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In human and animal groups, social interactions often rely on the transmission of
information via visual observation of the behavior of others. These visual interactions
are governed by the laws of physics and sensory limits. Individuals appear smaller when far
away and thus become harder to detect visually, while close by neighbors tend to occlude
large areas of the visual field and block out interactions with individuals behind them. Here,
we systematically study the effect of a group’s spatial structure, its density as well as
polarization and aspect ratio of the physical bodies, on the properties of static visual
interaction networks. In such a network individuals are connected if they can see each
other as opposed to other interaction models such as metric or topological networks that
omit these limitations due to the individual’s physical bodies. We find that structural
parameters of the visual networks and especially their dependence on spatial group
density are fundamentally different from the two other types. This results in characteristic
deviations in information spreading which we study via the dynamics of two generic SIR-
type models of social contagion on static visual and metric networks. We expect our work
to have implications for the study of animal groups, where it could inform the study of
functional benefits of different macroscopic states. It may also be applicable to the
construction of robotic swarms communicating via vision or for understanding the
spread of panics in human crowds.
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1 INTRODUCTION

The emergent collective behavior of animal groups, or more generally multi-agent systems, is
decisively shaped by the underlying networks of social interactions [1–3]. These networks may
strongly differ in their spatio-temporal embedding and topology depending on the type of interaction
or the behavior of interest. For example in humans, online social networks have no, or only very
weak, relation to physical space and interactions typically do not depend on instantaneous
communication [4,5]. On the other hand, contact networks governing the (direct) spread of
pathogens between individuals [6,7] or interaction networks governing the collective movement
of human crowds [8–10], represent examples of spatial networks with a tight correlation between
spatial and temporal distance of individuals and the probability (or strength) of corresponding
interaction links. In non-human animals a similar variety of networks can be observed ranging from
mating and hierarchy networks [11] to strongly spatio-temporally constrained interaction networks
underlying the collective movement of fish schools [2,12], bird flocks [1,13] or insect swarms and
colonies [14,15]. Especially in large animal collectives many inter-individual interactions forming the
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basis for coordinated collective movements [16], collective
decision making [17], or spread of information [12] are
directly governed by spatio-temporal proximity.

Typically, spatially embedded interaction networks between
biological agents are modelled either via metric network models
[17], where the probability of a link (or its strength) depends only
on the inter-individual distance, or by topological models [3,18]
where a focal agent is connected to a set of spatial neighbors based
on their distance rank in comparison to all others, as e.g., in the k-
nearest neighbor network model [1,3], but where the actual link
probability (or strength) does not dependent on the absolute
physical distance. In the past, most agent-based models assumed
metric interaction networks, but after evidence for topological
interaction in starling flocks has been presented by Ballerini et al.
[1], corresponding topological interaction networks have received
increased attention in the context of collective animal behavior.

However, the discussion of these two idealized models of
interaction networks largely ignores the constraints set by
different sensory and cognitive mechanisms underlying social
interactions (see e.g., [19]). Vision mediated interactions play an
important role for a wide range of social phenomena [2,8,20,21].
In particular, visual interaction networks accounting for visual
occlusions have been shown to outperform both metric and
topological interaction networks in describing collective
behavior of fish [2]. Acoustic communication, on the other
hand, which shapes social behavior of many animals [22,23],
is not affected by the same constraints as vision (e.g., occlusion at
high densities) but depends mainly on sensory limits and
properties of the medium. Here, metric interaction networks
may provide a simple model for acoustic social interactions.
Finally, topological interaction networks with a limited
number of nearest neighbors have been recently discussed in
the context of cognitive constraints regarding the number of
neighbors (or objects) a focal individual can pay attention to [3].

Although the importance of visual interactions has been
highlighted in recent research [2,12], there is a lack of
systematic investigations of the structure of visual networks, in
particular with respect to their ability to transmit information and
behavior. Here, we address this gap by comparing static visual
networks with the established metric and topological models
which, as discussed above, may represent different sensory
and/or cognitive constraints.

