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We use the Kerr–Newman metric based on the theory of general relativity to discuss
the observed superluminal phenomenon of light near the black hole and whether it is
observable astronomically at infinity or a weak gravitational place such as on Earth.
The black hole has the rotation term a and the charge term RQ as well as the
Schwarzschild radius RS. The geodesic of light in the spacetime structure is ds2 � 0,
and the equation for three velocity components (dr/dt, rdθ/dt, rsinθdϕ/dt) is obtained
in the Boyer-Lindquist coordinates (r, θ, and ϕ) with the coordinate time t. Then, three
cases of the velocity of light (dr/dt, 0, and 0), (0, rdθ/dt, and 0), and (0, 0, and rsinθdϕ/
dt) are discussed in this research. According to our discussion, only the case of (dr/dt,
0, and 0) gives the possibility of the observations of the superluminal phenomenon
and an example is shown at r between RS and (R2

Q + a2sin2θ/2)/RS at sinθ>0, when RQ

∼ RS. The results reveal that the maximum speed of light and the range of the
superluminal phenomenon are much related to the rotational term a and the charged
term RQ. It is at least reasonable at two poles and in the equatorial plane, when light
propagates along the radial direction. Although the superluminal phenomenon is
discussed in the Boyer-Lindquist coordinates, all the results are easy to be
transformed or discussed in the Cartesian coordinates (x, y, z, t) by setting R2 �
x2+y2+z2 � r2+a2sin2θ and rdr � RdR in the velocity of light. The conclusions of the
superluminal phenomenon about the three velocity components (dR/dt, Rdθ/dt,
Rsinθdϕ/dt) are different from them in the Boyer-Lindquist coordinates. Generally
speaking, the superluminal phenomena for light can possibly occur in these cases
where the radial velocity dr/dt is dominant, and the other two velocity components are
comparably small. When the relative velocity between the observer coordinate frame
and the black hole is not large, the superluminal phenomenon is possibly observable
at infinity or in a weak gravitational frame such as on Earth. The results can also be
applied on the super-gravitational sources.
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INTRODUCTION

The so-called superluminal phenomenon [1] is an observation from
a frame of reference that the speed of particle exceeds the speed of
light c in free space. It is also called the faster-than-light (FTL)
phenomenon, and some laboratory experiments [2] have been
reported to demonstrate this. Some astronomical observations [1,
3–6] about this phenomenon have been revealed from relativistically
massive sources near supermassive gravitational sources such as the
black hole. Traditionally, the speed of light is limited in the theory of
special relativity with amaximal value of c in free space. As we know,
the free space is the flat spacetime structure and this maximal speed
of light is a well certified phenomenon in special relativity. In this
theory, as an electron in the synchrotron accelerator needs a lot of
energy to reach its speed that is very close to c but does not always
exceed c. It is the relativistic effect that the mass– energy equivalence
principle exists, and the equivalent mass of the electron depends on
its speed. Exceeding the speed of light seems unable to be observed
macroscopically on Earth. Nowadays, it continuously attracts the
attention of some scientists to investigate this FTL phenomenon.
While some reports reveal this phenomenon, one always wants to
explain it by the present theorem or try to break some concept such
as the limitation of the speed of light to fit the phenomenon.

As early as in 1983, seven superluminal motions observed in
the nuclei of some radio sources had been reported in a
conference [7]. It pointed out that NRAO 140, 3C120, 3C273,
3C279, 3C345, 3C179, and BL Lac appear to separate with speeds
greater than that of light [8]. The occurrences of superluminality
are shown at the time when the axis of emission rotates or
processes into the line of sight of the observer [8]. This
conclusion supports our research on the rotating black hole,
and it makes our study meaningful. The observations of the
superluminal motion have been widely studied and are paid
much attention, and some important reports continuously
reveal new observations on this topic [8–23]. Especially, the
superluminal motion often lasts several years but not merely
within a very short period [11, 18]. Until 1988, the number of the
radio sources which showed superluminal motion reached up to
23 [15]. The research even affects the Hubble constant
measurement [21, 22]. Traditionally speaking, the explanation
is based on the theory of special relativity [14]. However, as we
know, the space-time structure near a super-gravitational source
such as a black hole is very different from the flat space-time
structure described by the Minkowski metric. It has been pointed
out in the conclusions of Ref. [15] that the problem of exceeding
large linear size of superluminal sources seems to require
modifications of the most naïve beaming theories. Such
explanations based on the theory of special relativity have not
been enough to convince, and we shall not use the theory of
special relativity to explain the phenomena in the general
relativity region. It needs us to develop a more complete and
reliable explanation for super-gravitational sources. Thus, we
propose a new way to enhance the astronomical explanation.

Gravitational time delay is another astronomical phenomenon
that has attracted attention. It implies that the observed speed of
light would slow down when light passes through a giant star
[24–28]. This reveals that the observation about the speed of light

is affected by gravity, and the measured speed of light is not
constant for an observer in a reference frame such as on Earth.
Because the theory of special relativity is based on the Minkowski
metric describing a flat space–time structure, it is not suitable for
us to explain some astronomical phenomena. Gravitational time
delay is a well-known fact predicted by the theory of general
relativity, and the place nearby the supermassive star with strong
gravity is good for observation. This phenomenonmotivates us to
think about a question whether it is possible on Earth to directly
or indirectly observe the speed of light exceeding c near the super-
gravitational sources such as the black hole. It is the astronomical
phenomenon and some astronomical observations show
possibilities to investigate this kind of superluminal
phenomenon for massive particles [1, 3–6] which may be
essentially explained by the speed of light exceeding c.

In this research, we study this observable phenomenon for
light based on the theory of general relativity with the
Kerr–Newman metric in the Boyer-Lindquist coordinates
[29–31] where the constant speed of light exists in a local
frame with proper time. Our discussions focus on the black
hole and give some special results for the possible occurrence
of this superluminal phenomenon of light.

THE KERR–NEWMAN METRIC AND THE
SPEED OF LIGHT

When we discuss the geodesic of light at the black hole, an
appropriate and sufficient choice is using the Kerr–Newman
metric [29–31] because it considers the angular momentum J
and charges Q of a black hole simultaneously. The rotation of a
black hole is inherited from the previous star, and it may be
charged because the black hole absorbs charged plasma from the
high-temperature accretion clouds or neighboring stars.
The line– element expression of the Kerr–Newman metric in a
particular set of spherical coordinates, also called
Boyer–Lindquist coordinates (r, θ, and ϕ), is

ds2 � −c2dτ2

� (dr2Δ + dθ2)ρ2 − (cdt − asin2θdϕ)2Δ
ρ2

+ ((r2 + a2)dϕ − acdt)2sin2θ

ρ2
, (1)

where ds is the invariant interval, τ is the proper time, t is the
coordinate time, and a � J/Mc, with mass M of the black hole is
the term about the angular momentum per mass,

ρ2 � r2 + a2cos2θ, (2)

and

Δ � r2 − rRS + a2 + R2
Q. (3)

