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Lipids have an important role in the complex lubrication of articulating joints, however
changes in lipid phase behavior that occur owing to mechanical confinement are not well
understood. Here, a surface force-type apparatus has been combined with neutron
reflectometry to measure confinement-induced changes in the structure of lipids, the
major surface-active component of the lubricant in articulating joints. The same
incompressible state was accessed under low uniaxial stress (1 bar), irrespective of
whether the lipids had started out unconfined above or below the Lα phase transition,
and irrespective of whether they were fully or partially hydrated. In this incompressible
state, the lipid component had thickened indicating extension and rearrangement of the
lipid chains in response to the applied stress. The small amount of water remaining
between each lipid bilayer was found to be similar for all chain lengths and starting phases.
This represents the first structural evidence of the tightly bound water layer at the
headgroups, which is required for hydration lubrication under load.
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INTRODUCTION

In contrast to mechanical devices, which are mostly lubricated with oil, nature lubricates exclusively
with water. In fact, water-based lubrication presents several advantages as water is nontoxic,
abundant and an effective coolant, but water alone is a poor lubricant. It has been extensively
shown that nature overcomes this with the addition of biological molecules, with the ability to modify
surfaces to make them far more lubricating at slow speeds and under the high loads experienced in
human joints [1, 2]. However, the mechanisms underlying biological aqueous lubrication in confined
conditions are far from being well understood.

There have been a number of studies on the role of both lubricin and hyaluronic acid (HA) within
the synovial fluid for lubrication [3, 4] and antifouling [5]. With increasing complexity,
phospholipids have been included with the lubricin and HA in surface force measurements [6, 7].
A lowering of the friction coefficient was found when all components were included, with the
phospholipids interpreted to be located on the outer surface of the lubricin-HA layer. It is still unclear
exactly in what form the phospholipids within the synovial fluid exist, they could form vesicles [6, 8],
alternatively some authors propose that a single surfactant like layer forms on each cartilage surface
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[6, 9] or they could form bilayers or multilayers on the surfaces.
The Hills model focusses on the role of the phospholipids at the
articular surface of cartilage, it describes phospholipids to be the
major “solid” component of the lubricant in articulating joints
[10–12], where the fluid component is water. The breakdown of
this complex lubricating layer can contribute to wear of the
cartilage and eventually osteoarthritis [13]. Thus, the structural
study of these lipid constituents under confinement can offer
insight into their role in lubrication.

Investigations into the force response of individual lipids
under confinement is well established using the surface force
apparatus (SFA) [14–17]. In particular, Orozco-Alcaraz and Kuhl
[14] applied the technique to lipids while using silica as the
substrate, to study symmetric DPPC-DPPC interactions and
understand the influence of substrate charge on the bilayer
interactions in confinement. Although the SFA provides a very
sensitive measurement of forces in friction and confinement [18,
19], and can be used to infer the interactions between bilayers [15,
20], it is not possible to measure the structure simultaneously
while the confinement is applied. Another confinement approach
is pipette aspiration, which showed that the area of saturated
lipids expands with applied confinement [21]. While the increase
in area is measured directly, the full structure cannot be
elucidated using the technique. Other pressure related
approaches to confinement have also been used including
osmotic pressure probed using small angle X-ray scattering
[22, 23], and also through molecular dynamics simulations
[24, 25]. X-ray and neutron reflectometry have proven
especially powerful tools in the study of biomembranes in
order to measure structure. For example, they can be used to
determine phase behavior, layer spacing and volumes occupied by
headgroups [26, 27]. These scattering approaches are particularly
useful for the study of confinement [28]. Here, we utilize a new
type of confinement apparatus [29–32] combined with in situ
neutron reflectivity. It is important to mention that unlike a
traditional SFA the samples are equilibrated at a small number of
set pressures, with the distance between the confining surfaces,
and the structure and hydration of the lipids, then determined by
neutron reflectivity. In our experiments we study zwitterionic
lipid stacks as a model for articulating cartilage surfaces under
uniaxial confinement. Thus, direct measurement of the structure
during confinement is undertaken.

