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Sending camouflaged audio information for fraud in social networks has become a new
means of social networks attack. The hidden acoustic events in the audio scene play an
important role in the detection of camouflaged audio information. Therefore, the application
of machine learning methods to represent hidden information in audio streams has
become a hot issue in the field of network security detection. This study proposes a
heuristic mask for empirical mode decomposition (HM-EMD) method for extracting hidden
features from audio streams. Themethod consists of two parts: First, it constructs heuristic
mask signals related to the signal’s structure to solve the modal mixing problem in intrinsic
mode function (IMF) and obtains a pure IMF related to the signal’s structure. Second, a
series of hidden features in environment-oriented audio streams is constructed on the
basis of the IMF. A machine learning method and hidden information features are
subsequently used for audio stream scene classification. Experimental results show
that the hidden information features of audio streams based on HM-EMD are better
than the classical mel cepstrum coefficients (MFCC) under different classifiers. Moreover,
the classification accuracy achieved with HM-EMD increases by 17.4 percentage points
under the three-layer perceptron and by 1.3% under the depth model of TridentResNet.
The hidden information features extracted by HM-EMD from audio streams revealed that
the proposed method could effectively detect camouflaged audio information in social
networks, which provides a new research idea for improving the security of social
networks.
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INTRODUCTION

Getting hot topics through social networks [1] and sharing news based on communities [2] have
become the life style of modern people. Especially with the rise of we media technology in recent
years, audio information has gradually become one of the main forms of information exchange in
social networks. But it also brings a lot of security risks [3]. Using speech synthesis, interception
audio stream for reediting and other methods to generate camouflage audio for fraud has become a
new means of social networks attack. As a result of the rapid development of modern speech
processing technology, people can easily edit “false” audio that cannot be easily distinguished by
hearing, which makes it more difficult for people to distinguish the true and false audio in social
networks. Therefore, the application of machine learning methods to mine hidden information in
acoustic signals to identify authenticity and monitor risks [4, 5] has become a research hotspot in the
field of acoustic signal processing. The special complex noise and sudden acoustic events in ambient
background sounds are some of the important factors to judge audio authenticity. Furthermore, the
frequency aliasing caused by complex noise and abrupt frequency changes caused by sudden acoustic
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events increases the difficulty of classifying environmental audio
streams. Therefore, this paper proposes an audio environment
hidden information feature extraction method based on HM-
EMD and aims to use the key factors contained in the special
environment information to detect the authenticity of audio and
solve the problem of audio fraud in social networks.

In the current deep learning framework, audio environment
hidden information feature extraction methods are mainly
divided into two categories: traditional feature representation
[6–8] and automatic learning audio feature representation based
on deep network [9, 10]. MFCC [11], spectrograms, acoustic
event histograms [12], and gradient histograms based on
time–frequency learning [13] are the most commonly used
traditional methods for acoustic feature representation.
Acoustic event classification and detection is generally based
on the spectral features of the MFCC [14]. The first team
proposed a deep network for the TridentResNet series and
used the snapshot method to filter the network classification
results [15]. In addition to the aforementioned classical feature
representation methods, deep neural networks (DNNs) can
automatically learn audio features. The typical network models
include the time-delay neural network [16], VGGISH-based
embedding model [17], and the mixed feature extraction
model based on DNN and convolutional neural network
proposed by [18]. However, this end-to-end feature was not
used by the first 30 teams in the DCASE tournament. This is
because the end-to-end feature learning approach using deep
networks directly requires a large number of evenly distributed
data sets; however, in the real scene, the environmental sound
source is complex, and the occurrence time and frequency of
hidden acoustic events in environmental audio streams are not
fixed and are often random and unpredictable. These scenarios
enhance the mutagenicity and nonstationary properties of
environmental acoustic signals and indirectly lead to the
uneven distribution of various hidden acoustic events in
datasets [19]. The result of the MFCC processing of acoustic
signals is the mel-frequency. The mel-filter is designed according
to the sensitivity of the human ear to frequency. Therefore, the
MFCC achieves good results in speech and speaker recognition.
However, in a nonspeech environment, ambient sound signals are
nonstationary and hidden, and the sequence features of the
MFCC lose a large amount of high-frequency hidden
information and hidden information outside the hearing
threshold range. Therefore, to improve the accuracy of hidden
information mining in environmental audio streams, it is
necessary to establish a more accurate time–frequency feature
representation system that can further locate and analyze hidden
acoustic events and ultimately improve the classification accuracy
of environmental audio streams.