The Schwarzschild radius is RS � 2GM/c2 and G is the
gravitational constant. R2

Q �KQ2G/c4 is the term related to
charge Q, and K is Coulomb’s constant. In addition,
coordinate time is the time shown by the clock stationed at
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infinity where the proper time and coordinate time becomes
identical [32]. The geodesic of light is ds2 � 0, then through
deductions, we have the velocity of light obeying the following
equation:

ρ4

Δ(Δ − a2sin2θ) (drdt)
2

+ ρ4

r2(Δ − a2sin2θ)(r dθdt)
2

− (Δa2sin2θ − (r2 + a2)2)
r2(Δ − a2sin2θ) (rsinθ dϕ

dt
)2

− 2ac( − Δ + (r2 + a2))sinθ
r(Δ − a2sin2θ) (rsinθ dϕ

dt
)

� c2. (4)

In Eq. 4, (drdt), (r dθ
dt), and (rsinθ dϕ

dt) are the three velocity
components of light in the Boyer-Lindquist (r, θ, Φ, and t)
coordinates, respectively. Equation 4 is also the geodesic of light
in space. This way to obtain the velocity of light from ds2 � 0 has been
used to get the velocity of light in the Schwarzschildmetric [33–36]. It
reveals that the velocity of light at the black hole is much different
from the Minkowski space–time structure, and the formula given in
Eq. 4 is much complicated and dependent on the mass, the angular
momentum, as well as the charge of a black hole. In the next section,
we discuss the possibility of the superluminal phenomenon for each
velocity component individually. Although the superluminal
phenomenon is discussed in the Boyer-Lindquist coordinates, all
the results in the following discussions are easy to be transformed or
discussed in the Cartesian coordinates (x, y, z, t) as long as we set R2 �
x2+y2+z2 � r2+a2sin2θ and rdr � RdR in the velocity of light.

Because we discuss the rotating black hole, we check the
gravitational dragging [35] or the frame-dragging effect [33] to
make sure the reasonability of our results. The black hole has the
angular velocityω. We consider the instantaneously local reference
frame rotating with angular velocity ω and tangential velocity v

with respect to the black hole. Then, a light beam in the equatorial
plane (θ � π/2) propagates in the radial direction toward the center
of the Kerr–Newman black hole. According to the equivalence
principle, the gravitational acceleration of the black hole and the
induced acceleration of the curved movement are both along the
radial direction. Two persons at different instantaneous reference
frames observe different trajectories of light. One observer A is in
this instantaneously dragging reference frame moving with the
velocity v the same as the tangentially rotating velocity with respect
to the black hole, and the other observer B is in the non-rotating
reference frame which is freely falling or has equivalent
acceleration in the radial direction. It is alike a situation that a
man, observer A, stays on a transparent train with a velocity v
moving toward the right, and the other man, observer B, stands at
rest on the platform on Earth. From the viewpoint of observer B, a
light beam perpendicular to the movement of the train passes
through it directly as the light trajectory L1 shown in Figure 1.
However, due to the dragging-frame effect, the observer A will see
the same light beam propagating along the light trajectory L2. It
means that the non-rotating reference frame has the same
viewpoint as that of observer B when light propagates in the
equatorial plane from the place far away from the Kerr–Newman
black hole along the radial direction to its center. The dragging-
frame effect does not exist in this situation. It is also true when light
propagates toward two poles.

On the other hand, if light has no orbital angular momentum
relative to the black hole at infinity, then the conservation of the
orbital angular momentum has to be held even if light is very
close to the black hole. Otherwise, the conservation of the orbital
angular momentum is broken, and we have to ask where the
additional orbital angular momentum comes from?

Before discussing, there is a basic requirement that the time is
real at any reference frame. When we consider the geodesic along
the radial direction without including the dϕ term, then it
requires the dt2 term in Eq. 1 satisfying

ρ2 > 0 (5)

and

(Δ − a2sin2θ)> 0. (6)

From Eq. 6, it can be expanded as

r2 − rRS + R2
Q + a2cos2θ > 0. (7)

For any real r, Eq. 7 further requires the condition at r � RS/2

R2
S ≤ 4(a2cos2θ + R2

Q). (8)

It is the condition for the black hole at r � RS/2, but at other
place where r > 0 exists different condition. Such as at r � RS, it
requires

R2
Q + a2cos2θ > 0, (9)

and at any r > RS, Eq. 7 automatically satisfies till the place far away
from the black hole. Although the event horizon depends on θ, it is
convenient to discuss the phenomenon using RS as a reference
position, and the event horizon approximates to a spherical surface

FIGURE 1 | Observations of the light trajectory from different inertial
frames. An inertial frame, the transparent train, has the tangential velocity v the
same as the rotating velocity of the Kerr–Newman black hole. An observer
stays on the train, and the other one is at rest on the platform. This
observer on the platform is in the inertial frame far away from the black hole. A
light beam observed by the observer on the platform is perpendicular to the
movement of the train as the light trajectory L1 where no dragging-frame effect
exists. The same light beam observed by the observer moving with the train is
the light trajectory L2.
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while a << RS and RQ << RS. Because the conditions of Eq. 8 holds
true for all θ, then it gives the lowest requirement

R2
S ≤ 4R2

Q (10)

at r � RS/2 and θ � π/2, and Eq. 9 gives another requirement

R2
Q > 0, (11)

at r � RS. Combining Eqs. 10, 11, it gives the R2
Q condition for

the charged black hole. The other requirement for the dr2 term
in Eq. 1 is

Δ> 0. (12)

It also gives the other condition at r � RS/2 and θ � π/2

R2
S ≤ 4(a2 + R2

Q). (13)

From Eqs. 10, 13, the minimum rotated condition can be
obtained

0≤ |a| (14)

However, at r � RS similar to Eq. 10, the requirement is

R2
Q + a2 > 0, (15)

which automatically satisfies the requirement. The other factor
worth mentioning is ρ2 when it is at the denominator. It raises a
mathematical singularity at r � 0 and θ � π/2. If the black hole has
a finite-sized nucleus, this singularity will automatically be
removed because J � 0, Q � 0 as well as zero gravity at r � 0.
According to Eqs. 10, 14, it means that even the massive star is
very heavy, and in the formation of a charged and rotating black
hole, there exists some basic conditions.

