ~w†〈~B 〉 � ~g
C
, it follows that

g
C
−~g

C
�−~w†ΔM ~M

−1〈~B〉+~PΔH† ~M
−1〈~B〉+ ~w†ΔM ~M

−1 ~H ~g
C

−~PΔH† ~M
−1 ~H ~g

C
− ~w†ΔH~g

C
− ~w†〈δB〉

� ~w†ΔM ~M
−1(~H ~g

C
−〈~B〉)+~PΔH† ~M

−1(〈~B〉− ~H ~g
C
)

− ~w†ΔH~g
C
− ~w†〈δB〉

(71)

and thus,∣∣∣∣g
C
−~g

C

∣∣∣∣2 � �������~w†ΔM ~M
−1/2 ~M

−1/2( ~H ~g
C
− 〈~B〉)+ ~P ΔH† ~M

−1/2 ~M
−1/2(〈~B〉− ~H ~g

C
)

−~w†ΔH ~g
C
− ~w†〈δB〉

�������22 ≤
�������~w†ΔM ~M

−1/2
�������22 ·

∣∣∣∣∣∣∣ ~M−1/2( ~H ~g
C
− 〈~B〉)∣∣∣∣∣∣∣2 +

������~P ΔH† ~M
−1/2������2

2

·
∣∣∣∣∣∣∣ ~M−1/2(〈~B〉− ~H ~g

C
)∣∣∣∣∣∣∣2 +

�������~w†

�������22 ·
����ΔH����2

2
· ∣∣∣∣~g

C

∣∣∣∣2 + �������~w†

�������22 · ∣∣∣〈δB〉∣∣∣2
→
�������~w†

�������22 ·
����ΔH����2

2
· ∣∣∣∣~g

C

∣∣∣∣2 + �������~w†

�������22 · ∣∣∣〈δB〉∣∣∣2 . (72)

Assuming that 〈~B 〉 ≈ ~H ~g
C
the relative error can be estimated by∣∣∣∣g

C
− ~g

C

∣∣∣∣2∣∣∣∣~g
C

∣∣∣∣2 �
�������~w †

�������22 ·
����ΔH����2

2
+
�������~w †

�������22 ·
∣∣∣〈δB〉∣∣∣2∣∣∣∣〈~B 〉∣∣∣∣2

∣∣∣∣〈~B 〉∣∣∣∣2∣∣∣∣~g
C

∣∣∣∣2

�
�������~w †

�������22 ·
�������~H

�������22 ·
����ΔH����2

2�������~H
�������22

+
�������~w †

�������22 ·
∣∣∣〈δB〉∣∣∣2∣∣∣∣〈~B 〉∣∣∣∣2

∣∣∣∣∣∣∣~H ~g
C

∣∣∣∣∣∣∣2∣∣∣∣~g
C

∣∣∣∣2

≤
�������~w †

�������22 ·
�������~H

�������22 ·
����ΔH����2

2�������~H
�������22

+
�������~w †

�������22 ·
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣~H

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣22 ·

∣∣∣〈δB〉∣∣∣2∣∣∣∣〈~B 〉∣∣∣∣2

�
�������~w †

�������22 ·
�������~H

�������22 ·⎛⎜⎜⎜⎜⎜⎝
����ΔH����2

2�������~H
�������22

+
∣∣∣〈δB〉∣∣∣2∣∣∣∣〈~B 〉∣∣∣∣2 ⎞⎟⎟⎟⎟⎟⎠ � κ2(~H )⎛⎜⎜⎜⎜⎜⎝

����ΔH����2
2�������~H
�������22

+
∣∣∣〈δB〉∣∣∣2∣∣∣∣〈~B 〉∣∣∣∣2 ⎞⎟⎟⎟⎟⎟⎠ (73)

It is important to note that the right sides of Eqs. 35, 56 and 73
represent upper bounds for the error of the estimator. These bounds
can be much larger than the true errors. The great advantage of the
bounds lies in the fact that they solely depend on known quantities,
wheras the accurate estimator for calculating the true estimation error is
unknown within the practical application of the method. Thus, the
above derived upper bounds are conservative and guarantee that the
true estimation errors cannot exceed these bounds as long as the
measurement errors as well as the measurement position errors are
much smaller than the measurements themselves so that the linear
approximation is valid.

