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The structural and magnetic properties of LaMnO3/LaFeO3 (LMO/LFO) heterostructures
are characterized using a combination of scanning transmission electron microscopy,
electron energy-loss spectroscopy, bulk magnetometry, and resonant x-ray reflectivity.
Unlike the relatively abrupt interface when LMO is deposited on top of LFO, the interface
with reversed growth order shows significant cation intermixing of Mn3+ and Fe3+,
spreading ∼8 unit cells across the interface. The asymmetric interfacial chemical
profiles result in distinct magnetic properties. The bilayer with abrupt interface shows a
single magnetic hysteresis loop with strongly enhanced coercivity, as compared to the
LMO plain film. However, the bilayer with intermixed interface shows a step-like hysteresis
loop, associated with the separate switching of the “clean” and intermixed LMO sublayers.
Our study illustrates the key role of interfacial chemical profile in determining the functional
properties of oxide heterostructures.
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INTRODUCTION

Controlling the magnetic interactions across heterointerfaces play a central role in spintronics [1].
Due to the entangled spin, orbital, charge, and lattice degrees of freedom in transition metal oxides,
the magnetic interactions at oxide interfaces are complicated by the presence of epitaxial strain,
oxygen octahedral coupling, charge transfer, orbital hybridization, electron confinement, etc [2–5]. A
well-known phenomenon related to the interfacial magnetic coupling is exchange bias (EB), which
usually occurs in field-cooled ferromagnetic/antiferromagnetic systems [6]. EB is characterized by a
horizontal shift of the magnetic hysteresis loop along with an enhanced coercive field (HC), and is
usually interpreted by the pinning effect from uncompensated surface spins of the antiferromagnetic
material. For a fully compensated antiferromagnetic surface, such as the (001) plane of a G-type
antiferromagnet, a spin-flop coupling is energetically favorable [7]. The antiferromagnetic spin axis
aligns perpendicular to the ferromagnetic spins to minimize the interfacial spin frustration, as
revealed at La0.7Sr0.3MnO3/La(Sr)FeO3 interfaces [8–10]. Normally such spin-flop coupling is unable
to induce EB, but only increases HC, while extrinsic disorders (interface roughness, for example) can
create random fields acting on the ferromagnetic spins and cause EB [11,12]. Also, an intrinsic
mechanism involving Dzyaloshinskii-Moriya interaction has been proposed to explain the EB at
ferromagnetic/G-type antiferromagnetic interface [10,13]. In particular, it has been reported that the
orbital hybridization and superexchange interaction between Mn and Fe at the interface of La2/3Sr1/
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3MnO3/BiFeO3 gave rise to a spin-canted state of Fe3+ and a
concomitant EB effect [14–16]. However, first-principles
calculations ascribe the magnetism of Fe3+ to the interfacial
Mn/Fe chemical intermixing [17], which is supported by the
absence of EB at the chemically abrupt interface [16]. These
results point to the crucial role of interfacial chemical profile in
dictating the magnetic coupling across oxide interfaces.

Pulsed laser deposition (PLD) has been widely used to
construct oxide interfaces. Although tremendous achievements
have been made in this field over the past few decades, the
abruptness across oxide interfaces remains a controversial
issue [18]. The high temperature required for the epitaxial
growth as well as the high-energy species generated in the
laser plume naturally facilitate the inter-diffusion between two
adjoined layers [19,20]. The resulted composition variation can
profoundly influence the interface properties by introducing
disorders, distorting the local structure and/or altering the
valence states [16,21–24]. In this work, the effects of interfacial
cation interdiffusion on the magnetic properties of LaMnO3/
LaFeO3 (LMO/LFO) heterostructures have been studied using a
combination of atomically resolved scanning transmission
electron microscopy (STEM), electron energy-loss
spectroscopy (EELS), bulk magnetometry and resonant x-ray
reflectivity (RXR). In particular, the degree of Mn/Fe
intermixing is found to depend on the growth sequence,
i.e., the LMO-on-LFO interface is relatively sharp, while the
LFO-on-LMO interface shows pronounced Mn/Fe intermixing
over ∼8 unit cells (uc) of the interfacial region. Such structural
asymmetry is further manifested by the distinct magnetic
properties of the two bilayers.