Environmental audio streams are typical nonlinear and
nonstationary time-varying signals. Thus, they require time-
varying filtering and decomposition technologies. Proposed by
Norden E. Huang in 1998, empirical mode decomposition (EMD)
is a signal processing method suitable for nonlinear unsteady
time-varying signals [20].

However, the traditional EMD method has a few
disadvantages, including mode aliasing and the inconsistency

of IMF dimensions after signal decomposition. These drawbacks
limit the application of EMD to acoustic signal processing. Modal
aliasing causes the frequency distribution of some IMFs after
signal decomposition to overlap. Hence, accurately estimating the
IMF range of a certain frequency distribution is difficult.
Dimension inconsistency may cause variations in the number
of IMFs obtained from the decomposition of source signals with
the same frame length; these variations will lead to the mismatch
of the required eigenvector dimensions and hinder the
subsequent signal analysis and processing [21]. In 2005, R.
Deering and J. E. Kaiser proposed the ensemble empirical
mode decomposition (EEMD) decision method [22], which
attempts to solve the problem of mode aliasing by introducing
Gaussian white noise into the signal to be decomposed. In EEMD,
the attributes of Gaussian white noise should be adjusted
artificially. However, the Gaussian white noise leaves traces in
the IMF decomposed from the signal, thereby resulting in low
signal restoration accuracy and extensive calculations. Time-
varying filtering-based empirical mode decomposition (TVF-
EMD) uses the b-spline time-varying filter for mode selection
and thus solves the problem of mode aliasing to a certain extent.
However, TVF-EMD must calculate the cutoff frequency first,
thus leaving the problem of dimension inconsistency
unsolved [23].

By taking advantage of the time–frequency analysis of EMD,
the problems of modal aliasing and frequency inconsistency in
EMD must be resolved. Therefore, the current study consists of
two parts. First, based on the traditional EMD, an improved
heuristic empirical mode decomposition (HM-EMD) method is
proposed. This method improves the purity of IMFs by adopting
adaptive mask signals. With this method, the frequency domain
distribution and IMF dimension can be stabilized and the
inconsistency of the IMF dimension can be improved. The
mask signals introduced in EMD can be obtained through
heuristic learning and provide technical support for the feature
extraction of hidden acoustic signals. On the basis of the mask
signals, the hidden audio component features (HACFs) for audio
stream recognition are constructed. According to the
classification dataset Task-A [19] of the environmental audio
stream in DCASE, hidden acoustic events, such as ‘birdsong’ and
‘footsteps’ in environmental audio streams, can be located and
analyzed. The analysis results can be applied for multiple levels
and multiple time scales of environment safety certification in
audio streams. They can also be applied to other complex acoustic
analyses and processing.

This work is divided into five parts. The second part mainly
introduces the principle of HM-EMD. The signal processing
flow and existing problems of the classical EMD algorithm are
analyzed, and the principle of the HM-EMD algorithm is
presented in detail. The third part describes the mining of
hidden information in audio streams on the basis of the
proposed HM-EMD. Specifically, environmental audio
stream data are analysed, and the HACFs for hidden
information in audio streams are designed according to the
analysis results. The fourth part presents the classification of
audio streams on the basis of HM-EMD. The experimental
dataset is obtained from the low-complexity acoustic scene
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classification task provided by DCASE in 2020. The
experimental results show that the proposed method can
accurately extract and locate hidden acoustic events, thus
improving the accuracy of audio stream classification. The
fifth part summarises the characteristics of the proposed
method and presents future research directions.

HEURISTIC MASK FOR EMPIRICAL MODE
DECOMPOSITION

Empirical Mode Decomposition Method
Empirical Mode Decomposition
EMD can decompose the original signal x(t)
(t ∈ N ,N � {0, 1, ......n}) into a series of IMFs whose upper and
lower envelopes have a mean value of 0. This decomposition
method does not need to preset basis functions (such as Fourier
transform or wavelet analysis), but the IMFs should satisfy the
following formulas:

|Numextream − Numcross|≤ 1 (1)

∑ t∈NBmax(t) +∑ t∈NBmin(t) � 0 (2)

where Numextream is the number of extreme points of the data
sequence and Numcross is the number of zero crossings;
Bmax(t), Bmin(t) are the upper and lower envelopes by cubic
spline interpolation with the maximum and minimum points as
the control points, respectively. Equation 1 represents the
narrow-band constraint condition of the IMF, and Eq. 2
represents the local symmetry constraint condition. Algorithm
description in Algorithm 1.