Wemay ask whether it is possible for a finite-sized nucleus to exist
inside the black hole and remove the curvature singularity at r � 0? If
so, it can solve the singularity problem at r � 0 from the black hole.
Significant research in analyzing the radiating Schwarzschild black
hole first introduces a coordinate coherent state approach to
noncommutative effects in the weak field limit [37]. The absence
of any curvature singularity at the terminal stage of the black hole
evaporation is concluded. The physicalmeaning of noncommutativity
is the concept of the point-like particles which no longer is
meaningful, and it is replaced by the Gaussian mass density

ρl1( �r) � M

(4πl21)3/2 exp( − r2

4l21
), (16)

where l1 is the noncommutative parameter with dimension of length
and also theminimalwidth of theGaussian function [37–41], andM is
the total particle mass or mass-energy of the source.
Noncommutativity is thought as an intrinsic property of the
space–time manifold and does not depend on the curvature [37,
38]. It can be introduced in the theory of general relativity by
modifying the source of matter [38]. It also concludes three
situations to judge the existence of the black hole where black
holes with mass M < M0 � 0.5π1/2θ do not exist [37]. It is further
improved by substituting Gaussian mass density into Einstein’s
equation to obtain the minimal mass M0 � 1.9θ/G, and one

conclusion gives the existence of black holes with two event
horizons where M > M0 for the Schwarzschild black hole [38].
The other conclusion is that there is no curvature singularity at the
origin, and a regular de Sitter core is obtained at a short distance [38].
No curvature singularity at the origin, neither ‘naked’ nor ‘shielded’ by
the event horizons, is also pointed out in the research of the charged
black hole by using noncommutative geometry and Gaussian mass
density [39]. The smearing effect is also used to turn a point-like charge
e into a “charge droplet” with the Gaussian profile whose mathematic
form is the Gaussian charge cloud with a minimal width l2 [39]

ρel( �r) � e

(4πl22)3/2 exp( − r2

4l22
). (17)

Then, the Reissner–Nordstrӧm-like metric is obtained. The
resulting metric describing curvature singularity free in the
origin can smoothly interpolate between the ordinary
Reissner–Nordstrӧm metric at a large distance and the de
Sitter space–time structure at a short distance [39].

This approach is further used to obtain a new exact solution of
Einstein’s equation describing the rotating black hole [40]. The
Kerr-like metric is obtained to make sure no curvature ring
singularity and no anti-gravity Universe with causality
violation due to the existence of closed time-like world-lines is
encountered [40]. For the rotating charged black hole, following
the Newman–Janis algorithm and writing the metric in the
Boyer–Lindquist coordinates, we can obtain the line element
of a Kerr–Newman-like metric [41].

ds2 � Σ − a2sin2θ

ρ2
c2dt2 − ρ2

Σ dr2 − ρ2dθ2

+2acsin2θ(1 − Σ − a2sin2θ

ρ2
)dtdϕ

−[ρ2 + a2sin2θ(2 − Σ − a2sin2θ

ρ2
)]sin2θdϕ2, (18)

in which ρ2 has the same definition as given in Eq. 2, and Σ is
similar to Δ in Eq. 3 but r-dependent on RS and RQ, that is,

Σ � r2 − r
2Gm(r)

c2
+ a2 + KG

c4
q(r)2. (19)

Two r-dependent terms in Σ are

m(r) � M
c(32; r2

4l21
)

Γ(32) , (20)

and

q(r)2 � Q2

π
[c2(1

2
;
r2

4l22
) − r�

2
√

l2
c(1

2
;
r2

2l22
) +

�
2

√
r

l2
c(3

2
;
r2

4l22
)],
(21)

here the lower incomplete Gamma function is

c(n; r2
4l2
) � ∫ r2

4l2

0
tn−1e−tdt, (22)
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and Γ is the complete Gamma function giving the following
equation Γ (3/2) � ��

π
√

/2. The place of the event horizons rH � rH
(M,Q, a) is determined by 1/grr � 0 or Σ(rH) � 0. If we focus on the
gravitational effect and ignore the tiny mass outside the black
hole, then the original Kerr–Newman metric can be used to
discuss the problem of the speed of light we are interested here.
This metric naturally changes to the ordinary Kerr–Newman
metric at r > �rH. According to Eq. 16, the mass of the black hole
must be less than M

4π ∫rH

0
drr2ρl1(r)<M. (23)

It means there is some part of the black hole outside the event
horizon which is

4πM∫∞

rH

drr2
1

(4πl21)3/2 exp( − r2

4l21
)> 0. (24)

This kind of black hole connects with the space outside of the
event horizon. One possible way to cure this problem is to adopt
the mass of the black hole totally within the event horizon or the
outer one if there are two event horizons. In this metric, by
calculating the Ricci scalar and Kretschmann invariant, it shows
that the noncommutative effect erases the singularity at the
origin.

All above mentioned research studies [37–41] are deduced
from the mathematical viewpoint to solve unreasonable features
such as the curvature singularity. They are mathematical
deductions without any physical assumptions of material
structures. This mass distribution is an ideal distribution and,
in reality, most stellar bodies show deviations of the mass density
distribution from spherically symmetric distributions. It may still
work in some situations. However, the real material structure
shall also be considered for discussing the possibility of the black
hole formation. Recently, experiments [42] showed that the
pressure inside the proton is as high as 1035 Pa, which is
10 times greater than the core pressure of a neutron star. Such
a strong pressure inside the proton indicates that the proton has a
great ability to withstand the squeeze of gravity, so gravity
collapse becomes a questionable problem. Thus, we must
reconsider the internal structure of the black hole. According
to the estimated mass of the observable Universe [43], the average
mass–energy equivalence of the observable Universe is about 1.3
× 1070 J. From the viewpoint of Coulomb’s interaction, to form a
charged sphere, a lot of work needs to be done. The self-energy
and the work done to move 2 × 1030 C electrons into a 1-m-radius
spherical region from an infinite far place, can be
approximated as

Eself � 3
5
(8.987 × 109)(2 × 1030)2

1
� 2.16 × 1070 J. (25)

In theory, we cannot shrink 2 × 1030 C electrons into a
spherical region with a radius less than 1 m, even if we use all
the observable energy of the Universe. The effect of quantum
electrodynamics holds Coulomb’s law still useful in this case, and
some corrections of the many-particle effect can be ignored here.
As we know, a black hole cannot get so much energy to shrink

electrons into a very small space, therefore, in this case, the inside
of the charged black hole is a finite-sized nucleus.

Actually, the brief summary mentioned above from some
references gives a reliable precondition to study our problem.
Especially, Eqs. 18, 19 are much close to the ideas we introduce
here, although they are based on the Gaussian distributions of
mass and charge. The difference is that we directly determine the
ranges of mass and charge at each radial position inside the black
hole by confirming the absence of mathematical divergence
everywhere. In the following section, we introduce the finite-
sized nucleus inside the black hole to provide some conditions for
the mass and charge distributions inside the black hole.

THE JUDGMENT OF THE SUPERLUMINAL
REQUIREMENTS FROM THE VELOCITY
COMPONENT dr/dt OF LIGHT
According to Eq. 4, when we discuss the speed of light in the
radial direction, the other velocity components are found to be
zero. This choice is a convenient way to discuss the superluminal
conditions. The rule used here is also applied to discuss other
velocity components individually. We first focus on the dr/dt
velocity component to check whether the superluminal
phenomenon of light exists or not. The radial motion confined
to the equatorial plane has been considered in the rotating black
hole [46]. When an observer rests in a reference frame such as on
Earth or the place with very weak gravitation, Eq. 1 provides the
time relationship between proper time and coordinate time

dτ2 � (Δ − a2sin2θ)
ρ2

dt2. (26)

According to the equivalence principle in the theory of general
relativity, the time dilation requires the coefficient of the dt2 less
than one which gives rise to the following condition

r>R2
Q/RS. (27)

The range for this requirement also exists between 0 and RS,
and considering Eq. 11 at r � RS it requires

R2
S >R2

Q > 0. (28)

When r > RS, the time dilation automatically satisfies Eq. 28
because it gives the maximum of RQ less than RS. However, it seems
that Eq. 27 is not well-defined for the region R2

