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The collective dynamics and structure of animal groups has attracted the attention of
scientists across a broad range of fields. A variety of agent-based models have been
developed to help understand the emergence of coordinated collective behavior from
simple interaction rules. A common, simplifying assumption of such collective movement
models, is that individual agents move with a constant speed. In this work we critically re-
asses this assumption. First, we discuss experimental data showcasing the omnipresent
speed variability observed in different species of live fish and artificial agents (RoboFish).
Based on theoretical considerations accounting for inertia and rotational friction, we derive
a functional dependence of the turning response of individuals on their instantaneous
speed, which is confirmed by experimental data. We then investigate the interplay of
variable speed and speed-dependent turning on self-organized collective behavior by
implementing an agent-based model which accounts for both these effects. We show that,
besides the average speed of individuals, the variability in individual speed can have a
dramatic impact on the emergent collective dynamics: a group which differs to another
only in a lower speed variability of its individuals (groups being identical in all other
behavioral parameters), can be in the polarized state while the other group is
disordered. We find that the local coupling between group polarization and individual
speed is strongest at the order-disorder transition, and that, in contrast to fixed speed
models, the group’s spatial extent does not have a maximum at the transition.
Furthermore, we demonstrate a decrease in polarization with group size for groups of
individuals with variable speed, and a sudden decrease in mean individual speed at a
critical group size (N = 4 for Voronai interactions) linked to a topological transition from an
all-to-all to a distributed spatial interaction network. Overall, our work highlights the
importance to account for fundamental kinematic constraints in general, and variable
speed in particular, when modeling self-organized collective dynamics.

Keywords: collective motion, biophysics, mathematical models, variable speed, social interactions, group size,
phase transition
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1 INTRODUCTION

The emergent, highly coordinated, collective movements of
schools of fish, flocks of birds and insect swarms, are
fascinating examples of biological self-organization. Our
understanding of these collective systems has been significantly
advanced over the past years through diverse research efforts in
biology [1-5], mathematics [6-8], computer science [9, 10],
engineering [11, 12], and statistical physics [13-17].

In addition to empirical observations, mathematical models
are an important tool for studying self-organization and collective
behavior, and have been instrumental in uncovering general
principles of how robust, large-scale coordination can emerge
from simple, local interactions between self-propelled agents [10,
18, 19].

When formulating models, in general and for animal
collectives, one has to balance simplicity/generality and
detailed resemblance to experimental systems. From a
statistical physics point of view, it is viable to assume some
sort of universality of the collective dynamics even in far-
from-equilibrium situations. Thus, as long as the model
accounts for crucial aspects of the microscopic dynamics,
other microscopic details become irrelevant for the
macroscopic behavior for sufficiently large systems over a long
temporal scale. However, 1) there is no general way to tell when
the system is sufficiently large, and 2) animal groups consist of
tens to hundreds, rarely thousands or more, individuals.
Therefore, animal collectives should be rather viewed as
mesoscopic systems, where the actual details of individual
movement behavior may play an important role [20], and
caution is advised when simplifying modeling assumptions.

A particularly prominent simplification often encountered in
models of collective behavior is the assumption of constant speed
of individual agents [13, 21-23]; for exceptions see [24-28].
However, although animals may generally tend to move at a
certain, often preferred, speed, they are also able to flexibly
modify their speed, ranging from non-moving to the
maximum of their movement capacity. Speed adaptation due
to environmental factors or social interactions [2]—ignored in
constant speed models—as well as heterogeneity thereof, may
play a decisive role in the ability of groups to coordinate their
movement and thereby the structure of animal groups [29].
Indeed, experiments demonstrated that speed influences the
collective behavior strongly, via a coupling to polarization/
alignment [3, 22, 25, 29-31] which could also be shown at the
local scale [25], i.e. regions in the shoal with faster fish are more
polarized. In most former simulation studies, agents’ speed was
modelled to modify the turning rate or the assumed social forces,
but was generally set to be fixed rendering speed to a mere
parameter [3, 21, 22, 32]. However, a couple of studies have
shown that variable speed has repercussions on group-level
patterns and can lead to qualitatively new, emergent
phenomena on the group level as for example bi-stable
behavior with respect to polarization [24, 25]. In this bistable
region, the group remains in the initiated collective state (ordered
vs. disordered) because 1) the strong alignment force maintains
the order (stable order) or 2) the velocity alignment reduces the
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speed, because the magnitude of the mean neighbor velocity is
low, which allows a faster turning initiated by noise (stable
disorder). These findings demonstrate the important role of
feedbacks between speed, turning, and social interactions for
the emergence and stability of collective states.