Modal Aliasing of EMD
The most significant disadvantage of EMD is mode aliasing. In
mode aliasing, a single IMF contains signals of different
frequencies or signals of the same frequency that appear in
different IMF components. The typical mode aliasing
phenomena are described as follows:

1) For multiple single-frequency signals, a mixed signal is an
amplitude modulation (AM)–frequency modulation (FM) signal if
the energy levels of the source signals are similar.When the frequency
ratio is ϵ[0.5, 2], the FM signal and AM signal overlap and the
amplitude between the extreme values changes excessively. In such a
case, the ordinary cubic spline function cannot easily and accurately fit
any signal, resulting in the loss of local scale. This condition also leads
to themixing of multiple frequency domains in the IMF composition,

such as signal x1(t) � sin2π*2.4t + sin2π*3.5t + sin2π*7t, the
frequency ratio between two mixed signals is 1.45,2 and 2.91.
There are two frequency ratio is ϵ[0.5, 2] . The EMD Results for
x1(t) is shown in Figure 1. Figure 1A shows the IMFs of signal,
which the corresponding FFT transform spectrum shows in
Figure 1B. Mode aliasing can be seen in the FFT spectrum IMF1
and IMF2 in Figure 1B and abnormal mutation of the instantaneous
frequency occurred in IMFs in Figure 1C.

2) Several different frequency signals are superimposed at
different times, and the maximum value of the nonaliased part is
missing, resulting in modal aliasing, such as EMD Results for
signal x2(t) � u(t, 0, 2)psin2πp2.4t + sin2πp6t +
u(t, 8, 10)psin2πp15t shown in Figure 2 where

ut, t1,t2 � { 1 t ∈ {t1,t2}
0 others

.

The frequency ratios in x2(t) are all out of [0.5, 2], but there sin
(2π*2.4t) start at time 2 s and the sin (2π*15t) end at time 8 s
which lead to the mode aliasing as shown in Figure 2B. The
abnormal mutation of the instantaneous frequency occurred in
IMFs in Figure 2C.

3) Mode aliasing also occurs when the distribution of extreme
points in a window is not uniform even if Eqs 1, 2 are satisfied, such as
signalx3(t) � ut, 0, 2psin2πp 2.4t + sin2πp3.5t + ut, 8, 10psin2πp7t.
The model aliasing can be seen in FFT spectrum of IMFS in
Figure 3B. The negative frequency in Figure 3C is caused by the
large fluctuation of the IMF amplitude.

When the frequency interval between multiple signals is
too small or there is noise, the local extremum will jump
many times in a very short time interval. The local extremum
as control points for cubic b-spline interpolation in the
process of EMD. The cubic b-spline interpolation resulting
in the spectrum envelope will be fluctuated if the extreme
value loss or extreme value distribution is inconsistent. This
condition can adversely affect the spectral envelope. At this
time, the time-domain signal does not meet the narrow-band
requirements of IMF decomposition, resulting in mode
aliasing. Therefore, the absence of extremum is an
important cause of mode aliasing in EMD calculation. The
different causes of the lack of extreme values require different
processing methods. The causes of missing extreme values
can be divided into two categories. One is the uneven
distribution of extreme values in the analysis window
caused by signal concealment at a certain time (Figure 2).
The key to dealing with this type of modal aliasing is to

ALGORITHM 1 | EMD decomposition to obtain an IMF

Empirical Mode Decomposition
Input: Original signal x(t), Supposed IMF number i
output: Intrinsic Mode Functions, IMF
1 i � 1, x1(t)� x(t)
2 Get the extremum points {umax