Q/RS > r ≥ 0. It is for
this reason that we adopt a singularity at the center of the black hole
where all mass and charges gather. When we use the model of a
finite-sized nucleus in the black hole, Coulomb’s repulsive force as
well as the strong interaction makes all particles non-shrinkable to a
singularity, and the problem can be solved by establishing the charge
distribution between 0 and RS. Then, RQ is a function of r and θ
related to the totally enclosed charges at (r,θ), that is,

RQ � RQ(r, θ). (29)

This assumption is the same as the concept of the Gaussian
charge cloud given inEqs. 17, 21. Except for the previous discussions
that the Gaussian charge cloud as given in Eq. 17 inside the charged

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 7016195

Pei Superluminal Phenomenon Near Kerr-Newman Gravity

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


black holes is used in some research [39, 41], in this article, Eqs. 8, 9
also support this assumption. It also means that a is a function of
(r,θ) between 0 and RS which might be due to the distribution of its
mass M. From the viewpoint of the rotational movement, Eq. 29 is
reasonable for a rotationally charged black hole. It means that the
charge distributions in Eq. 29 have to ensure Eq. 27 between 0 and
RS correctly and the time dilation is still correct for r ≥ 0. Using r �
αRS with 0<α<1, then Eq. 7 becomes

(R2
Q + a2cos2θ)/(α − α2)>R2

S. (30)

This inequality holds true for all θ. For very small a, combing
Eq. 27 with Eq. 30 gives

α>R2
Q/R

2
S > (α − α2). (31)

According to Eq. 31, it reveals the minimum and maximum of
the charge distribution varying with the radial distance r form r �
0 to r � Rs as shown in Figures 2A,B. Equation 31 extends the
Gaussian profile of the charge clouds to more general cases which
satisfies more distribution possibilities inside the charged black
holes, not only the choice of the Gaussian charge cloud [39, 41].

If the superluminal phenomenon occurs, it means (drdt)> c.
Then according to the dr/dt term in Eq. 4, it gives the following
requirement

Δ(Δ − a2sin2θ)
ρ4

> 1. (32)

Because ρ4 > 0, it becomes

(Δ2 − Δa2sin2θ − ρ4)> 0. (33)

Substituting Eqs. 2, 3 into Eq. 33 gives the following relation

0< 2r2( − rRS + R2
Q) + r2a2sin2θ + r2R2

S − 2rRSR
2
Q + R4

Q

+(a2 + a2cos2θ)( − rRS + R2
Q) + a4cos2θsin2θ.

(34)

Further rearranging Eq. 34, we have

( − rRS + R2
Q + a2sin2θ/2)(2r2 − rRS + R2

Q + a2/2 + 3a2cos2θ/2)
> a4sin4θ/4, (35a)

or

(rRS − R2
Q − a2sin2θ/2)(2r2 − rRS + R2

Q + a2/2 + 3a2cos2θ/2)
< − a4sin4θ/4. (35b)

This inequality allows us to discuss the range for the
occurrence of the superluminal phenomenon. First, the case at
θ � 0 or π is discussed, then Eq. 33 becomes

( − rRS + R2
Q)(2r2 − rRS + 2a2 + R2

Q)> 0. (36)

The solutions of Eq. 36 are

−rRS + R2
Q > 0 (37a)

and

2r2 − rRS + 2a2 + R2
Q > 0. (37b)

or

−rRS + R2
Q < 0 (38a)

and

2r2 − rRS + 2a2 + R2
Q < 0. (38b)

From Eqs. 37a, 37b, it gives the ranges of r that

R2
Q/RS > r, (39a)

r<
RS − [R2

S − 8(2a2 + R2
Q)]1/2

4
, (39b)

r>
RS + [R2

S − 8(2a2 + R2
Q)]1/2

4
, (39c)

FIGURE 2 | (A) Minimal distribution of RQ and (B) the maximal distribution of RQ varying with the radial distance r for very small a. The color bar is in units of RS.
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accompanied with the condition in the square root due to the
real r

R2
S ≥ 8(R2

Q + 2a2). (40)

However, Eq. 39a does not satisfy the requirement in Eq. 27,
and Eq. 40 obviously violates Eq. 13 at r � RS/2 so we have to look
for the other solution. Then, Eqs. 38a, 38b give other ranges for
the superluminal phenomenon

R2
Q/RS < r, (41a)

and

RS − [R2
S − 8(2a2 + R2

Q)]1/2
4

< r<
RS + [R2

S − 8(2a2 + R2
Q)]1/2

4
,

(41b)

with the same condition shown in Eq. 40. Both the
abovementioned solutions for r cannot give satisfied ranges
simultaneously. To sum up, the discussions from Eqs. 32–40,
41a, 41b are for the requirements and solutions of vr

2, not vr.
Then we discuss this phenomenon directly from the

expression of the only velocity component (dr/dt) term
obtained from Eq. 4. This term is as follows

vr,pole � dr
dt

∣∣∣∣∣∣∣θ�0,π � ±c r
2 − rRS + a2 + R2

Q

r2 + a2
. (42)

There are two expressions for (dr/dt), “+” One means light
leaving away from the center of the black hole, and the symbol
“−” means light propagating toward the center of the black hole.
Therefore, the superluminal solution leaving away the center
satisfies the condition R2

Q/RS > r. However, it still violates the
requirement given in Eqs. 27, 28, gives r < RS in Eq. 42. It means
that the superluminal phenomenon does not take place when
light leaves away from the center of the black hole at θ � 0 or π.
The other superluminal solution toward the center has the same r
condition that the superluminal phenomenon also does not take
place when light propagates toward the center of the black hole at
θ � 0 or π.

Next, Eq. 34 is discussed for any θ situations. A tricky way to
discuss Eq. 34 is to define

a4sin4θ/4 � (αa2)(βa2). (43)

Then Eq. 34 can be directly divided into two terms

( − rRS + R2
Q + a2sin2θ/2)≥ αa2, (44)

and

(2r2 − rRS + R2
Q + a2/2 + 3a2cos2θ/2)≥ βa2. (45)

Equation 44 Gives the Range for the Superluminal
Phenomenon

r< [R2
Q + a2(sin2θ/2 − α)]/RS. (46)

When Eq. 46 combines with Eq. 27, the range of r for the
superluminal phenomenon is given as follows

R2
Q/RS ≤ r< [R2

Q + a2(sin2θ/2 − α)]/RS. (47)

It means that the superluminal phenomenon possibly occurs
when this condition given in Eq. 47 is satisfied. Then, Eq. 47
further gives

sin2θ/2 − α> 0, (48a)

or

sin2θ/2> α> 0. (48b)

In Eq. 48b, the first condition of α is defined. Meanwhile, the
first condition of β is given by

β> sin2θ/2. (49)

In Eq. 45, it gives the second condition of β between RQ, a, and
RS for the superluminal phenomenon

[8(a2/2 + 3a2cos2θ/2 + R2
Q) − R2

S]/8> βa2. (50)