These feedbacks incorporate both, the physics and behavioral
side of collective behavior. Due to this combination, they have not
been explored, to our best knowledge, in the field of 1) active
aligning particle models [16, 18, 33, 34], which are often variants
of the Vicsek model that either lack inertia, repulsion and/or
speed variability (none of those is present in the Vicsek model), 2)
active Brownian particles [35] which consider speed variablility
and repulsion but operate normally in the over-damped limit (no
inertia) and rarely take alignment into account, 3) burst-coast
models [26-28, 36] which model swimming behavior in greater
detail (distinct phases of de- and acceleration) but either speeds
are picked randomly independent of social interactions and
current state [27, 36] or the focus was to resemble
experimentally observed individual behavior in detail without
investigating emergent effects on the collective level [26, 28].

In general, individuals in a group can differ in their phenotype
(e.g. animal personality) that can be strongly linked and result in
differences in movement speed [3, 37-39]). The inter-individual
variability in preferred movement speed has been found to
influence spatial self-sorting (faster individuals sort to the
front of the shoal), cohesion and polarization of groups [3, 21,
30], but its role decreases with larger group sizes [39].
Importantly, already in behaviorally homogeneous groups,
with individuals having highly similar preferred speeds, their
instantaneous speed will dynamically vary over time due to
individuals’ direct response to social and environmental cues
as well as internal decision processes. Both these types of speed
variability will be important for the collective movement
dynamics.

In this study, we focus on investigating the role of within-
individual speed variability on emergent, self-organized collective
movement using an agent-based model. It is meant to represent
real animal groups, and we will discuss the role of inertia and
friction and how these link speed, turning and social interactions.
We will first provide an experimental motivation for our
modeling ansatz by showing the ubiquity of speed variability
in living and robotic fish and providing evidence for coupling
between turning behavior and instantaneous speed, which can be
theoretically understood by considering self-propelled movement
with inertia. Inspired by these results, we will then investigate an
agent-based model and demonstrate how the ability of
individuals to flexibly adapt their speed in response to social
interactions and fluctuations has major consequence for the
emergent collective dynamics.

2 METHODS

2.1 Experimental Data

In order to determine the extent of within-individual variability
in movement speeds, we analyzed previously published data sets
of individual movement of the Trinidadian guppy [30] and
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TABLE 1 | List of previously published tracking data used in our analysis. The table lists major characteristics of the datasets we used to show within-individual speed
variability. The # of tracks indicates the number of individual tracks used for the analysis. Du to the initial study designs and questions, tracks may represent repeated
measures of the same (Guppy: 20 individuals, RoboFish 1 replica) or different individuals (Molly single ind, Molly groups: 8 with 4 ind. per group). Please find exact study

designs in the respective references.

RoboFish Guppy
Species - Poecilia reticulata
# of tracks 39 40
Observation time 10 min 10 min
Arena dimensions 88 x 88 cm 88 x 88 cm
Water depth 7.5¢cm 7.5cm
Frame acquisition 30 FPS 30 FPS
Sex — Female
Tracking method BioTracker [41] BioTracker
References Jolles et al. [30] Jolles et al. [30]

individual and group movement of the clonal Amazon molly [38,
40] as well as a biomimetic robot (“RoboFish”, [3]). We include
the RoboFish to highlight that the movement constraints due to
inertia and turning friction are general and not limited to
biological agents. All data sets consist of positional tracking
data from laboratory observations with a sampling frame rate
of 30 fps, circular or rectangular arenas smaller than 1 square
meter in size and only female fish, as summarized in Table 1 and
explained in more detail in Supplementary Material Section I.

2.2 Processing of Trajectories

The tracking data obtained for the different species and the
robotic fish encodes the position x;(t) = [x;(t), yi(t)]T of the
individual i for each frame t. We approximate the velocity of
each individual from subsequent positions by computing:

Xl'(t+ At) —X,'(t)

Vix (t + At) = Af

1

We can approximate the direction of motion of individual i by
¢,(t) = arctan2 (vi(t), vix(t)). Similar to Eq. 1, we compute the
angular speed ¢(t) of each individual.