1 , umin
1 , umax

2 , ......} of signal xi(t), calculate the upper and lower envelope Bmax(t),Bmin(t) by cubic spline interpolation with the maximum and
minimum points as control points, get the average value of upper and lower envelope Bmean(t) at every points;
3 r(t) � xi(t) − Bmean(t). if r(t) satisfies Eqs. 1, 2, then r(t) is taken as the i th IMF signal riIMF(t), i � i+1; if not, repeat step 2 and 3 for signal r(t).
4 xi(t) � xi−1(t) − ri−1IMF(t), return to step 1 until the termination condition is satisfied;
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determine the time when the signal concealment occurs. If
the analysis is conducted according to the time point of
concealment, then aliasing will not occur. The other
category involves signal spectrum aliasing, which can be
addressed by adding mask signals; that is, by creating a
mask signal s (T), we can derive the following:

x+(t) � xt + st (3)

x−(t) � xt − st (4)

For x−(t) and x+(t), EMD is performed to obtain the natural
mode functions rIMF−(t) and rIMF+(t), respectively. The final IMF
is defined as follows:

rIMF(t) � rIMF+(t) + rIMF−(t)
2

(5)

However, signal mode aliasing in practical applications
cannot be attributed to a single factor (Figure 3). It
usually includes hiding and spectrum aliasing. Therefore,
it can be considered to determine the time of signal
concealment. Then, a mask signal is introduced to the
period of concealment to perform mode decomposition.
Therefore, the current work proposes the HM-EMD
method. This method maximises the use of the intrinsic
properties of signals to construct variable analysis windows
and mask signals that can adapt to a variety of signal

FIGURE 1 | EMD results for signal x1(t), (A) IMFs of x1(t); (B) FFT spectrum of each corresponding IMF; (C) Instantaneous frequency of each IMF.

FIGURE 2 | EMD results for signal x2(t), (A) IMFs of x2(t); (B) FFT spectrum of each corresponding IMF; (C) Instantaneous frequency of each IMF.

FIGURE 3 | EMD results for signal x3(t), (A) IMFs of x3(t); (B) FFT spectrum of each corresponding IMF; (C) Instantaneous frequency of each IMF.
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contents. The principle and implementation process are
described herein.

Heuristic Mask Signals
Basic Principle Analysis
The signal properties need to be established prior to EMD. A
time-varying FM/AM model can be used to express any
nonstationary signal; that is,

x(t) � Atsin(ω(t)) (6)

where a (T) is the envelope function and ω (T) is the phase
function. The analytical signal is

z(t) � xt + jH[x(t)] (7)

Here, H[·] denotes the Hilbert transform. We calculate the
instantaneous phase ω(t) � arctan H[x(t)]

x(t) and instantaneous
frequency fIFt � 1

2π
d[ω(t)]

dt . Using Hilbert transform, we can
separate the AM and FM components of the IMF to achieve the
purpose of modal separation.

For the single component mode, the instantaneous frequency fIFt
should be nearly linear, while the variation range of ω(t) should be
considerably small. When mode aliasing occurs, fIFt should clearly
change without consideration of the end points. Especially, for hidden
components, a jump of fIFt occurs at the time point of concealment, as
shown in Figures 2D, 3D. We constructed a variable analysis window
according to the time–frequency characteristics of instantaneous
frequency. Then, we divided the signal into several parts.

If fIF t of the segmented signal is still unstable, then the modal
separation problem can be transformed into the d[ω(t)]

dt
minimisation problem, in which the bandwidth of sin(ω(t)) is
minimised. The bandwidth calculation method for nonstationary
signals can be obtained by the Carson rule:

BWAM−FM � 2(Δf + fFM + fAM) (8)

where Δf is the deviation of the instantaneous frequency from its
mean value and fAM and fFM denote the frequencies of the AM and
FM signals, respectively. We can make Δf � 0 to minimise the
bandwidth. In other words, the decomposition frequency of each
IMF is expected to be equal to the centre frequency of the
instantaneous frequency, that is, equal to the mean value of the
instantaneous frequency fIFt. Then, a mask signal with the same
frequency as fIFt can be selected and the number of IMFs required
can be determined.

Algorithm Description
The HM-EMD algorithm comprises the following steps: variable
analysis window construction and mask signal construction.