MATERIALS AND METHODS

The LMO/LFO bilayers were fabricated on TiO2-terminated
SrTiO3 (001) substrates using PLD, in situ monitored by
reflection high energy electron diffraction (RHEED). In order
to achieve TiO2-terminated and terraced surface, the SrTiO3

substrates were first etched with buffered hydrofluoric acid,
followed by annealing in flowing oxygen at 1050°C for 2 h.
During the PLD deposition, the substrate temperature and
oxygen pressure were maintained at 700°C and 0.01 mbar,
respectively. The laser fluence and repetition rate were set at
1.8 J/cm2 and 2 Hz, respectively. The surface morphology was
verified using atomic force microscopy (AFM). The atomic
resolution monochromated STEM-EELS was acquired on a
Thermofisher Scientific Titan electron microscope, equipped
with Cs-correction for the probe and an Enfinium
spectrometer, operated at 300 kV. The bulk magnetic
properties were measured using vibrating sample
magnetometry on a Quantum Design physical property
measurement system. The RXR experiments were performed
using an in-vacuum 4-circle diffractometer at the Resonant
Elastic and Inelastic X-ray Scattering (REIXS) beamline of the
Canadian Light Source (CLS) in Saskatoon, Canada [25]. The
measurements were carried out at 20 K with a specular reflection
geometry.

RESULTS AND DISCUSSION

Bulk LMO is an A-type antiferromagnet with antiparallel aligned
ferromagnetic planes [26]. When grown on SrTiO3, it adopts a
ferromagnetic state due to the electronic reconstruction and/or
oxygen non-stoichiometry [27–30]. Bulk LFO is a typical G-type
antiferromagnet with a Néel temperature (TN) up to 740 K [31].
The antiferromagnetism can be retained in its thin-film form
down to a thickness of 3 uc [32]. Here, LMOm/LFOn bilayers have
been grown on TiO2-terminated SrTiO3 (001) substrates using
PLD, with subscripts m and n indicating the corresponding layer
thickness in uc. Figure 1A shows the surface morphologies of two
bilayers with reversed stacking sequence, LMO10-on-LFO12 and
LFO12-on-LMO10 as sketched in the insets. Both samples show
atomically flat surfaces with step terraces of one uc in height, in
accordance with the layer-by-layer growth mode observed in
RHEED (Supplementary Figure S1).

The magnetic properties of the two samples are compared in
Figures 1B,C, together with those of 10-uc LMO and 12-uc LFO
plain films for reference. The LFO film is antiferromagnetic
showing no magnetic signal, while the LMO film is
ferromagnetic with a Curie temperature (TC) of ∼140 K and
saturation magnetization (MS) of ∼2.1 μB/Mn at 10 K. When
LMO is deposited on top of an LFO buffer layer, TC remains
unchanged, but MS drops to 1.6 μB/Mn. The reduced
magnetization can be understood by magnetic frustrations at
the ferromagnetic/G-antiferromagnetic interface with competing
exchange interactions, as suggested in La0.6Sr0.4MnO3/
La0.6Sr0.4FeO3 superlattices [33]. It is interesting to note that
the TC is unaltered by the magnetic frustrations here, which is
probably due to the relatively thick LMO layer as well as the
heterogenous magnetic states of LMO [34]. Moreover, Gibert
et al. reported a canted antiferromagnetic state in LMO grown on
a LaNiO3 buffer layer, which has been ascribed to the
modifications of Mn-O-Mn bond angles induced by LaNiO3

[24]. Such an effect may also play a role in the suppressed
magnetization of the LMO-on-LFO bilayer, given the strong
octahedral rotations in the orthorhombic LFO. As can be seen
in Figure 1C, the LMO-on-LFO bilayer shows HC ∼ 890 Oe,
much larger than the LMO single film with HC ∼ 340 Oe.
Meanwhile, no EB was observed after cooling to 10 K in a
field of 1T (Figure 1D). These observations agree with a spin-
flop coupling proposed for ferromagnetic/G-antiferromagnetic
systems [12]. For the LFO-on-LMO bilayer, the temperature
dependent magnetization curve shows drastically reduced TC
and MS, as compared to the LMO film. More strikingly, a
step-like hysteresis loop was observed (Figure 1C), indicating
two separate magnetic switching events during the field sweeping.
Similar behavior has also been observed with different layer
thickness of LMO (Supplementary Figure S2) This is in stark
contrast with the LMO-on-LFO bilayer. As we will show below,
the distinct behaviors are associated with the asymmetric Mn/Fe
intermixing at the interface, which depends on the stacking
sequence.