2.3 Fundamental Relations Between Speed

and Turning
The fundamental equation of motion for a self-propelled agent i
reads:

dVi(t) _ 1
a —%Fi(t) (2)

with v; as the velocity vector of the agent, m it’s mass and F;
being total force acting on it. Please note that, in the following,
we omit the explicit time dependence for simplicity. The
velocity vector can be expressed via the speed v; and the
heading angle ¢; to v; = v;[cos ¢;, sin goi]T =v; ;. We can
reformulate (in detail shown in Supplementary Material
Section II) the velocity dynamics in terms of speed and
heading angle dynamics [42] to
dv; F, |

o te 3
o o & (©)

Molly (single) Molly (group)

Poecilia formosa Poecilia formosa

35 32

6 min 5 min

48.5 cm diameter 60 x 30 cm
3cm 5cm

30 FPS 30 FPS
Female Female

Ethovision (10.1)
Bierbach et al. [38]

Ethovision (XT12)
Doran et al. [40]

do, F;
— = . é i Wlth év,‘ =
dt vm 7 ’ [

cos (p,] . @

sin ¢,

Therefore, without any further assumptions, we see that the
turning is inversely proportional to the current speed, ie.
de;/dt oc 1/v;. However, the inverse proportionality results in
instantaneous turning for v; = 0, which is unrealistic and is caused
by assuming a point-like object. To provide a simple correction
for this unreasonable assumption, we follow [43] and introduce a
rotational friction force acting on the velocity

dV,‘ _ 1 ngl "
i) o

with « as rotational friction coefficient. If we repeat the steps from
above analogously, the speed dynamics remain unchanged (Eq.
3) but the change in heading angle reads now:

do, F;

o G m ©

In the context of self-propelled agents, the above relation
implies that the turning rate of an individual, in response to a
force F; acting on the agent or generated by the agent itself,
depends on its speed v;. For a constant force |F;| = const., faster
agents will turn slower. Alternatively, in order to turn at the same
rate, individuals moving at different speeds have to adjust the
strength of their turning force linearly with their current speed.
We emphasize that this fundamental relation, ignored in most
models of collective behavior explicitly modeling turning rates,
holds both for fixed speeds v;:= v, ; = const., as well as for variable
speeds v;==v,(t).

2.4 Fitting Experimental Data and Model

Comparison

We introduced in the preceding Section 2.3 Eq. 4 that accounts
for inertia effects and Eq. 6 that additionally accounts for
constraints due to turning friction. Here we treat the force in
angular direction F,=F-&, and the rotational friction
coefficient « as parameters. In order to fit and state which of
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distance regulating force

FIGURE 1 | Implementation of social interactions. A focal agent (black triangle) responds to neighbors (red and blue triangle) via a velocity alignment force F; 4,
which aims at minimizing the velocity difference to the mean neighbor velocity <v,, and a distance regulating force F; 4, their sum corresponds to the social force F; soc
(A). For simplicity the distance regulating force has a sigmoidal distance dependence: it is repulsive for distances closer, attractive for distances larger than a preferred
distance ro (A,B). Note, the sign of the projection of F; 5 onto the distance vector f; defines the direction towards (+) or away (-) from the respective neighbor j. The
neighborhood of a focal agent (red arrow) is defined by its Voronoi neighbors (black arrows in red cells, C).

distance rj;

the two models represents the data best, we use a maximum
likelihood estimation and compare both fits using the Akaike
Information Criterion (AIC) [44] and the Bayesian Information
Criterion (BIC) [45]. This procedure has the advantage, over an
ordinary least square fit, that the AIC and BIC can be computed
without requiring normally distributed residuals. Note that Eq. 6
has one parameter more («), and AIC and BIC penalize a larger
number of parameters and therefore prevent overfitting, whereby
the penalty term is larger for the BIC. The model with the lowest
AIC or BIC is preferred [46, 47].

2.5 The Model

As explained in Section 2.3, our model mimics the movement
behavior of real fish by obeying fundamental physics relations
(inertia and friction). This is mathematically expressed in Eqs 5,
6. Additionally, the interaction between fish is modelled by using
the continuous version (i.e. overlapping instead of discrete zones)
of a well established three-zone model that traditionally uses fixed
speed [19]. The force acting on an individual i has a self-
propulsion term (including noise) and a social term. We can
express this as: Fi(t) = Fi,(t) + Fisociai(f). The self-propulsion
force takes into account two main factors: 1) the tendency of an
individual to keep a preferred speed v, and 2) the fluctuations on
the linear speed v and the angular speed ¢

Fis (1) = (B0 = (1) + V2D, &, ()& + (2D, & (0))ég
?)

where f is the speed relaxation coefficient, leading to the
relaxation of the speed towards the preferred speed v, in the
absence of other perturbations with the time constant 7, = ..
For solitary agents in the absence of external forces, the width of
the speed distribution will be inversely proportional to §, i.e. low f3
corresponds to large speed variability and high S to small
variability around v,. D, and D, are diffusion coefficients
setting the noise intensity in v and ¢, respectively, whereas &,
and £, are independent, Gaussian white noise processes. The
social interactions are explained in detail in the following.