1) Variable Analysis Window Construction.
The jump point ti should be picked such that Eq. 9 is satisfied:

(∣∣∣∣fIF(ti) − fIF(ti+1)
∣∣∣∣ + ∣∣∣∣fIF(ti−1) − fIF(ti)

∣∣∣∣)> μΔfIF(t) + ρεΔfIF(t) (9)

where ΔfIF(t) is the difference in instantaneous frequencies at ti,
μΔfIF(t) is the mean value of ΔfIF(t) at all time points, εΔfIF(t) is the
variance and ρ is the variable parameter. The original signal is
divided into two parts by the time division points ti and
decomposed by EMD independently.

2) Mask Signal Construction.
The sine signal is a common form of a mask signal, and

its amplitude and frequency should be determined. As analyzed
in Empirical Mode Decomposition Method, the frequency is
determined as the average instantaneous frequency fIF . Hence,
the amplitude is also determined as the mean value AIF of the
instantaneous amplitude. Then, the mask signal st is defined as

st � AIFsin2πfIFt (10)

where
AIF � 1

n ∑n
t�1



















rIF(t)2 + H(rIF(t)2)

√
and 1

n ∑n
t�1

d
dk(arctan H(rIF(t))

rIF(t) ).
Then, the IMFs can be refreshed by Eqs. 3–5, in which the

number of IMFs are determined by fIF and fc is the sampling
frequency. The algorithm flow is as follows Algorithm 2.

HM-EMD-BASED ACOUSTIC SCENE
CLASSIFICATION

Acoustic Scene Signal Analysis
When processing the original signal with HM-EMD, the variable
analysis window and mask signal are used to intervene the
decomposition of the original signal. The frame length is selected
according to the frequency structure of the signal itself, while the
frequency domain components corresponding to each IMF are
relatively independent, which provides higher interpretability of the
features. The instantaneous frequency and amplitude of each IMF also
contain all information of IMF components, which means that the
instantaneous frequency and amplitude of all IMF components
contain most of the information of the signal to be analyzed, and
can be directly used as the basic characteristics of the signal. Figure 4
shows the time-domain waveforms of some typical IMFs with hiding
acoustic events in the ambient audio stream, in which only the most
significant one of all IMF waveforms is shown. It can be seen that the
time-domain waveform characteristics of these events are very
obvious, the extreme value and over average rate are very different,
and they are distributed in low, medium and high frequency bands,
such the airport luggage roller in Figure 4A and Metro rail joint
collision in Figure 4B are low frequency, steps in Figure 4D and tram
acceleration in Figure 4F are medium frequency, chirm in Figure 4C,
vehicles from far to near in Figure 4E are high frequency. Therefore,
this paper proposes a full band IMFhiding component features, which
can distinguish them well, to effectively improve the effect of ambient
audio stream recognition algorithm, the feature calculation method is
shown in Mutagenic Component Features.

Mutagenic Component Features
Figure 4 shows various hidden components in the acoustic scene
data. On the one hand, the hidden components cause a significant
interference to the signal spectrum, thereby greatly affecting the
ambient audio stream recognition effect based on traditional
spectrum features (such as MFCC). On the other hand, the types
and characteristics of hidden components corresponding to different
ambient audio streams also exhibit significant differences. These
hidden components are closely related to the types of acoustic
events. The features constructed on the basis of hidden
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components can help to distinguish ambient audio streams. For a
hidden component, its frequency, amplitude and change mode
information can effectively reflect its essential attributes. Almost all
of such information can be reflected by the envelope shape of the IMF
obtained by decomposition. Therefore, we design a set of HACFs.
Based on the IMF decomposed by HM-EMD, the features extract the
relevant information of hidden components, including the shock
intensity feature SH and over-average feature average crossing
rate (ACR).

1) Shock intensity feature (SH):

SHmaxj � max(rupIMFj(t)) and SHminj � min(rupIMFj(t)) (11)

where max (rupIMFj(t)) is the upper limit of the signal amplitude in
the jth IMF and min (rupIMFj(t)) is the lower limit. Both limits
represent the change intensities of the hidden components
relative to the steady components for measuring the changes
in signal amplitude. As the sum of the mean values of the upper
and lower envelopes of the IMF is 0, the signal is symmetrical
along the time axis, and the information carried by the upper and
lower envelopes are almost the same. Therefore, a one-sided
envelope is enough to ensure the consistency of the symbols of the
two values. The superscript means that the upper envelope is used
for calculation.