Comparing different types of networks quantitatively is
challenging and even more so when networks represent social
interactions based on different sensory limits which will be
unique for a given biological agent and environment and can
not generally be related to each other (i.e., some species may be
able to hear further than they can see while for others the opposite
may be true). While a common approach is to quantitatively
compare networks of similar average degree (i.e., average number
of interaction partners per individual) this may not yield the most
relevant insights into biological systems where sensory limits may
be fixed and tuning them to achieve a certain number of
interactions may not be possible. It is known though that
animal groups can quickly modify their spatial density of
individuals in response to changes in the environment, e.g.,
related to predation risk [20,24] which in turn influences

network structure. Thus besides the common approach of
quantitatively comparing networks of similar degree, we also
especially focus on a qualitative comparison of the networks
dependence on the spatial density of individuals.

First, we study structural differences between the three
network types using static network measures that have been
used to classify and compare different types of networks
[25,26]. We then move beyond pure structural network
analysis and compare the dynamics of a simple and a complex
SIR-type contagion process spreading on the static visual and
metric networks. This approach is motivated by observed
collective behaviors for which a time-scale separation exists,
where the spread of information is much faster than any
changes in the interaction network, as e.g., in the escape
response in fish [12] or flight initiation in birds [27]. Through
the general and simple framework of the two contagion types it
also provides first insights into the potential impact of network
structure on information transfer more generally. While simple
contagion may be viewed as a minimal model for information
diffusion in animal interaction networks, complex contagion
describes the spread of behaviors or emotions where
simultaneous, non-linear reinforcement by multiple neighbors
is at play, as observed e.g., in escape waves in schooling fish [12]
and various quorum responses [28].

Our work demonstrate the fundamental difference of visual
networks in terms of structural parameters in comparison to
metric and topological interaction networks. In particular, visual
networks exhibit qualitatively different behavior in response to
density modulation. Second, we demonstrate that these structural
differences result in characteristic deviations in the dynamics of
the two contagion processes on visual and metric networks.

2 METHODS

In order to investigate and compare the influence of spatial
structure on properties of and dynamics on visual networks
we will construct visual, metric and topological networks in
two dimensional space. Here, we first discuss how we generate
and characterize the spatial distribution of individuals, i.e., the
network nodes. We then move on to explain the construction of
the different spatially-embedded networks and the network
measures we will use to characterize them, before introducing
the two contagion models that we use to investigate the transfer of
information or behaviors on these networks.

2.1 Network Construction: Spatial
Distribution and Shape of Nodes
We initially place N � n2 nodes on an n by n two dimensional
square grid with distance g (measured in body length) between
nearest neighbors. This setup creates a homogeneous density
controlled via the parameter g. To yield more realistic
distributions we add positional noise, ηx, ηy ∼ U(−ηpos, ηpos),
drawn from the uniform random distribution between ± ηpos
which we also scale by a factor g. Thus, node positions are
given by
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�ri � xi

yi
( ) � g

nx + ηx
ny + ηy

( ) (1)

where nx, ny ∈ (0, 1, . . . , n − 1) with i � nnx + ny. Here, we only
consider values of ηpos up to 0.5 to ensure that the density stays
relatively homogeneous which allows us to systematically study
its effect on the networks by varying g. Note that in the limit of
large noise ηpos, the random placement of agents will correspond
to the simple two-dimensional spatial Poisson process.

Throughout this work we mainly characterize spatial
distribution of nodes by density and polarization. We estimate
spatial density, ρ, via the average third nearest neighbor distance,
�r3nnd, a measure which describes the average radius of a disk
containing four individuals (the focal individual and its three
nearest neighbors, for a sketch see SI). An estimate of the local
density which is relatively robust with respect to positional noise
is thus given by

ρ � 4
π�r23nnd

. (2)

Inspired by the elongated body shape of fish, single agents are
represented by identical ellipses of length 1 and width w with
orientations ϕi that are drawn from a von Mises distribution

f(ϕ|μ, κ) � eκ cos(ϕ−μ)

2πI0(κ) (3)

where μ � 0 is the average, I0(κ) is the modified Bessel function of
order 0 and κ a parameter that defines the width of the
distribution (here we use κ � 0.1, 1.7, 31.6). Note that because
ellipses are of length one, density is measured in inverse squared
body length (BL). We characterize the group’s polarization
(degree of orientational order) by the absolute value of the
normalized sum of all orientation unit
vectors ϕi

→ � (cos(ϕi), sin(ϕi))T

Φ � 1
N

∑N
i�1

ϕi

→∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ . (4)

To eliminate overlap of the ellipses (to keep the group strictly
two dimensional) we use simulations of ellipse shaped particles
based on the code provided by [29]. These particles repel each
other with a force proportional to their overlap area and we let
them settle into a non-overlapping configuration (see SI). Thus
there is a upper limit to density given by the physical bodies of
the nodes. An example of a spatial configuration generated
using g � 1.4, ηpos � 0.5, N � 36, κ � 0.9, w � 0.3 is shown in
Figure 1B.