4 FINITE SAMPLE AVERAGING

For the calculation of Capon’s estimator, averaged magnetic field
data

〈B〉 � 1
Q
∑Q
α�1

Bα (74)

are required [3]. Here,Q denotes the number of measurements at
a fixed set of data points. Within the practical application of the
method only a finite numberQ<∞ of samples is available, which
yields a standard deviation of Capon’s estimator g

C
. In the

following, an approximation for the variance of Capon’s
estimator is derived by regarding Capon’s method as a special
case of the maximum likelihood method [6].

In the vicinity of its maximum value the likelihood function
can be approximated as

L ∼ exp⎡⎣ − 1
2
∑Q
α�1

(Bα −H g)†N− 1(Bα −H g)⎤⎦, (75)

where N denotes the noise covariance matrix [6, 19]. Before
deducing the error resulting from the finite number of samples let
us make a general comment about the construction of the
likelihood function in terms of the averaging process. The
noise matrix is already statistically evaluated so that the
likelihood function is constructed by making use of two
different averaging processes. Within the first averaging
process the noise matrix N is calculated. This averaging
process does not incorporate the underlying model since only
the distribution of the data around the mean value 〈B〉 is
determined which allows to assess the general quality of the
measurements. When the distribution of the measurements is
large, significant errors within the subsequent data fitting are
expectable. Especially, these errors are independent of the chosen
model. Within the second averaging process a specific underlying
model H g is fitted to the data Bα.

For most practical applications, the noise matrix N is
unknown and has to be approximated. In the special case of
Gaussian errors with zero mean and variance σn, the noise
covariance matrix can be written asN � σ2nI, where I denotes the
identity matrix. Substituting the noise covariance matrix N by
the data covariance matrix M � 〈B+B〉, the maximum
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likelihood estimator may be converted into Capon’s estimator
[6]. The corresponding likelihood function is modified to

L ∼ exp⎡⎣ − 1
2
∑Q
α�1

(Bα −H g)†M− 1(Bα − H g)⎤⎦. (76)

The weighted difference between the model and the data can be
rewritten as

(Bα −H g)†M−1(Bα −H g) � (Bα † − g†H†)M−1(Bα −H g)
� Bα †M−1Bα − 2g†H†M−1Bα + g†H†M−1H g.

(77)

As discussed above, the data covariance matrix M is already
statistically evaluated so that the averaging process results in

∑Q
α�1

(Bα −H g)†M− 1(Bα −H g) � Q〈B†M−1B〉 − 2Qg†H†M− 1〈B〉

+ Qg†H†M− 1H g.

(78)

Insertion into Eq. 76 yields

L ∼ exp{− Q
2
[〈B†M− 1B〉 − 2g†H†M− 1〈B〉 + g†H†M− 1H g]}

(79)

or equivalently

L ∼ exp{− Q
2
[〈BiM

−1
ij Bj〉 − 2gkH

†
kiM

−1
ij 〈Bj〉 + glH

†
lkM

−1
ki Hijgj]}.

(80)

The m’th component of Capon’s estimator g
C
corresponds with

the maximum value of the likelihood function [6, 19]. The
corresponding standard deviation (1σ-error) is described by
the width of the likelihood function at its maximum value
which is given by [6, 19].

σgm � [− z2gm lnL]− 1/2, (81)

where

z2gm lnL � zgm(1L zgmL). (82)

Since

zgm L � − Q
2
L zgm[〈BiM

−1
ij Bj〉 − 2gkH

†
kiM

−1
ij 〈Bj〉 + glH

†
lkM

−1
ki Hijgj]

� −Q
2
L [ − 2δkmH

†
kiM

−1
ij 〈Bj〉 + δlmH

†
lkM

−1
ki Hijgj + glH

†
lkM

−1
ki Hijδjm]

� − Q
2
L [ − 2H†

miM
−1
ij 〈Bj〉 + H†

mkM
−1
ki Hijgj + glH

†
lkM

−1
ki Him]

(83)

where δij denotes the Kronecker delta, the m’th component of
Capon’s estimator g

C
can be calculated via [6].

zgmL � 0 (84)

yielding

−2H†
miM

−1
ij 〈Bj〉 +H†

mkM
−1
ki Hijgj + glH

†
lkM

−1
ki Him � 0. (85)