METHODS

Materials: The lipids used were a series of saturated phosphatidyl
choline lipids with increasing hydrocarbon chain length; 1,2-
dilauroyl-sn-glycero-3-phosphocholine (DLPC, 12:0, Tm �
−2°C), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC,
14:0, Tm � 24°C), 1,2-palmitoyl-snglycero-3-phosphocholine
(DPPC, 16:0, Tm � 41°C), 1,2-distearoyl-sn-glycero-3-
phosphocholine (DSPC, 18:0, Tm � 55°C) and one with an
unsaturated chain 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC, 18:1c9, Tm � −17°C). All lipids were purchased from
Avanti Polar Lipids Inc. (United States) distributed by
INstruchemie BV (Netherlands) and the transition

temperatures from the LIPIDAT NIST standard reference
database [33]. Chloroform (>99.9%, HPLC grade) and
deuterium oxide were supplied by Sigma Aldrich
(United Kingdom and France). Demineralised (Milli-Q) water
with a resistivity of 18.2 MΩ cm was used in cleaning the silicon
surfaces.

Sample preparation and experiment conditions: Samples
were prepared by spin coating onto 75 mm diameter silicon
blocks from a solution of 0.5% lipid in chloroform at
3000 RPM and annealed at 50°C in an oven for 1 h before use.
The silicon blocks were secured in the confinement apparatus,
Supplementary Figures S1 in Supporting Information (full
details [29]) and mounted vertically on the D17 reflectometer
[34]. D2O was used to hydrate the hydrogenous lipids. Two
different hydration methods were used: vapor hydration was
achieved by placing ∼2 ml of D2O inside the confinement cell
but not where it would directly touch the sample; full hydration
involved placing a few drops of D2O onto the surface of the
sample before inflating the flexible membrane against it to create
the confined geometry [35–37]. Owing to the vertical sample
geometry of the D17 reflectometer, fully hydrated samples could
not be measured without confinement applied, instead
measurements commenced at 1 bar of confinement. The vapor
hydrated samples reflectivity measurements were taken without
mechanical confinement (0 bar of confinement) before the
membrane was inflated and then measurements were taken
with 1, 3 and 5 bar applied [35–38]. With each confining
stress increase, reflectometry measurements were repeated
until the sample had equilibrated. A wide range in scattering
vector Q was achieved using three different reflection angles
between 0.4 and 2.8°. The size of the beam footprint on the sample
was kept constant at 2.5 cm2 × 2.5 cm2 by adjusting the pre-
sample slit sizes. Further details of the confinement cell, Melinex
properties and control measurements indicating the efficiency of
the apparatus for expelling D2O can be found reproduced in the
Supporting Information (Supplementary Figures S2) and in our
previous publication [29].

Model fitting: A layer model was used to fit the neutron
reflectometry data with the main repeat unit of a water layer and a
lipid layer. A parameter, Nk, was included to estimate the
variation in the number of bilayers in the lipid stack was used.
The full details of the model, how the final model was developed
and the parameters used are provided in the supporting
information.

RESULTS

It has been shown that zwitterionic phosphatidylcholine (PC)
lipids (>60% of all lipids) are a significant surface active (∼13%)
constituent of synovial fluid [5, 23], forming a stack of
approximately 3–7 bilayers at the cartilage surface [39]. We
model these surface lipids using stacks of lipid bilayers with
PC head groups and a range of saturated chain lengths from
dilauryl (12:0) to distearyl (18:0) chains; the lipids are spin coated
onto silicon substrates. These layers were hydrated within the
confinement sample environment using D2O vapor and the
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neutron reflection measurements made using the D17
reflectometer (ILL, Grenoble) [34] uniaxial stress increasing
from 1 to 5 bar (see [29], Supplementary Figures S1,
Supporting Information and below for further experimental
details).

Figure 1A shows the change in repeat spacing of the lipid
bilayer stack (defined on the schematic in Figure 2), calculated
from the Q position of the Bragg peak as an initial indication of
the trends, as each sample was confined (data shown in
Supporting Information, Supplementary Figures S4–S5). The
0 bar repeat distances were measured in situ prior to confinement
at ∼98% humidity. The values are similar but predictably slightly

lower than literature values for fully hydrated stacks [40–42]. In
most cases, the lipid stacks follow the trend of reducing their
repeat spacing in response to confinement, as expected due to a
loss of water from between the bilayers. However, for the DPPC
and DSPC samples heated to above their phase transition and
hence in the Lα phase, the opposite trend was observed and their
repeat spacing in fact increased significantly on confinement.
Further, in both cases repeat distances converge towards the same
values on confinement as they each had for the lower temperature
despite the different starting phases.