2.5.1 Social Interactions

We consider a social force that combines two fundamental types
of interactions among individuals: 1) an alignment force F; ;;, and
2) a distance-regulating force F; ; (Figures 1A,B). Thus, we can
express the total social force as F;scial(t) = F;aig(t) + Fi(t). We
use Voronoi tesselation to define the neighborhood of a focal
individual i, which is labeled as N; (Figure 1C). A Voronoi
interaction network can, on the one hand, be efficiently
computed, while on the other hand it is a good approximation
of visual interaction networks [48]. The mathematical expression
of the alignment force is:

1
Fi,ulg (t) = W z Hulg Vji (t)a (8)

jeNi

where 1, is the alignment strength and v;(t) = vi(t) —vi(t). The
distance-regulating social force assumes a preferred distance r,
that individuals try to maintain between each other. It is
defined as:

Fua(t) = o 3 g tanh (a1 (6= 12)) 24, 9)

JjeN;

where 1; = (rj — r;)/|r; — 1;| is a unitary vector from agent i to
agent j, r;; = |r; -1, g is the strength of the force and m, is the
slope of the change from repulsion (rj; < r4) and attraction
(rj; > rg) (Figure 1B). In principle, it is possible to extract a
specific functional form of the repulsion and attraction
interaction from experimental data [2, 27, 49, 50]. However,
these functions will likely depend on the species and the
ecological context, whereas the qualitative role of variable
speed discussed below does not depend on the specific choice
of the functional form of the inter-individual attraction-repulsion
interactions. Therefore, for the sake of simplicity and generality,
we have chosen a rather simple (sigmoidal) distance dependence
for the distance regulating force controlled by only three
parameters (yg mg, 14), with the key property being a finite
preferred distance r; which individuals try to keep to their
neighbors. Note, that without the distance regulating force the
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TABLE 2 | Default model parameters. If figures represent simulation with a
different set of parameters, it is explicitly stated in the caption. The units are
given in general length L and time T units.

Variable Speed in Collective Movement

2.5.3 Parameter Choice and Boundary Conditions
All simulations are performed with no boundary conditions (open
space) and the model parameters are summarized in Table 2. The

Single Collective length scale is defined by the preferred distance 7, = 1, which can be
oreferred speed  vo 1 [UT]  group size N 400 ] associated to the dey size. Wlth a .prefell’red speed of Vo= 1 the agents
speed relaxaton  f 02 [1/T]  alignment strength pwy 2 [1/T] travel on average in one time unit their preferred distance. With a
turn friction « 1 [UT] distance strength g 2 [L/T?] distance regulating force strength of y1; = 2 and 3 < 2 agents are able
angularnoise D, 1 [L*T°] distance slope mg 2 (L] to prevent a collision by stopping. The angular noise D, = 1 is the
velocity noise D, 0.4 |[L%T®] preferred distance ry 1 [

model would be purely topological [16], but it could not
reproduce the in nature omnipresent short-range repulsion
and long-range attraction [2, 27, 49, 50].

2.5.2 The Equations of Motion

By considering the self-propulsion and social forces described
above, we can write the explicit equations of motion for
individuals, which resemble the equations in [24]:

counterpart of the alignment strength y,, = 2 (same magnitude as
Ua), ie. increasing one has the same effect as decreasing the other.
Since the latter is varied in this study, the effect of both is explored.
The same holds for the velocity noise D, = 0.4 and the speed
relaxation coefficient 8. Note that with dimensionless equations,
e.g. declaring the characteristic length and time as L = ryand T =
14/vo, two parameters could be reduced. However, to allow an easier
interpretation, we refrain from doing so.

3 RESULTS

dv; (1) 3.1 Experimental Data of Individual Fish
= -y (t Fisocia v \/2Dv v t 10 . . o
dt Bvo =vi(t) + Fisocay (1) + &0 (10) The two species of fish as well as the robotic agent exhibited
de; () 1 qualitatively highly similar behavior: 1) non-negligible speed
&t v+ a<Fi'S°Cial"”(t) 2D, f‘P(t))’ an variability (Figures 2A-C), and 2) a strong decrease of

with Fi,social,v(t) = Fi,social(t) . év,i(t) and Fi,social,go(t) = Fi,social(t) .
€,,i(t) beeing the projections of the social force on the heading
direction ¢é,; and on the turning direction &,,;.

turning rate with increasing speed (Figures 2E-G), which
reflects the potential effects of inertia (see methods). Applying
the same analyses on trajectories of our model simulation, we find
the same patterns Figures 2D,H.