2) ACR feature:

ACRi � 1
2T

∑T
i�2

∣∣∣∣∣∣∣∣sgn[rupIMFj(t) − rupIMFj(t)] − sgn[rupIMFj(t − 1)

− rupIMFj(t)]
∣∣∣∣∣∣∣∣ (12)

ACR features can express the number of times the upper envelope of
an IMF passes through its mean point, that is, the number of times
the IMF’s upper envelope (time domain amplitude) fluctuates
significantly. If the value is large, the IMF amplitude frequently
fluctuates near the mean value. For ambient audio stream
recognition application scenarios, if the value is greater than a
certain threshold (10 Hz or above), the data may not have
obvious and meaningful hidden components and the change of
the upper envelope near the mean value is only the normal
fluctuation of the acoustic signal itself. If the value is less than
the threshold, the data may contain significant hidden components,
and one-half of the zero crossing frequency is the frequency of the
hidden components.

Ambient Audio Stream Classification
The ambient audio stream classification process based onHM-EMD
is shown in Figure 5. HM-EMD is used to obtain the IMF set of the

FIGURE 4 | IMF waveforms with significant hidden components in different environments of the audio stream, (A) Airport luggage roller–IMF16, low freq; (B)Metro
rail joint collision–IMF14, low freq; (C) Chirm–IMF1, high freq; (D) steps–IMF10, medium freq; (E) Vehicles from far to near–IMF1, high freq; (F) Tram acceleration–IMF4,
Medium and high freq.

Algorithm 2 | Heuristic empirical mode decomposition with a masking signal

Heuristic Empirical Mode Decomposition with a Masking Signal
Input: Signal, Supposed IMF number, input: Signal x(t), Supposed IMF number i
output: Intrinsic Mode Function, IMF
1 x1(t) � x(t), i � 1;
2 Get the first IMF of the signal residual xi(t), calculate the mean and variance of ΔfIF t, use Eq. 8 to determine whether there is a hiding jump point, variable analysis window is
constructed according to the hiding jump point and xi(t) is segmented.
3 Construct mask signal for each IMFi : sit � AIFisin2πfIFi t;
4 Do EMD on xi+t � xi(t) + sit and xi−t � xi(t) − si t, get the first IMF rIMFi+(t) and rIMFi−(t);
5 Let rIMFi(t) � (rIMFi+(t) + rIMFi−(t)) /2, and splice all the divided pieces.
6 i � i+1, xi(t) � xi−1(t) − rIMFi(t), return to step2, until fIFi t< fc

2i, or no new IMF is required;
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signal to be analyzed. Then, the following basic features are extracted:
instantaneous frequency, instantaneous amplitude and the HACFs
proposed in this work. Organised as a featurematrix, the features are
input into the classifier to obtain the final recognition result. We
select the neural network model for the classifier. The network
structure is shown in Figure 6. To prove the effectiveness of the
features, we select a three-layer neural network model. The first two
layers use a sigmoid function as the activation function. First hidden
layer has 500 and second hidden layer has 250 neurons. The output
layer uses a softmax classifier and has 10 neurons. The experimental
results show that the feature system still shows satisfactory results
even with the use of a simple classification model. The specific
experimental results and analysis are presented in the next section.

EXPERIMENTS AND RESULTS

Experimental Setup
We verify the results of this work from two aspects: the validity
of modal separation and the validity of the HM-EMD features
for environmental audio stream classification. The
experiments use Python language, the deep learning
framework uses the PyTorch framework, and the data set

uses the task 1A audio scene classification dataset in
DCASE competition.

Validation of Modal Separation
A nonlinearity index is defined in Eq. 13, and it measures the
stability of the decomposition results. The larger the DN is, the
greater the nonlinear degree is, indicating the more unstable
components; the verification data are the mixed signals of the
three modes in Figures 1–3.