Figures 2A,C show the STEM-EELS elemental maps of the
LFO12-on-LMO7 and LMO10-on-LFO12 bilayers, respectively.
The corresponding layer-resolved EELS intensities of La, Sr,
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Ti, Mn, and Fe are plotted in the upper panels of Figures 2B,D.
For the LFO12-on-LMO7 interface, a strong cation intermixing of
Mn and Fe ions is observed, spanning ∼8 uc across the interface.
This is similar to what was observed in the LFO-on-LMO bilayer
grown by molecular beam epitaxy [35]. In contrast, the LMO10-
on-LFO12 interface is relatively sharp, with Mn/Fe intermixing
confined within ∼2 uc at the interface. Such an asymmetric
chemical profile has also been reported in the heterostructures
of LaVO3/STO and LMO/LaNiO3, where the diffuse interfaces
are interpreted by preferential ionic surface segregations driven
by the difference in the ion radii [24,36]. However, this scenario
should not be at play for the LMO/LFO interface considering the
identical ionic radii of Mn3+ and Fe3+ [37]. Further theoretical
studies are needed to address the puzzling interdiffusion behavior
at the LMO/LFO interface by taking into accounts the interface
energy and surface energies of LMO and LFO. By fitting the EELS
spectra ofMn (Fe) L2,3 edge to references of Mn2+ andMn3+ (Fe2+

and Fe3+), the layer-resolved valence states of Mn and Fe were
obtained and plotted in the bottom panels of Figures 2B,D.
Apparently, no charge transfer between Mn3+ and Fe3+ occurs in
both heterostructures, in line with the previous report [35]. The
presence of Mn2+ at the LMO/STO interface (Figure 2B) is due to
electron accumulation driven by the polar discontinuity
[28,29,38]. In contrast, no electronic reconstructions are

observed at the LFO/STO interface because of the stable 3d5

electronic configuration of Fe3+ [39]. Instead, Nakamura et al.
showed that the polar charges were screened by an emergent
spontaneous polarization at the LFO/STO heterointerface [40].
Overall, our STEM measurements demonstrate the LMO-on-
LFO interface being chemically sharper than the LFO-on-LMO
interface, and preclude any charge transfer between LMO
and LFO.

RXR measurements were performed on a LFO12-on-LMO10

bilayer to gain insights into the step-like magnetic switching
behavior. X-ray reflectivity at off-resonant energies were first
measured to extract the chemical depth profile. By tuning the
x-ray energy to the Mn and Fe resonances, the depth profiles of
Mn and Fe magnetization can be extracted independently. In
general the on-resonance x-ray reflectivity for a particular
element provides an enhanced sensitivity to the depth profile
of the density of that element. On resonance, the enhanced
refractive index generally leads to stronger contrast in the
constructive/destructive interference in x-ray reflectivity.
Figure 3A shows the x-ray reflectivity at off-resonant energies
(455, 633, 698, and 841 eV). The atomic concentrations of Ti, Mn,
and Fe are extracted from the simulations and shown in
Figure 3C. The Mn and Fe intermix over ∼7 uc around the
interface, in good agreement with the STEM results. In order to