A RoboFish B Guppy (o Molly D Model
0.4 0.100 A 0.4
R single track
{« 0.3 4'—— all tracks 0.0754 | 0.075 1
2 |
= 0.050 - 0:050"7
0
3
° 0.025 1} 0.025 ~
a
0.000 1, _0.000 . .
40 40 0 20 40
E
40 1 F . H -
— Fl(v+a)
z 301 data T ]
e
= 20+ y .
ke
s
S 104 . J
04 . J
T T 1 T T 1 T T 1
0 5 10 0 5 10 0 5 10
v [cm/s] v [cm/s] v [cm/s] v [cm/s]
FIGURE 2| Speed and turning of individuals. The speed probability distributions P(v) for the experimental data (RoboFish, guppy, molly) and for model simulations
of individuals (A-D). Red transparent lines represent single tracks and the solid black line is the distribution of all tracks summarized. The absolute turning rate ¢ as a
function of the speed v for the different individuals (E-H). For mollies we also show the relation between turning rate speed of individuals swimming in groups of N = 4
(inset G). The parameters of the model simulations (described in Section 2.5) are listed in Table 2; Supplementary Table S5 with the difference of a turn friction of
a = 0.1. The parameters of the model fits in Supplementary Table S4.
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TABLE 3| Statistical model comparison. Akaike (AIC) and Baysian (BIC) information criterion for a model without FV; = F/v)and with (% = F/(v + &) turning-friction « for each
model-species. For the same experimental data, the model with the smaller AIC or BIC is preferable, whereby the BIC penalizes additional parameters stronger and thus
is more conservative. The values of the parameters a and F are listed in Supplementary Table S4.

RoboFish Guppy Molly Mollies (N = 4) Model
AIC BIC AIC BIC AlIC BIC AlC BIC AIC BIC
%f =F/v 780 784 949 952 656 659 194 195 483 485
%‘f: F/v+a) 711 718 864 871 625 631 181 185 445 450
A B Cc
10.76 4 q b
«Q 353
= 08 ¢ —
B 1.35 § 5 B3e
+ . T A A
g 252 0.6 9 -
© . N S
° 2 5 T
5 0.17 1 15 | 04 | 03
° Y c o S
] s . O
2 0.5 € ' 0.1
0.02 r T T T i T T T i T T T
0.1 1.4 2.7 4.0 0.1 1.4 2.7 4.0 0.1 1.4 2.7 4.0
preferred speed vg preferred speed vg preferred speed vg
D
&5 E : F
~ 39 E TOINT - E
= 0.02 i xm“j“ Tve T, 0.010
(O] ) 2 4‘1: on o L
22 3 oW z o102
g S 1 ‘\‘ 0 o U 7 > >
o 5 $ S -
g 0.01 é‘ 0.005 é’f Gins é‘
2 11 [ 7 & T 2 5
Q TEEERE—
20 T 0.00 T 0.000 T 0.00
0 0.5 1 0 0.5 1 0 0.5 1
local polarization ®g local polarization ®g local polarization ®g
FIGURE 3 | Influence of preferred speed and speed variability on polarization and speed-polarization coupling. The preferred speed v, and the speed variability
(modulated by the speed relaxation ) both affect the individual speed (A) and modulation of either of these parameters may induce orientational order marked by a high
polarization @ (B). The transition to order can be understood by a local coupling between the local average speed (v) g and the local polarization ®g, which we quantified
via their correlation Corr ({v)g, ®p) (C). The local averages consider all individuals within a circle of radius R = 3 around a focal one (red circle in inset (E). Note that
{v)gis not the local group velocity (where a positive correlation with order is trivial) but the local average of the individual speed magnitudes. The specific dependence
between local speed and order for three specific parameter choices (marked by square, circle and cross in (C) is shown for the disordered state (D), the phase transition
region (E) and the ordered state (F). A snapshot of a simulation (inset (E)) where agents with higher speed are darker colored, with parameters corresponding to the black
circle in (C). The parameters of the simulations are listed in Table 2; Supplementary Table S5.

We find for all cases a speed distribution that shows a strong
variation in speed (Figures 2A-D). The Coefficient of variation
(COV(v) = 0,/{v)) of individual speed for the different datasets
is: COV(5) = 0.92 + 28 (RoboFish), 0.57 + 0.1 (guppy), 0.92 + 0.78
(single molly), 0.68 + 0.03 (model).

The model-fit to explain the four datasets was significantly
(AAIC € [31, 85], ABIC € [28, 81]) improved by taking turning
friction into account (Figures 2E-H; Table 3; same for the group
molly data: inset Figure 2G).

3.2 Collective Level Consequence of Speed
Variability

The individual turning of our simulated agents resembles
qualitatively (in terms of the functional dependence on
speed) the behavior of real fish. This allows us now to

explore how social interactions in combination with variable
speed and turning restriction affect collective behavior in groups
with N = 400.