To extract further information from the neutron reflectivity
curves, a layer model was used to fit the data. In the model chosen
the lipid head and tail regions were combined into a layer with the
water in between the lipids considered as a second layer so the
repeat unit was one lipid bilayer and one water layer (Figure 2).
Each lipid bilayer was defined by the same three parameters;
thickness, neutron scattering length density (SLD) and roughness
and the same three parameters were defined for the water layer
between the lipid head groups. The outermost roughness and the
variation in the exact number of bilayers across the surface of the
sample were also taken into account during fitting (see also the
schematic in Supporting Information, Supplementary Figures
S3). Figure 1B shows this model fit to the DPPC at 50°C data set,
full details of the model and parameters used to fit the data are
given in the Supporting Information along with the complete data
sets with corresponding fits (Supplementary Tables S1–S5,
Supplementary Figures S4–S7).

The fitted thickness of these two layers as a function of
confinement pressure can be seen for all of the samples in
Figures 3A,B. This separation of the contributions to the
overall repeat distance confirms that the water layer spacing is
consistently reduced to 6 ± 2 Å after application of 1 bar
confining pressure, independent of the lipid chain length or
phase. This is consistent with a single solvation shell of water
molecules closely associated with each PC head group [43], where
2.7 Å is the approximate diameter of a single water molecule [44]
and also to the approach of protein solution scattering where
proteins are modeled with a 3 Å bound water layer [45]. To

FIGURE 1 | (A) Trends of the repeat distances in the lipid bilayer stacks, hydrated with D2O vapor taken from the positions of the Bragg peaks. Lines are to guide
the eye only, with solid lines for temperatures below the expected phase transition to Lα and dashed lines for those above. (B) Neutron reflectometry profiles for DPPC
hydrated with D2O vapor at 50°C under different applied uniaxial stresses, off-set for clarity, the lines represent model fits to the data.

FIGURE 2 | Schematic depicting the repeat distance and how the layer
model for neutron reflectivity fitting was defined.
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ensure this phenomenon was not a function of hydrating the
membranes using a humid atmosphere rather than bulk water,
measurements on some lipid samples were repeated but
hydrating with bulk water rather than water vapor
(Supporting Information, Supplementary Figures S6). The
water layer thickness also decreased to 6 ± 2 Å under 1 bar of
confining pressure with no further loss of water at higher
pressures, confirming that this was not due to limitations in
the amount of available hydrating solvent.

In response to confinement by 1 bar, the thickness of the
lipid bilayers (Figure 3B) increased for each lipid, independent
of the tail length or starting phase, compensating (more or less)
for the shrinking water layer. The same behavior was also seen

for the fully hydrated samples (Supporting Information,
Supplementary Figures S6). Further, the lipid bilayer
thicknesses from the different starting phases converge at
3 bar for DPPC and 5 bar for DSPC suggesting that the
same, incompressible, lipid state is accessed under
confinement, irrespective of the starting phase. Thus, a
direct correlation is observed between the amount of stress
required to reach the incompressible confined state and the
chain length of the lipid tails. It is possible that the response to
confinement arises from the dehydration of the region between
lipid bilayers, reducing the cross-sectional area per lipid
headgroup and allowing closer packing of the lipid tail
region resulting in a thickening, consistent with similar
results seen for DLPC in X-ray diffraction studies [40].

Finally, while saturated PC lipids are the most prevalent
constituent on the cartilage surface, a significant amount are
also unsaturated, of which DOPC is present in the highest
quantities [38, 46]. Therefore, for completion, these
confinement experiments were repeated with stacks of
DOPC bilayers hydrated with both vapor and bulk water.
The analyzed data (Supporting Information, Supplementary
Figures S5, S6) show the same features as in the saturated cases,
despite the larger equilibrium area per molecule and relative
disorder from the unsaturated double bonds on the lipids. The
water spacing between bilayers reduces to ∼6 Å, but the water
was not expelled entirely, and the thickness of the lipid region
swells correspondingly under confinement, both reaching a
plateau by 3 bar of applied uniaxial stress. The ratio between the
fitted water and lipid layer thicknesses (Supporting
Information, Supplementary Figures S8) also shows a
similar trend for all of the vapor hydrated lipids except for
the DMPC, which starts from a more hydrated state, and the
DSPC at 75°C, which starts from a less hydrated state which
may be attributable to its denser tail region. However it is
interesting that the saturation of the lipid tail does not cause a
dramatically different behavior.