Because ofM−1
ki � M−1

ik , as well as H
†
lk � Hkl and Him � H†

mi in the
case of real shape matrices [3], it follows that

0 � −2H†
miM

−1
ij 〈Bj〉 +H†

mkM
−1
ki Hijgj + glHklM

−1
ik H

†
mi

� −2H†
miM

−1
ij 〈Bj〉 +H†

mkM
−1
ki Hijgj + H†

miM
−1
ik Hklgl

� −2H†
miM

−1
ij 〈Bj〉 + 2H†

mkM
−1
ki Hijgj

(86)

and therefore,

g
C
� [H†M− 1H]− 1

H†M− 1〈B〉 (87)

which is in agreement with the estimator resulting from the linear
algebraic formulation of Capon’s method [3]. The second
derivative results in

z2gm lnL�−Q
2
zgm[−2H†

miM
−1
ij 〈Bj〉+H†

mkM
−1
ki Hijgj + glH†

lkM
−1
ki Him]

�−Q
2
[H†

mkM
−1
ki Hijδjm +δlmH†

lkM
−1
ki Him]

�−Q
2
[H†

mkM
−1
ki Him +H†

mkM
−1
ki Him]

�−QH†
mkM

−1
ki Him.

(88)

Using the definition of the coefficient matrix [3].

P � [H†M− 1H]− 1 (89)

or equivalently (P− 1)mm � H†
mkM

−1
ki Him (90)

delivers

z2gm lnL � −Q (P− 1)mm. (91)

FIGURE 3 | Sketch of the m’the component of Capon’s estimator and
the corresponding 1σ-error subject to the sample size Q. The error declines
as 1/

$$
Q

√
.
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Thus, the error of the m’th component of Capon’s estimator
results in

σgm � 1$$$$$$$$$$
Q · (P− 1)mm

√ , (92)

which declines as 1/
$$
Q

√
. The functional dependence of the error

is qualitatively illustrated in Figure 3.

5 SUMMARY AND OUTLOOK

The analysis of the error propagation is of major
importance for the application of linear inversion
methods. Within a linear approximation, upper bounds
for the errors of Capon’s estimator resulting from
measurement errors and measurement position errors are
derived. These upper bounds solely depend on known
quantities, i.e., measurements and measurement
positions, whereas the true estimation error cannot be
calculated within the practical application of the method,
since the accurate estimator is unavailable. It turns out that
Capon’s method provides the same error propagation as the
least square fit method. These two methods differ in the
filter matrices which weight or eliminate parts of the data in
different ways. Since these matrices are applied to the
same set of measurements, the different weighting of the
data or the elimination of subsets does not reduce the
errors. The condition number of the shape matrix is the
key parameter for the error propagation, since it
determines how the errors are amplified. The
measurement errors as well as the measurement position
errors have to be estimated from the measurements. For a
given underlying model, the condition number of the shape
matrix solely depends on the measurement positions. Thus,
the amplification of the errors can be reduced by choosing
preferred data points.

Furthermore, Capon’s method is based on the evaluation of
statistically averaged data. For the practical application of the
method only a finite number Q of samples is available. This
limited number of samples results in an error of Capon’s
estimator which can be derived by regarding Capon’s method
as a special case of the maximum likelihood estimator. The more
samples are available, the smaller the error becomes, since the
error declines as 1/

$$
Q

√
.

As a follow-up of the generalized derivation of Capon’s method,
the present work establishes the mathematical basis of Capon’s
error propagation for the practical application of the method.

Appendix: Matrix Power of the Data
Covariance Matrix
For the calculation of Capon’s estimator the inverse data
covariance matrix M− 1 is necessary. First of all it should be
noted that the inverse exists due to the averaging process,
whereas the matrix B+B is not invertible [3]. In the case of a

vanishing standard deviation (σn � 0), the application of the
diagonal loading technique [3] guarantees the existence of
the inverse data covariance matrix, since the condition
number of M is close to unity at the optimal diagonal
loading parameter.

Furthermore, there exists a unitary transformation V so that

M � V D
M
V− 1 (93)

where

D
M
� diag [λ1, . . . , λn] (94)

is a diagonal matrix that contains the eigenvalues ofM. Therefore,
the inverse data covariance matrix results in

M− 1 � [V D
M
V− 1]− 1 � V D−1

M
V− 1, (95)

where

D−1
M

� diag [λ−11 , . . . , λ−1n ]. (96)

Further transformation delivers

M− 1 � V D−1
M
V− 1

� V D−1/2
M

D−1/2
M

V− 1

� V D−1/2
M

V− 1V D−1/2
M

V− 1

� M− 1/2M− 1/2

(97)

so that the square root of the inverse data covariance matrix is
defined as

M− 1/2 � V D−1/2
M

V− 1 (98)

where

D−1/2
M

� diag [λ−1/21 , . . . , λ−1/2n ]. (99)
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