FIGURE 1 | (A) AFM images of LMO10-on-LFO12 and LFO12-on-LMO10 bilayers with reversed stacking sequence. The inset of bottom panel shows the height
profile along the white line. (B) Temperature dependent magnetization curves of the LMO10, LFO12 single films, and LMO10-on-LFO12, LFO12-on-LMO10 bilayers,
measured with a cooling field of 1000 Oe. (C) shows the corresponding magnetic hysteresis loops at 10 K. The magnetic moments were caluculated using only the
volume of LMO. (D) Magnetic hysteresis loops of LMO10-on-LFO12 measured after zero field cooling (ZFC) and 1-T field cooling (FC) to 10 K.
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resolve the magnetic switching process, RXR measurements were
performed at both saturation (0.6 T) and remanence (Rem) states
using circularly left (RL) and right (RR) polarized light. The
asymmetry curves (RL-RR)/(RL+RR) measured at the L3 edges
of Mn (641 eV) and Fe (710 eV) are depicted in Figure 3B, and
the derived magnetic depth profiles are shown in Figure 3D. By
applying a field of 0.6 T, we observed a pronounced Fe
magnetization in the intermixed region, which peaked around
Z ∼ 40 Å. According to Goodenough-Kanamori-Anderson rules,
the superexchange interaction between Mn3+ (t2g

3,eg
1) and Fe3+

(t2g
3,eg

2) are strongly ferromagnetic [41–43]. Thus, the Fe
moments can be induced by interacting with the surrounding
Mn3+ ions [17]. The Fe magnetization is limited by the small
volume fraction of Fe ions for Z < 40 Å, while the increasing Fe-
O-Fe antiferromagnetic interactions suppress the magnetization
for Z > 40 Å. Surprisingly, the Fe moments vanished as the
magnetic field was removed. This might correspond to a magnetic
cluster (or superparamagnetic) state in the intermixed LaMn1-
xFexO3 [44], whose magnetization becomes randomly aligned at
zero fields. Notably, the magnetization of Mn is also depressed to
a great extent after removing themagnetic field, even in the region
without significant Mn/Fe intermixing. This means that some
domains are already reversed at zero fields in LMO. Based on our

RXR results, the magnetic switching sequences are sketched in
Figure 3E. The step-like hysteresis loop observed for the LFO12-
on-LMO10 bilayer corresponds to the separating switching of the
intermixed LaMn1-xFexO3 and the “clean” LMO sublayers.

To further ascertain the above scenario, we used LaAlO3 as a
shielding layer to prohibit the interfacial intermixing between
LMO and LFO. As shown in Figure 4, the F-A-M trilayer exhibits
a very similar behavior to the LMO single film, with slightly
higher TC and MS. In contrast, a considerably larger MS was
observed for the M-A-F trilayer at low temperature, implying the
significant role of capping layer in enhancing the magnetization
of LMO [45]. Furthermore, the three samples show slim loops at
10 K with the same HC ∼ 400 Oe, ruling out any exchange
couplings at the interface. The single loop of the M-A-F
trilayer strongly suggests that the step-like switching behavior
is associated with the LFO/LMO interface.

CONCLUSION

To summarize, we demonstrate an asymmetric interdiffusion at
the interface between LMO and LFO, which depends on the
growth sequence. The LMO-on-LFO bilayer with relatively sharp

FIGURE 2 | (A,C) STEM-EELS elemental maps of Ti L2,3, Sr L2,3, La M4,5, Mn L2,3, Fe L2,3, along with the simutaneously acquired annular dark field (ADF) images
measured for the LFO12-on-LMO7 and LMO10-on-LFO12 bilayers, respectively. The corresponding layer-resolved EELS intensities and valence states (Mn and Fe) are
shown in (B) and (D), respectively.
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interface shows a single magnetic hysteresis loop with enhanced
HC as compared to the referenced LMO film. However, for the
LFO-on-LMO case, the interfacial layer with strong Mn/Fe
intermixing constitutes an extra magnetic phase. This phase

switches separately from the LMO layer, yielding a step-like
magnetic hysteresis loop. We further show that the strong
interdiffusion at LFO-on-LMO interface can be prohibited by
inserting a LaAlO3 shielding layer. Future experiments, to
elucidate on the mechanisms as well as control of
interdiffusion, should include the insertion of thin buffer
layers, change of the substrate terminations, variations of the
thicknesses and finally deposition parameters. Our results call for
more investigations into the interfacial chemical profile to
interpret those emergent phenomena at complex oxide interfaces.
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