DN � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣1n ∑n
t�1

⎛⎜⎜⎜⎝fIFt − fIFt

fIFt
⎞⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1/2

(13)

Validation of the Features of HM-EMD for the
Classification of Ambient Audio Streams
The data used in the experiment come from the TASK1Adataset of
DCASE [19]. Task1A that is to classify the acoustic scene with
multiple devices. The dataset contains data on ten cities and nine
devices, that is, three real devices (A, B, C) and six simulated
devices (S1–S6). The dataset has good annotation, including three
different types of indoor, outdoor and traffic. It also has ten
different ambient audio streams, namely, airport, shopping mall,
metro, metro station, pedestrian, street traffic, tram, park and
public square and bus. The acoustic data span a total of 64 h, with
40 h used in dataset training and with 24 h used in verification.
Each audio segment is 10 s long, and the sampling rate is 44.1 kHz.

To verify the effectiveness of designing a series of features based
on HM-EMD, we use a basic HM-EMD feature matrix and a basic
features + HACF matrix as the input parameters of the classifier.
Specifically, the number of mask EMD reference IMFs is 20, HM-
EMD basic feature is 2D and HACFs is 3D, which number of
dimension is 20 × 3. The audio frame length is 0.5 s, and the
interframe overlap is 0.25 s, the total number of dimensions is 39 ×
20 × 3 � 2340. The classical MFCC are selected as the contrast
features; they include 13 dimensionalMFCCs and delta features. The

FIGURE 5 | Ambient audio stream classification flow chart based on heuristic mask empirical mode decomposition.

FIGURE 6 | Classification model structure.
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total number of dimensions is 39, and the audio frame length is
40 ms. The specific experimental results are described herein.

After setting the characteristic parameters, we conducted the test
according to the process designed in Figure 5.We trained the classifier
parameters with the training dataset and tested them with the test set.

Results and Analysis
Effectiveness Analysis for Modal Separation
By comparing the traditional EMD results, we can see
DNHM-EMD/DNEMD <1 for any given case. Hence, the
IMF processed by the HM-EMD method has the lowest

FIGURE 7 | HM-EMD results of x1(t), x2(t), x3(t), (A) IMFs of x1(t) and the FFT spectrum of each corresponding IMF; (B) IMFs of x2(t) and the FFT spectrum of each
corresponding IMF; (C) IMFs of x3(t) and the FFT spectrum of each corresponding IMF.
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nonlinearity; that is, the IMF has a high purity and is close to
the blind separation result under an ideal state. The
separation result is shown in Figure 7. From the FFT

spectrum corresponding the IMFs of x1(t), x2(t) and x3(t)
in Figures 7A–C, we can see that the mode aliasing was solved
and each IMF was pure. The features based on this high-purity

FIGURE 8 |HACFS feature distribution in 3D space, (A) IMF1 of bus & airport; (B) IMF1 of metro & pedestrian; (C) IMF1 of park & shoppingmall; (D) IMF1 of square
& traffic; (E) IMF2 of bus & shopping mall; (F) IMF2 of met; (G) IMF2 of tram & park; (H) IMF2 of traffic & pedestrian.

Frontiers in Physics | www.frontiersin.org August 2021 | Volume 9 | Article 7154659

Lou et al. Audio Information Camouflage Detection

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FIGURE 9 | Recognition results of basic instantaneous frequency and instantaneous amplitude features.

FIGURE 10 | Recognition results of basic features and HACFs features.
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IMF signal can effectively characterize the subtle changes in
the signal components in the time and frequency domains.
Hence, the method is suitable for all types of acoustic
correlation analyses and recognition, especially for the
recognition of ambient audio streams with hidden acoustic
events.

Based on HM-Feature Validity of EMD
HACFs can be used to identify the hidden components in IMFs
and are thus of great significance for ambient audio stream
recognition. We verified the discrimination ability of HACFs
in different scenarios in Figure 8. The figure shows the scatter
projection of some hidden component features in the three-
dimensional space. Even the three-dimensional features in a
single IMF have a strong scene discrimination ability. HACFs
show good discrimination ability among different ambient audio
stream categories and thus provide technical support for
subsequent ambient audio stream classification.

We use the simple classifier shown in Figure 6 to classify and
recognize the environmental audio streams in different scenes
based on HM-EMD basic feature and basic + HACFs feature
respectively, and then use the confusion matrix to represent the
recognition accuracy in each scene. The vertical axis represents
the classification output, and the horizontal axis represents the
annotation result, as shown in Figures 9, 10. As can be seen from
Figure 9, the average recognition rate for all scenes is 60.8%, and
the average recognition rate increases to 71.5% in Figure 10 after
adding HACFs feature. The main improvements are achieved in
the airport, shopping mall, metro station, park, pedestrian, street
traffic and tram scenes. Special hidden events often occur in these
scenes, and these acoustic events are highly related to the
background. Therefore, the proposed HACFs can effectively
represent the hidden information to improve recognition rate.