Meanwhile, it also gives the second condition of α using Eqs.
43, 49, that is,

2a4sin4θ/[8(a2/2 + 3a2cos2θ/2 + R2
Q) − R2

S]< αa2. (51)

Combining 49 with 50, and 48b with 51, they give limited
conditions for α and β , respectively

[8(a2/2 + 3a2cos2θ/2 + R2
Q) − R2

S]/8a2 > β> sin2θ/2, (52)

and

sin2θ/2> α> 2a2sin4θ/[8(a2/2 + 3a2cos2θ/2 + R2
Q) − R2

S]. (53)

Furthermore, comparing the upper limitation with the lower
limitation in Eq. 52 gives another condition for the other
requirement of R2

Q

8(2a2cos2θ + R2
Q)>R2

S. (54)

This requirement is necessary to consider the superluminal
phenomenon. After discussing the abovementioned conditions,
the upper limitation of r can be obtained. Considering RS ∼ RQ,
Eq. 47 reveals that the superluminal phenomena can be observed
in the range

RS < r<RS + a2sin2θ/2RS, (55)

which is dependent on θ. An example of the region where the
superluminal phenomenon occurs for a black hole with a � 2RS
and RQ � 0.999RS is given in Figure 3A, where the deep blue
region is a spherical region with a radius of RS and the yellow
region means the region for the occurrence of the superluminal
phenomena. It means that the region of r ≥ RS is discussed, and RS
is the boundary because it exists in the case of which the event
horizon is close to a spherical surface when both a << RS and RQ
<< RS. The furthest distance from the center of the black hole is
given in Figure 3A is about 3RS at the equator of θ � π/2. All the
rotating axes as given in Figures 3A–D are parallel to the y-axis.
According to Eq. 4, the speed distribution of light in the case of
(dr/dt, 0, 0) is shown in Figure 3B where the unit of the color bar

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 7016197

Pei Superluminal Phenomenon Near Kerr-Newman Gravity

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


is c. The velocity distribution matches the region of the
superluminal occurrence as given in Figure 3A and the
maximum is about 2.20c at r � RS and θ � π/2. When a is
increased to 8RS and RQ is held at 0.999RS, the speed distribution
of light is as shown in Figure 3C. The maximum velocity of light
is about 8c at r � RS and θ � π/2, and the furthest distance of the
superluminal phenomenon is 33RS from the center of the black
hole as shown in Figure 3C. For the case of a � 20RS and RQ �
0.999RS, the speed distribution of light is as shown in Figure 3D.
The maximum speed of light is about 20c at r � RS and θ � π/2,
and the farthest distance of the superluminal phenomenon is
201RS from the center of the black hole in Figure 3D. From
Figures 3C,D, the occurrences of the high speed of light is
centered more and more toward the region near θ � π/2.

Our discussion is using the Kerr–Newman metric that is a
space–time solution in the theory of general relativity. So,
considering light bending near the high-speed rotational
supermassive black holes, it possibly explains some

astronomical observations about the superluminal phenomena
from the relativistically massive jet [1, 3–6]. This result can be also
extended to some supermassive stars with very high density, large
a, and RQ.

THE JUDGMENT OF THE SUPERLUMINAL
REQUIREMENTS FOR THE VELOCITY
COMPONENT r(dθ/dt) OF LIGHT
The second study case is the velocity component rdθ/dt term
given in Eq. 4. All other velocity components are zero. This term
is easy to check whether the superluminal phenomenon exists or
not. Assuming that it happens, then

r2(Δ − a2sin2θ)
ρ4

> 1. (56)

Expanding the abovementioned equation, we have

FIGURE 3 | (A) Superluminal region is denoted by yellow. The center of the picture is a spherical region with a radius ofRS (deep blue color). In this case, a � 2RS and
RQ � 0.999RS. The maximum distance for the superluminal phenomenon from the center of the black hole is 3RS at θ � π/2. (B) Speed distribution of light at a � 2RS and
RQ � 0.999RS. (C) Speed distribution of light at a � 8RS and RQ � 0.999RS. The maximum distance of the superluminal phenomenon is 33RS from the center of the black
hole in this case. (D) Speed distribution at a � 20RS and RQ � 0.999RS. The maximum distance of the superluminal phenomenon is 201RS from the center of the
black hole in this case. In all these cases, the rotational axes are parallel to the y-axis, and the color bars show in units of c.
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r2( − rRS + R2
Q) − r2a2cos2θ − a4cos4θ > 0. (57)

It can be further rearranged as follows

( − rRS + R2
Q − a2cos2θ)r2 > a4cos4θ. (58)

Similar to the discussions of the velocity component dr/dt, a
tricky way is to assume that

α2β � cos4θ. (59)

Then, Eq. 58 gives the requirements of r as follows

r2 > α2a2, (60)

−rRS + R2
Q − a2cos2θ > βa2. (61)

Combining Eq. 61 with 27, and considering the condition of
Eq. 8, the range of r for the occurrence of the superluminal
phenomenon is given by the following equation

R2
Q/RS < r< (R2

Q − a2cos2θ − βa2)/RS.. (62)

Because β≥ 0, this requirement does not satisfy. Eq. 62means
that in this case of the velocity component rdθ/dt the
superluminal phenomenon does not exist shown in the Boyer-
Lindquist coordinates. However, this velocity component is
possibly superluminal in the Cartesian coordinates at the
condition in Eq. 27.

THE JUDGMENT OF THE SUPERLUMINAL
REQUIREMENTS FOR THE VELOCITY
COMPONENT rsinθ(dϕ/dt) OF LIGHT
The velocity component rsin θ(dϕ/dt) term is the third case
for discussing the possibility of the superluminal
phenomenon. All other velocity components are zero.
From Eq. 4, the velocity equation for this case is given
as follows

−(Δa2sin2θ − (r2 + a2)2)
r2(Δ − a2sin2θ) (rsinθ dϕ

dt
)2

− 2ac( − Δ + (r2 + a2))sinθ
r(Δ − a2sin2θ) (rsinθ dϕ

dt
)

� c2. (63)

Next, we replace rsin θ(dϕ/dt) with hc, where h is a real value.
Then the equation becomes

−(Δa2sin2θ − (r2 + a2)2)
r2(Δ − a2sin2θ) h2 − 2a( − Δ + (r2 + a2))sinθ

r(Δ − a2sin2θ) h � 1.

(64)

If the superluminal phenomenon takes place, it means h > 1.
Eq. 64 is the second-order equation in the general form
Ah2 + Bh + C � 0. It requires 0≤B2 − 4AC to make sure the
real solutions exists. According to this, we have the following
equation

0≤
{2a[ − Δ + (r2 + a2)]sinθ}2 − 4[Δa2sin2θ − (r2 + a2)2](Δ − a2sin2θ)

r2(Δ − a2sin2θ)2
(65)

After rearrangement, it gives

0≤
4(r2 + a2 − rRS + R2

Q)(r2 + a2cos2θ)2
r2(Δ − a2sin2θ)2 , (66a)

or

0≤
4Δρ4

r2(Δ − a2sin2θ)2. (66b)

Because ρ4 ≥ 0 as well as the denominator
r2(Δ − a2sin2θ)2 ≥ 0, it requires Δ≥ 0 and r > 0. The former
condition has been shown in Eq. 8. Equation 66bmakes sure that
Eq. 64 has real solutions, and then we can further discuss whether
the superluminal phenomenon exists or not in this case.