3.2.1 Order Induced by Individual-Level Speed and
Speed-Variation

Animals can vary in their preferred speed vo, but also in their
speed variability over time. We parametrized the latter by the
speed relaxation coefficient f (see methods). For socially
interacting agents, we find the mean individual speed {v)
close to the preferred speed v, but only in the ordered state
(Figures 3A,B). Interestingly, it is possible to change groups from
an ordered to a disordered state by just changing the preferred
speed and/or the speed variability. As shown for real, robotic and
simulated fish (Figures 2E-H) individuals’ turning rate is slower
the higher their speed. This causes rotational random forces to be
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damped for groups with larger speeds, facilitating order due to
inertial restrictions on turning (Figure 3B).

In contrast, large speed-variability (low ) may lead to
disorder, while a narrow individual speed distribution (large /)
induces order. If the speed of an agent can vary, the velocity
alignment can reduce the average speed of individuals: A focal
agent i matches its velocity (direction and magnitude) with the
mean velocity of its neighbors {v)y,. However, for finite levels of
directional fluctuations [{v)y|=v;, in other words, it will
decelerate due to an effective social friction associated with the
speed matching of the alignment interaction [24]. The reduced
speed allows a faster turning and consequently enhances the
angular noise and therefore disorder (Figure 3B). Thus, in any
collective system where individuals also match their speed and
not only their orientation to the local neighborhood, a group can
be in different collective states only depending on the individuals’
speed variability. We numerically confirmed that if agents only
align their orientation and do not match their speed, the change
in order by a different speed variability does not exist.

The speed variability has another highly robust emergent
consequence. It allows agents of the same collective to differ in
their instantaneous speed and since higher speeds induce order,
we observe correlations on the local level between mean
individual speed {v)x and local polarization @y with R as the
radius of the circle from which the average is computed (Figures
3C-F). Please note that as we consider individual speed, the above
correlation is different from the trivial correlation between local
polarization and local group speed. The correlations between
individual speed and local polarization is always positive and
largest at the transition between disorder and order. The latter is a
signature of phase transitions, where the susceptibility, i.e. the
response to weak signals/fluctuations, is maximal. It means that
information encoded in speed is best translated to a directional
response at the transition region, and vice versa (likely to be
beneficial in collective computation tasks).

The local coupling is an emergent consequence of the
fundamental dependence of turning on speed. Thus, it is
highly robust and the qualitatively same non-linear functional
form was observed in experiments (compare Figures 3D-F with
Figure 1 in [25]). Most importantly, it weakens with low speed
variability (Figure 3C) and does not exist for fixed speed models.

3.2.2 Mean Speed and Cohesion in Different Collective
States

We have demonstrated above that the preferred speed and its
variability can induce an order-disorder transition. Now, we keep
the preferred speed fixed at vo = 1 and change the alignment
strength p1,;,. By repeating this for different speed relaxation 8 we
investigate how the collective behaves in the ordered and
disordered state (controlled by ., under different speed
variabilities.

The higher the speed variability of individuals, the larger
alignment strengths are necessary for the collective to reach
the ordered state (Figure 4A). This shift of the phase
transition is more clearly depicted by shifting peaks of the
susceptibility y (Figure 4A inset), which is defined by the
fluctuations of the polarization y = N (D3 = (D).

Variable Speed in Collective Movement

The collective phase transition impacts the individual
dynamics as well: The mean individual speed {v) shows a
distinct minimum at the transition which vanishes for a high
speed variability (8 = 1, Figure 4B). The minimum in speed is
related to the velocity alignment where a focal agent adjusts its
velocity v; to the average velocity vector of its neighbors {v)y.. In
the disordered state {v)y, =0, ie. the alignment interaction
induces an effective social friction — yu,v; and thus slows the
focal agent down [24]. It changes at the disorder-order transition
where the neighborhood of each agent becomes increasingly
polarized with increasing alignment strength. However, since
there is always noise on the heading direction [{v)y,|< vy,
even in the strongly ordered state the individual speed is
below the preferred speed v,,.

A very general qualitative change from fixed to variable speed
can be observed in the group cohesion close to the phase
transition. The area of the convex hull of the collective is
maximal at the transition for fixed speeds. This maximum
becomes less pronounced and finally vanishes with increasing
speed variability (Figure 4C). The same holds for the nearest
neighbor distance (Figure 4C inset). At the transition the
directional correlation of the agents is maximal (ie.
susceptibility peaks, Figure 4A inset) and the directional
fluctuations cause subgroups of the collective to head in
different directions, leading to an expansion of the collective
[19]. This expansion weakens with increasing speed variability
because the distance regulating force can now lower the speed
from a subgroup if it moves away from the shoal, effectively
inhibiting expansion. A common consequence of weak cohesion
is an increased probability for groups to split. However, for
simplicity we assumed an unlimited attraction and alignment
range, disabling fragmentation. The trend, that groups with a
higher speed variability are more cohesive, is most striking at the
transition, but holds in general in our model.