FIGURE 3 | Trends of the fitted (A)water layer thickness and (B) lipid layer thickness in the lipid bilayer stacks, hydrated with D2O vapor, taken from the best model
fits. Lines are to guide the eye only and the symbols define data for the same samples in both (A) and (B). Uncertainties are derived from fitting the data with two
alternative scattering length densities for the D2O vapor which would not change within a series of confining pressures, meaning that the confidence in the relative
positions of the points is greater than the error bars shown, this is discussed further in the Supporting Information.

FIGURE 4 | Cartoon to illustrate the possible re-ordering of the lipid
bilayers indicated by the confinement of lipid stacks.
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DISCUSSION

Here, we described the first direct structural study of lipid bilayers
under confinement, providing an excellent model system for
understanding the lipid lubricating properties of articulating
cartilage. We propose that the low friction experienced
between layers of stacked lipids as they slide past each other is
due to the hydration lubrication mechanism, where a layer of
water remains closely associated with a zwitterionic lipid head
groups even at high pressures [47–51], in accordance with the
Hills model [11, 12]. It should be noted that in this study the
applied pressures were limited by our experimental setup to a
maximum of 5 bar. Although a wide range of pressures occur at
different points within a joint under various conditions starting
from low pressures in the fluid [52, 53], like those probed here,
and increasing to very high contact pressures (up to 200 bar) that
can occur at contact points, locally within mammalian joints [54,
55]. In future experiments we hope to increase pressures to a
range in line with the higher pressures that occur in vivo and
particularly in diseased joints.

The results presented here show the first structural evidence to
support our hypothesis, where a spacing approximately
equivalent to one hydration layer of water molecules per lipid
head group is maintained even at higher applied uniaxial stresses.
SFA studies indicate that the lubrication behavior and frictional
forces are maintained across a wide range of pressures [47, 48],
and therefore the structures we measured at low levels of
confinement remain comparable to those experienced locally
at the cartilage surface [55].

Further, we have shown that the same lipid state
corresponding to the lipid layer thickening is accessed under
confinement, independent of the lipid tail saturation or starting
lipid state. The thickening warrants further investigation but
suggests a repacking of the lipid tail region due to the reduced
cross-sectional area per lipid when the headgroups are partially
dehydrated (as proposed in the illustration in Figure 4). The
structure may be similar or identical to the sub gel phase [56,
57]. The results also offer an insight into the high mechanical
robustness of the lipid bilayers. The results suggest that it is the
access to a closer packed phase, with thicker layers for all lipids
when confined, that increases the bilayer robustness. This lipid
response is expected to improve their resistance to the high
shear and compression forces experienced in human joints
while still maintaining their hydrated lubricating properties.
The water expelled during confinement may also play a role in
the lubrication, synergistically with the transfer of fluid between
the cartilage and synovial fluid which is believed to occur during
joint lubrication [58]. Understanding of the hydration and
structural changes of the PC lipids under uniaxial stress is
the first step toward fully understanding how their structure
is changed in dynamic, lubricating joints and how the act to
improve the lubricating properties of synovial fluid. The
composition of the synovial fluid changes with diseases such
as osteoarthritis and DPPC has also been shown to reduce the

friction coefficient and therefore is a prospective treatment for
damaged joints [59, 60].

To conclude, we present the first measurements of the
structures of lipid bilayers with a simultaneously applied
uniaxial stress. The structural properties have been observed
directly using neutron reflectometry, thus demonstrating that
the apparatus used can provide extensive insight into the
structural behavior of such biological systems. Specifically, in
this study we have provided direct support for the mechanism of
hydration lubrication previously hypothesized on the basis of
indirect measurements.
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