In the following equation, we solve Eq. 64 directly to obtain
two solutions of h, that is,

h∓ �
−2a(−Δ+(r2+a2))sinθ

r(Δ−a2sin2θ) ± 2(r2+a2−rRS+R2
Q)1/2(r2+a2cos2θ)

r(Δ−a2sin2θ)
2
(Δa2sin2θ−(r2+a2)2)

r2(Δ−a2sin2θ)
� −ra( − Δ + (r2 + a2))sinθ ± r (r2 + a2 − rRS + R2

Q)1/2(r2 + a2cos2θ)
(Δa2sin2θ − (r2 + a2)2)

� ra(rRS − R2
Q)sinθ ∓ r (r2 + a2 − rRS + R2

Q)1/2(r2 + a2cos2θ)
(r2 + a2)(r2 + a2cos2θ) + (rRS − R2

Q)a2sin2θ
.

(67)
It can be further expressed as

h± � ±r(r2 + a2 − rRS + R2
Q)1/2

r2 + a2

+ r(rRS − R2
Q)a sin θ 1 ∓ (r2 + a2 − rRS + R2

Q)1/2a sin θ/(r2 + a2)
(r2 + a2)(r2 + a2cos2θ) + (rRS − R2

Q)a2sin2θ
,

(68)
The other two expressions of h± are

h± � r

asinθ

+ r(r2 +a2)(r2 +a2cos2θ)
asinθ

±(r2 +a2 − rRS +R2
Q)1/2asinθ/(r2 +a2)−1

(r2 +a2)(r2 +a2cos2θ)+(rRS −R2
Q)a2sin2θ

.

(69)
Then, the original problem is changed to whether h can be

greater than one or not. Eq. 69 reveals a possible
situation for

r

a sin θ
> 1. (70)

However, we have to discuss it with the second-long term on
the right-hand side. Especially, this velocity component at sinθ �
0 in Eq. 69 is the same as the velocity component r (dθ/dt). The
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problem is not easy to deal with so we use the expression given in
Eq. 68 to judge the occurrence of the superluminal phenomenon.
When considering the solution for h+ >1, the requirement from
Eq. 68 is given as follows

r2(r2 + a2cos2θ)2(r2 + a2 − rRS + R2
Q)

−[(r2 + a2)(r2 + a2cos2θ) − ( − rRS + R2
Q)asinθ(r − asinθ)]2 > 0.

(71)

When sinθ∼0, this requirement becomes

−a2(r2 + a2)3 + ( − rRS + R2
Q)r2(r2 + a2)2 > 0. (72)

However, both terms on the left-hand side are negative
when r > RS, so the superluminal phenomenon does not occur
at r > RS when sinθ∼0. Next, we discuss all other cases of sin θ.
Through expanding and rearranging Eq. 71, it gives the
requirement

sinθ > 1
a(r − asinθ)

⎡⎢⎣a2(r2 + a2cos2θ)
2(rRS − R2

Q) + r2(r2 + a2cos2θ)
2(r2 + a2)

+ (rRS − R2
Q)a2sin2θ(r − asinθ)2

2(r2 + a2)(r2 + a2cos2θ)
⎤⎥⎦.

(73)

The three terms on the right-hand side of Eq. 73 are all
positive. According to the geometric inequality in which the first
term is equal to the third term, Eq. 73 can further simplify to the
strict condition

sinθ > 1
a(r − asinθ)

⎡⎢⎣a2(r2 + a2cos2θ)
2(rRS − R2

Q) + r2(r2 + a2cos2θ)
2(r2 + a2)

+ (rRS − R2
Q)a2sin2θ(r − asinθ)2

2(r2 + a2)(r2 + a2cos2θ)
⎤⎥⎦

≥
1

a(r − asinθ) [a
2sinθ(r − asinθ)

(r2 + a2)12 + r2(r2 + a2cos2θ)
2(r2 + a2) ]. (74)

It means the most possible place for the superluminal
phenomenon in this case is at sinθ �1. It also requires r >
asinθ in Eq. 74. This requirement needs three terms on the
right-hand side to be small enough. When we look at the pre-
factor on the right-hand side of Eq. 74, it gives the minimum
value when

a � r

2 sin θ
. (75)

Using sinθ �1 and combing the pre-factor, it gives the minimum

asinθ

(r2 + a2)1/2 +
1

a(r − asinθ)
r2(r2 + a2cos2θ)

2(r2 + a2) ≥
1�
5

√ + 8
5
> 1. (76)

It means that Eq. 76 does not satisfy Eq. 73 because sinθ ≤ 1
and the superluminal phenomenon does not occur in this case of
the velocity component rsin θ(dϕ/dt) at r > 0. But this conclusion
may be corrected when we consider this velocity component
Rsinθ(dϕdt) in the Cartesian coordinates.

THE MEANING OF THE SUPERLUMINAL
LIGHT

The faster-than-light photons have been discussed more than
four decades [44–52]. The photon effective action, from one-loop
vacuum polarization on a general curved space–time structure, has
been calculated according to its contribution in QED. The quantum
corrections to the local propagation of photons by introducing tidal
gravitational forces on the photons has been investigated. This
tidal gravitational effect depends explicitly on the local
curvature and different observers will see different tidal
effects according to their motion by the usual Lorentz
transformations on the Riemann curvature tensor [44, 45].
Such quantum corrections in the curved space–time structure
modify the characteristics of the photon propagation so as to
make photons travel at speeds greater than unity in some
cases. A superluminal low-frequency phase velocity for
photons [46, 49] is a result of vacuum polarization in QED
inducing interactions between the electromagnetic field and a
non-dynamical curved space–time structure [44–49].
Theoretically speaking, this effect is non-dispersive and
gauge invariant [44]. In quantum field theory, the pole in
the photon propagator in the local Lorentz frame is shifted
from k2 � 0 to k2+ασabkakb � 0 which depends explicitly on
the local curvature as mentioned previously [45, 50].

Then, the equation of motion for the electromagnetic field or
photon is determined by [44, 45].

δW

δAμ(x) � 0, (77)

here the effective action W is given by

W � W0 +W1 (78)

with

W0 � −1
4
∫ d4x

���−g√
Fμ]F

μ] (79)

and

Fμ] � zμA] − z]Aμ. (80)

The lowest term in the expansion for W1 is O (m−2) [44–51],
that is,

W1 � 1
m2

e

∫ d4x
���−g√ (aRFμ]F

μ] + bRμ]F
μσF]

σ + cRμ]στF
μ]Fστ

+ dDμF
μ]DσF

σ
]),

(81)

here gμ] � diag(1,−1,−1,−1), Rμ
]στ � Γμ]τ,σ − Γμ]σ,τ + ΓμλσΓ

λ
]τ

− Γλτ
μ
Γ]σ
μ
and me is the electron mass. The coefficients a, b,

and c may be obtained from the coupling of a graviton to two
on-mass shell photons in the flat space limit [44]. After
redundant calculations in the weak gravitational field limit,
we obtain a � −5α/720π, b � 26α/720π, and c � −2α/720π in
terms of the fine structure constant α as well as the modified
equation of motion for electromagnetic fields in gravity
[44–51].
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DμF
μ] + δW1

δA](x) � 0. (82)

The term involving the coefficient d influences W1 in a very
small way, so it can be omitted. Therefore, we obtain the
modified equation of motion for the electromagnetic field
[44–47, 50, 51].