3.2.3 Group Size Dependent Effects

Group size is among the most biologically most important and
variable parameters in the context of grouping. Thus, we
investigate in this last part how group and individual measures
change with group size N.

For low speed variability, the polarization remains high ® < 1
independent on N. If speed variability is high, polarization
decreases with increasing group size and we expect ® — 0 for
even larger N (Figure 5A). Note that only in a narrow range close
to the transition (marked by a large susceptibility, Figure 5B), the
polarization saturates to intermediate values for large groups. The
order-disorder transition for intermediate values of speed
variability (f8), is of the same nature as discussed for Figure 3A.

It is of particular interest, given that the size of animal groups
is a key parameter of collective behaviour, if there is a specific
threshold where the collective patterns of the system show a
qualitative change. We find that when modelling agents with high
speed variability, the mean individual speed {v) in our model
undergoes a sudden change at N = 3 (Figure 5C). Until N = 3 the
individual speed {v) is larger than v, and saturates towards v,
with decreasing speed variability. The reason for {v) > v, is
that the speed distribution of individuals is asymmetric, with a
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long-tail at large speeds but cutoff at low speeds at v = 0 (Figures
2A-D), i.e. a maximum of the distribution is at v = v, but the
mean is larger. For larger groups with N > 4, the speed is lower
than the preferred speed but saturates also to v, in the fixed speed
limit (8 — ©0).

This abrupt change can be understood through the
interplay of individual dynamics and fundamental property
of the interaction network: 1) A focal agent decelerates
stronger the more its heading deviates from the average
polarization of its neighborhood, i.e. dv/dtoc @y, -é,; -1
(derived in Supplementary Material Section III). 2) For
Voronoi-type interactions and for group size N < 3, we
have an all-to-all interaction network, which is not the case
for N > 3. The second point is illustrated in Figure 6, where for
N >3 asetD; of agents disconnected from the focal agent i can
exists, i.e. D; = A \ (N;U{i}) # @ for N >3 with A as the set of
all agents of the group. We confirmed this by computing the
average number of neighbors during the simulations
(Figure 6).
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FIGURE 6 | Qualitative topological change with group size. Average
Voronoi neighbor number for different group sizes. The dashed purple line
(inset) marks the numbers of neighbors of a fully connected group. lllustrations
of atypical spatial constellation for a group of size N = 4. The focal agent

(0), its neighbors (1, 3) and an agent that is not connected to the focal agent (2)
are shown. Note that only for group sizes N > 3 the latter exists, which
hampers directional synchronization of the collective. The parameters of the
simulations are listed in Table 2; Supplementary Table S5 with the
difference of a preferred speed of vO = 2.
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In summary, for N < 3 we have an all-to-all coupling, thus all
agents receive the same social input, whereas for N > 3, centrally
located individuals receive “independent” social inputs from
different neighbors on different sides, which are not neighbors
themselves, i.e. are not directly interacting. Thus, for N > 3 the
centrally located individuals seek a compromise between two
independent sources of information. As a consequence, the
neighborhood of a focal agent located on the edge and the
edge-agent itself, agree less in velocity. This results in slowing
down the focal edge-agent, which in turn feeds back on the group
behavior. To support this explanation we computed the vector
product @y, - €,; which shows a sudden decrease from N = 3 to
N = 4 (Supplementary Figure S1).

4 DISCUSSION

We provide detailed empirical insights of speed variability in fish,
providing evidence that inertia together with rotational friction
explain the reduced turning ability of individuals at higher
speeds. With our model that incorporates both, we explored the
effect of speed variability on the emergent collective behavior. We
found, among others, that 1) besides differences in (average) speed,
also differences in individual speed variability (keeping preferred
individual speed constant) can result in a change in polarization, 2)
local coupling between speed and order is largest at the order-
disorder transition, 3) individual speed variability decreases speed
and increases cohesion at the phase transition and 4) the mean
individual speed drops suddenly at a threshold group size (N > 3) but
only at sufficiently high speed variability, which is intrinsically linked
to the fundamental structure of the interaction network.

Our finding that higher speeds increase the polarization, is
explained by the decrease of individuals turning rate at higher
individual speeds that will inhibit individual directional noise,
and thus facilitate stronger group polarization. Importantly, this
speed-dependent turning effect comes on top of previously identified
positive impact of higher speeds on group order [3]. The transition
from ordered to disordered motion with speed was reported in
experiments [22, 25, 29, 31]. However, corresponding models
incorporating a dependence of turning rate on speed were based
on fitting experimental data and not on the fundamental physics of
inertia and rotational friction (see e.g. [22, 25]). This order-disorder
transition induced by speed might enhance collective computation,
such as the collective gradient sensing reported in golden shiners [1]:
Fish swam fast in brighter and slow in darker regions and due to
cohesion could collectively stay in the shade. A variable speed model
that correctly accounts for inertia, could enhance the tendency of the
collective to stay in the desired environment because there, low
speeds increase disorder and thereby further decrease group speed
prolonging the time in shade.