We use the basic classifier and complex classifier in each
classifier, according to HM-EMD basic characteristics, HM-
EMD basic features + HACFs features and classic MFCC
features are used to classify and recognize the
environmental audio stream. The basic classifier is the
simple three-layer perceptron shown in Figure 6, while
the complex classifier adopts the optimal classifier used
in the DCASE competition [24], the classification results
are shown in Tables 1, 2. From these two tables, it can be
seen that the HM-EMD feature is superior to the MFCC
feature with different classifiers: Given the basic
classifier, fIF + AIF is 6.7 percentage points higher than
that in the MFCC series; after the addition of HACFs, the
recognition rate increases by 17.4 percentage points. This
result is close to the classification accuracy of the RESNET
network with a 32 m model size in the DCASE competition,
while the simple model we used is only 225K. In a complex
classification model, the improvement of model
classification can make up for the lack of features to
some extent. However, in this case, fIF + AIF + AHCFs still
improves the accuracy by 1.3%, and the recognition result
reaches 75.7%. This result indicates that the HM-EMD
feature provides complete and pure time–frequency
domain information, which helps improve the accuracy of

the classification of environmental audio streams and
proves the effectiveness of the proposed features.

CONCLUSION

The processing requirements of hidden acoustic signals in ambient
audio stream classification are analyzed in this work. Specifically, an
ambient audio stream feature extractionmethod based onHM-EMD is
proposed. With the construction of an adaptive mask signal, the
frequency domain distribution and IMF dimension are stabilised,
and the instability of the time–frequency domain feature system in
the acoustic signal processing of the classical EMD algorithm is solved.
Then, the time–frequency analysis characteristics of EMD in nonlinear
and nonstationary signal processing are fully exploited. Through the
Hilbert transform spectrum of each IMF, the hidden components in
ambient audio stream signals are analyzed and located to construct the
related HACFs. The experimental results show that HM-EMD-based
features exhibit greater capability in hidden acoustic event
representation than MFCC. Therefore, in our future work, we will
study the methods to improve the representation ability of ambient
audio streams by exploring the relationship between HM-EMD feature
systems and different hidden acoustic events. Attempts will also be
made to achieve the accurate labelling of hidden acoustic events in
multilevel and multitime scale ambient audio streams with HACFs,
such as hidden acoustic event location and hidden acoustic event
recognition. In general, the ambient audio stream feature extraction
based onHM-EMDrepresents an effective effort toward ambient audio
stream classification. By improving the time–frequency resolution for
the analysis of nonstationary environmental acoustic signals, capturing
the hidden features of the environment and enhancing the local feature
representation, the proposed method can effectively improve the

TABLE 1 | Comparison of environmental audio stream classification results based
on DCASE dataset.

Scene label MFCC (%) fIF +AIF fIF +AIF +HACFs

Airport 45.0 41.5% 51.1%
Bus 62.9 91.4% 92.6%
Metro 53.5 93.8% 94.1%
Metro Station 53.5 77.2% 83.6%
Park 71.3 48.9% 72.4%
Public Square 44.9 70.9% 72.2%
Shopping Mall 48.3 39.6% 55.8%
Street Pedestrian 29.8 44.1% 51.1%
Street Traffic 79.9 60.3% 76.0%
Tram 52.2 62.4% 66.5%
Average 54.1 60.8% 71.5%

TABLE 2 | Comparison of classification results of DCASE dataset based on
complex classifiers.

Classifier MFCC
(%)

f IF +AIF fIF +AIF +HACFs

TridentResNet_DevSet 73.7 74.5% 75.0%
TridentResNet_EvalSet 73.7 74.5% 75.0%
TridentResNet_Ensemble 74.2 75.0% 75.5%
TridentResNet_Weighted_Ensemble 74.4 75.2% 75.7%
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efficiency and performance of the classificationmodelling of the hidden
information of ambient audio streams, which provides technical
support for camouflaged audio information detection. Hence, it
helps to reduce the risk of audio camouflage attacks in social networks.
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