DμF
μ] +Dμ[4aRFμ] + 2b(Rμ

σF
σ] − R]

σF
σμ) + 4cRμ]

στF
στ] � 0.

(83)

Generally speaking, the curvature is not isotropic so the
modified equation of motion given in Eq. 83 provides the
photon propagation differently in different directions [44]. By
using the geometrical-optics plane-wave approximation in a
gauge-invariant manner, Fμ] � fμ]e

iθ is assumed in the
derivations of the photon propagation where fμ] is a slowly
varying amplitude and θ the rapidly varying phase with kμ �
Dμθ corresponding to the photon momentum [45–51]. The
electromagnetic Bianchi identity further gives fμ] � kμa] −
k]aμ [44–48, 50, 51] where aμ specifies the direction of the
polarization of the photon [45–48, 50, 51]. After another
redundant calculation, it leads to a result that within the
weak-field approximation, a photon propagating parallel to the
gravitational wave has speed the same as c but the one
propagating in an antiparallel direction to the gravitational
wave has speed greater than c at certain situations [44]. Such a
propagation is non-dispersive, so the phase and group velocities
are the same [44]. It is also found out that the transverse photon
motion in the Schwarzschild metric, say kr � kθ � 0, gives

∣∣∣∣∣∣∣ ktk∅
∣∣∣∣∣∣∣ �
⎧⎪⎪⎨⎪⎪⎩1 + 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
3Rs
r3 ( α

90πm2
e
)

1 + Rs
r3 ( α

90πm2
e
)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭c. (84)

It means that the photon with radial polarization can travel
with a velocity greater than c. Therefore, at least one type of
photon has a speed greater than that of light in free space. The
quantum correction due to vacuum polarization in gravity acts as
a medium for the propagation of light [48]. However, such
gravitational birefringence in the plane-wave and
Schwarzschild metrics should be detectable or measurable on
Earth. Another similar result is obtained from the
Reissner–Nordstrӧm metric for characterizing a charged black
hole [45]. According to the anisotropy of the background
gravitational field and electromagnetic field, the vacuum
polarization effect changes the photon propagation in the
Reissner–Nordstrӧm space–time structure. The gravitational
field may increase or decrease the photon velocity from c
depending on its direction and polarization. For a black hole
charging approximately equal to the accretion limit, superluminal
occurrence is possible for photons propagating in the orbital
direction at or beyond the horizon [45].

The light cone for radially directed photons in both the
Schwarzschild and Reissner–Nordstrӧm geometries remains
unperturbed [44–46]. For the Kerr space–time structure near
a rotating black hole, this is no longer true and photons
traveling on radial trajectories may have velocities differing

from unity, either greater or smaller than the usual velocity
of light c depending on the transverse polarization [46]. The
orbital motions of photons have similar results that
photons may have velocity shifts depending on their motions
with or against the direction of spin [46]. Furthermore, the
velocity shifts of photons may exist in the radial motion for
any direction except along the polar axis [46]. In the dilation
black hole, the dilatory effect is crucial in determining this
‘‘faster-than-light’’ phenomenon when the photon is near the
event horizon in the extreme or near-extreme cases [47].
The light-cone condition can be also modified regardless of
the spherically symmetric spacetimes [47]. Both results of the
Kerr and dilation black holes are different from the cases of
Schwarzschild and Reissner–Nordstrӧm black holes in
which the light-cone conditions for the radial photons are
unchanged [46, 47].

In summary, all superluminal phenomena discussed in [Refs.
44–52] exist in the local Lorentz frame. Vacuum polarization in
QED can induce a superluminal low-frequency phase velocity for
photons propagating in a non-dynamical, curved space–time
structure [46, 49]. However, the most serious question we
have to ask is whether the space-like photon momentum given
by the light cone condition necessarily involves the problem of
causal paradox [45]. Another key question is whether this
superluminal propagation is observable in principle [45].
About the first question, it has even been mentioned that the
tidal effects seem to strangely alter the causality structure of the
manifold [44]. Because of the quantum corrections on photons in
the curved space–time structure, it even gives an amazing result
that in certain reference frames, photons could return to their
source of origin before they were produced there based on the
possibility of the closed time-like trajectories [51]. Therefore, the
authors proposed that either the time machine is possible in
principle or something is wrong in the superluminal propagation
of photons due to quantum corrections of one-loop vacuum
polarization [52]. When we calculate the quantum corrections in
the curved space–time structure, it is clearly pointed out that one-
loop vacuum polarization in QED is an effect in which the photon
exists for part of the time as a virtual e−-e+ pair [44, 47, 51]. Two
schematic pictures also clearly describe this idea of a virtual e−-e+

pair occurring in the curved space–time structure as given in
Figures 1, 3 [49]. Due to this, we have to face a really serious
problem whether the vacuum polarization in the curved
space–time structure always takes place or just exists at certain
time by random. In fact, even the speed modification of light
exists; this randomness of the occurring virtual e−-e+ pair causes
the faster-than-light phenomenon to take place randomly. Thus,
the superluminal light based on quantum corrections due to
vacuum polarization in the curved space–time structure becomes
unexpected and occasionally so as to not be observed anytime.
Especially, these faster-than-light photons show explicit effect in
the local reference frame when they are very close to the black
hole. This is exactly the second question we must ask whether
such faster-than-light phenomena or gravitational birefringence
are observable?

Therefore, our contributions are to derive the superluminal
phenomena of light observed in the reference frame far away
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from the supergravitational sources such as black holes, such as
on Earth, not the same as the abovementioned discussions in the
local Lorentz frame. As we know, when light propagates in a
strong gravitational field, the speed of light is different from that
in the free space if the measurement time is the coordinate time t,
and not the local proper time τ. We have seen the expression in
the Schwarzschild metric [33–36, 53, 54] where the radial speed of
light vr at the black hole is [33–36].

vr � dr

dt
� (1 − Rs

r
)c (85)

observed by the far-away observer in the no-gravitational field in
which the Schwarzschild radius is RS � 2GM/c2. Then, the
experiencing time t for light along the radial direction from
the initial place r0 to the final place r (r0>r), described by an
observer far away the black hole, is [53].

t(r) � ∫r

r0

1

c(1 − 2GM
c2r ) dr �

r0 − r

c
+ 2GM

c3
ln(r0 − 2GM

c2

r − 2GM
c2
). (86)

It means that the time taken for light to reach the event
horizon from any place r0 is infinite observing far away from the
black hole. However, this time interval described by total proper
time in the local reference frames near the black hole is [54].