Additionally, we found that individual speed variability as well
can change the polarization. The reason behind this dependence
is speed matching, part of the social velocity alignment, that can
lead to a decelerating social friction, where an agent adapts to the
mean local group speed of its neighborhood [24]. We confirmed
numerically (not shown) that this dependence vanishes if agents
only align their orientation but do not match their speed.

Variable Speed in Collective Movement

However, 1) this leads to extremely elongated groups that are
unable to stay cohesive which is biologically unrealistic, 2) if
agents ignore the speed of their conspecifics, flight cascades [51,
52] would not exist and 3) speed matching is experimentally
confirmed for fish [3, 39]. Thus, our implementation of the
alignment force, which incorporates speed matching, is very
justified, and thus we also expect that the polarization
dependence on speed variability is robust (implying our
related findings as group size influence on speed and
polarization).

We report a maximum of the local correlation between
polarization and speed at the disorder-order transition and
therefore elaborate the connection to collective computation by
supporting the criticality hypothesis [53, 54]: information
encoded in speed is most strongly linked to directional
information at the transition, or the “critical point”. In other
words, individuals within a group show the strongest response to
directional information via speed adaptations and vise versa at this
transition. We also found that a minimum in cohesion at the
transition exists for fixed-speed models, but weakens or even
vanishes with increasing speed variability. This has important
implications for studies that investigate collective behavior at
criticality [19]. For example, a weak cohesion is associated with a
high probability of group splits (smaller group size) and lower
densities. Both effects decrease the defense against predators
(safety in number [55], confusion effect [56]) and thus make the
transition region less biological favorable. This effect would weaken/
vanish in a variable speed model. Bode et al. [36] predict an opposite
effect of speed variability on cohesion in a burst coast model where
the speed variability is modulated via the length of the bursts (phases
of acceleration), whereby they refer to fish with shorter bursts as
more agitated fish. Shorter bursts allow more direction changes per
time and thus also a better response to positional information of con-
specifics, enhancing cohesion while reducing speed variability. This
discrepancy shows, that it is important to clarify in future research
how the general speed variability (explored in our model) plays
together with the characteristics of distinct movement phases.

In our model with a high speed variability (low f3), we observe
a decrease in polarization with increasing group size. Linking our
results again to criticality: only at the disorder-order transition
does the polarization saturates for large groups to intermediate
Recently, the same functional dependence was
experimentally observed and reproduced in a model with only
pairwise interactions [23]. Thus, we present an alternative
explanation only based on variability in individual speed. In
general, specific experimental data can be mimicked by a
multitude of models which differ strongly in their microscopic
interactions [21, 28, 57-59]. However, those models are most
often fit to a specific experimental setup, i.e. to a certain group
size, tank size and depth, and need to be recalibrated if the setup
changes [22]. We avoid this with a distance regulating and
alignment force that have simple, yet generic forms motivated
by experimental observations [2, 27, 49, 50]. Additionally, we
ensured robustness of the local coupling by repeating the
simulations with circular reflecting boundary conditions.

We report a sudden speed decrease in our variable speed model at
a critical group size of N = 3, linked to a transition from an all-to-all

values.
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network to a distributed spatial network. It might offer alternative
means to test hypotheses about the underlying interaction network
in real animal groups [48, 60]. In our model Voronoi-interactions
cause the specific size threshold at N = 3, but for example for
k-nearest neighbor interaction a group is all-to-all connected up to a
threshold size directly set by k, i.e. for N < k. However, in order to
observe this qualitative change the neighbors also need to match
their speeds [3, 39] instead of only matching their movement
direction, but, as discussed above, this assumption is reasonable.
There might be also other limitations to this approach (e.g. we
assume individual behavior does not change with group size [59]),
however the emergent speed-interaction network coupling clearly
shows how taking into account variable speed may introduce novel
effects at the group level via the self-organized interplay of speed and
orientation dynamics and social interactions.

To summarize, we have shown that speed variability affects
polarization (on the local- and group level), cohesion (especially
at the order-disorder transition) and can lead to new emergent
transitions at specific groups sizes. Thus, we conclude that
extreme caution should be taken when drawing strong
conclusions on collective behavior of animal groups based on
agent-based models with fixed speed.
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