τ(r) � ∫r

r0

1

c(1 − 2GM
c2r )1/2 dτ � ⎡⎣r0

c
(1 − 2GM

c2r0
)1/2

− r

c
(1 − 2GM

c2r
)1/2⎤⎦

+ (2GM
c3
) ln r1/20 + (r0 − 2GM

c2 )1/2
r1/2 + (r − 2GM

c2 )1/2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ (87)

Total proper time τ is surprisingly finite and much different
from the time t observed or measured at a place far away the black
hole, such as on Earth. These two different calculation results reveal
the observations which are not the same from different observers,
and they have been calculated almost one hundred years ago. It is a
common truth that different observers have different observations
no matter in the theory of special relativity or general relativity.
When we want to discuss the propagation of light, we have to
choose the appropriate observer in which kind of reference frame.
All the superluminal phenomena reported before were observed
from Earth [1, 3–6], so we have to use Earth’s viewpoints to explain
why we can observe the superluminal phenomena near some
super-gravitational sources such as black holes. According to
our discussions, the speed of light may be larger than c if we
use the coordinate time t and not the local proper time τ, to define
its radial speed vr � dr/dt, not dr/dτ. Based on this definition, we
call the superluminal phenomenon of light when the speed of light
like vr is more than c in the supergravity such as a Kerr–Newman
black hole. Actually, the speed of light in the local Lorentz frame is
still vr � dr/dτ � c, so the Lorentz invariance still holds true in our
discussions. Therefore, causality is not broken, and we do not need
to worry about the time machine issue.

Speaking more clearly, all observations on Earth or the
satellites around the Earth use Earth’s time to record the
propagation of light near the super-gravitational sources such
as the calculation in Eq. 85, not Eq. 86 calculating in the local
frames. Therefore, we have to deduce the propagation of light

near the super-gravitational sources such as some black holes but
observing on Earth to explain the observations of the
superluminal phenomena. Our discussion is using the
Kerr–Newman metric that is a space–time solution in the
theory of general relativity. Considering the light propagation
near the rotational and charged super-gravitational sources, it can
explain some astronomical observations about the superluminal
phenomena of the relativistically massive jets [1, 3–6]. The
explanation is that the radial speeds of light or the main parts
along the radial direction are superluminal near the super-
gravitational sources such as black holes when we use Earth’s
time to describe its propagation. For example, we can setup an
imaginary experiment to measure the speed of light. When one
light signal is emitted, after propagating a distance, it is received
by a detector. Suppose this distance to be ten light years and the
detecting Earth time is 1 year, according to these two data, the
speed of light during this period is averagely 10 c. Due to such
superluminal light, the relativistically massive jets can exhibit
superluminal phenomena observed on Earth because the light
signal larger than c reveals the relativistically massive jets moving
faster than light. This result can be applicable on some super-
gravitational sources with very high density, large rotation a, and
large charges RQ. All mathematical derivations still obey the
Lorentz invariance in the local instantaneous frame, and we
prove that the speed of light along the radial direction is
superluminal at some conditions. The superluminal
phenomenon is the observed truth in astronomy and its
physics needs us to clarify and explain carefully. One thing
necessarily mentioned again is that all observations were
finished on Earth or the satellites around Earth, so the
measured time is Earth’s time where we define 1 s is the
period for light traveling 299,792,458 m in vacuum on Earth.

Our discussions show that only the case of the velocity of
(dr/dt, 0, and 0) for light can possibly occur the superluminal
phenomenon at θ>0. The maximum speed of light is much
related to the rotational term a and the charged term RQ of a
black hole. The results are at least reasonable at two poles and
in the equatorial plane. The other two cases of the velocities of
(0, rdθ/dt, and 0) and (0, 0, and rsinθdϕ/dt) for light do not
have the possibility of the superluminal phenomenon.
However, light can have at least one velocity component in
the vicinity of a black hole. Generally speaking, the
superluminal phenomenon also possibly occurs in these
cases of (dr/dt, rdθ/dt, and 0), (dr/dt, 0, and rsinθdϕ/dt), or
(dr/dt, rdθ/dt, and rsinθdϕ/dt). In those cases, the radial
velocity component is dominant for the occurrences of the
superluminal phenomena.

CONCLUSION

The superluminal phenomenon is an attracted research, and this
phenomenon can be discussed based on the theory of general
relativity with a given space–time structure. In this research, the
Kerr–Newman metric is chosen for describing the space–time
structure at the rotating and charged black hole and its vicinity.
The results are also applicable for the super-gravitational sources.
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Our way is much close to the previous ideas [41] shown in Eqs.
18, 19, although they are based on the Gaussian distributions of
mass and charge. The difference is that we directly determine the
ranges of mass and charge at each radial position inside the black
hole by confirming the absence of mathematical divergence
everywhere. Our results extend to more general cases, not only
the Gaussian distributions of mass and charge inside the black
hole. Especially, the region we are interested in is outside the
event horizon where the Kerr–Newman-like metric [41] changes
to the ordinary Kerr–Newman metric what we use here.
Therefore, no singularity appears in our discussions. The
Kerr–Newman metric considers both a and RQ terms that all
kinds of the black hole at present knowledge are included.
Because the black hole possesses strong gravity, it is a good
astronomical example for studying the superluminal
phenomenon in the Boyer-Lindquist coordinates. According to
the Kerr–Newman metric, the geodesic as well as the velocity
components of light can be established. In order to study this
phenomenon, three velocity components are independently
discussed, and they are (dr/dt, 0, and 0), (0, rdθ/dt, and 0),
and (0, 0, and rsinθdϕ/dt). From our analysis, only the case of (dr/
dt, 0, and 0) has the possibility of the occurrence of the
superluminal phenomenon and an example is shown between
RS and [R2

Q + (a2sin2θ)/2]/RS at sinθ > 0 when RS ∼ RQ. The
result reveals that the superluminal phenomenon can possibly
happen outside the black hole from the observer at infinity or in a
reference frame with very weak gravity. The maximum speed of
light and the range of the superluminal phenomenon are much
related to the rotational term a and the charged term RQ of a black
hole, respectively. The results are at least reasonable at two poles
and in the equatorial plane when light propagates in the radial
direction. Although the superluminal phenomenon is discussed
in the Boyer-Lindquist coordinates, all the results are easy to be
transformed or discussed in the Cartesian coordinates (x, y, z, t)
by setting R2 � x2+y2+z2 � r2+a2sin2θ and rdr � RdR in the
velocity of light. The conclusions of the superluminal
phenomenon about the three velocity components (dR/dt,

Rdθ/dt, Rsinθdϕ/dt) are different from them in the Boyer-
Lindquist coordinates. Generally speaking, the superluminal
phenomena for light can possibly occur in these cases that the
radial velocity dr/dt is dominant and the other two velocity
components are comparably small or zero. Furthermore, the
superluminal phenomenon here just means the results of the
measurements from an observer in a reference frame such as on
Earth. This conclusion can also be applied on some stars with very
high density, large a, and big RQ. The result can be also applied on
the super-gravitational sources. According to the above results, it
is also applicable to the massive particles. Once the massive
particles fully or most partly moving along the radial direction
near some quasars or black holes [1,3-6], it is possibly to observe
their superluminal phenomena on the Earth, as long as their
speeds in the spontaneously local reference frames are very close
to c.
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