2.2 Network Construction: Edges
The three network types considered in this work are distinguished
exclusively via the rules for the construction of links based on
spatial positions of the ellipse shaped bodies, i.e., the network
nodes. We limit ourselves to binary networks with the adjacency
matrix given by

Aij � 1 if there is a link from i to j
0 otherwise

{ . (5)

The decision rule determining if a link from i to j exists
depends on the type of network and is explained in the following
paragraphs. An illustration of the connection rules can be seen in
Figure 1A. Figure 1B provides an example of each network type
for N � 36, where the same positions and orientations of ellipses
are underlying each network and respective thresholds are chosen
such that the total number of links is identical between networks.

2.2.1 Visual Networks
In a visual network a link from node i to node j exists if i is visible
to j. To account for sensory and/or cognitive limitations an
individual i must have an angular area (defined below) in the
visual field of j that is above a certain threshold, θvisual, in order to
be visible to j. This threshold parameterizes our visual network
model

Avisual
ij � 1 if αij ≥ θvisual

0 otherwise
{ . (6)

The angular area, αij, is the angle that the visible part of an
ellipse i occupies in the visual field of j. Thus if i is partially
occluded by other ellipses k then the visual threshold applies to
the partially visible portion of i. We determine the angular area
through a combination of analytical calculation of the
unobstructed (occlusion-free) visual angle of i in the visual
field of j, αfreeij , with a numerical casting of rays at angles
specified by the analytics to determine occlusions (for details
refer to the SI and Leblanc [30]). As a result of partial occlusions
the angular area, αij is thus smaller than that of the unobstructed
ellipse, αij ≤ αfreeij . Figure 1A illustrates the visual field of a central
ellipse as shaded areas. Here, angular areas larger than the visual
threshold, θvisual � 0.43, are illustrated by the angles of the purple
shaded areas while those smaller than the visual threshold are
shaded light grey. The effect of a partial occlusion on the angular
area can be seen for the bottom left ellipse and a more detailed
illustration of angular areas including other cases of partial
occlusions can be found in Supplementary Figure S3 of the
SI. Correspondingly, it can be seen in Figure 1A that the central
individual only has incoming links from those individuals with αij
≥θvisual. Because visibility is not necessarily reciprocal, visual
networks are generally directed. Note that for simplicity, we
assume each ellipse has 360° vision from a single eye located
at the center of the ellipse.

2.2.2 Metric Networks
In a metric network two nodes are connected if their Euclidian
distance, rij � |ri→− rj

→|, is smaller than the metric threshold,
θmetric [31]

Ametric
ij � 1 if rij ≤ θmetric

0 otherwise
{ . (7)

This rule is illustrated in Figure 1A, where a focal individual
(white) has incoming links from all individuals within a radius of
θmetric (marked by a shaded circle). Because rij � rji metric
networks are undirected. Note that, when not considering
occlusion, visual networks can also be understood as having a
metric interaction range because the visual threshold sets an
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upper limit for the interaction distance. The exact distance at
which the angular area of an ellipse drops below the visual
threshold, will of course depend on its orientation and width
(see SI). When needing to construct the visual threshold resulting
in an equivalent effective cutoff distance for visual networks as in
a certain metric network, we therefore averaged over all possible
relative orientations for a specific value of w (see SI).

2.2.3 Topological Networks
In a topological network node i has incoming links from its θtopo
nearest neighbors, chosen successively by increasing Euclidian
distance. If we assign each individual j a closeness rank, kij, with
respect to individual i as kij � |{m|rim < rij}| + 1 where ‖ denotes
the set’s cardinality (number of elements in the set) we can write
the construction rule as

Atopo
ij � 1 if kij ≤ θtopo

0 otherwise
{ . (8)

The connection rule is illustrated in Figure 1A, where
individuals close to a focal individual (white) are labeled
according to their closeness rank and the focal individual has
incoming links from those with a closeness rank up to θtopo � 2.
Because closeness rank is not necessarily reciprocal, topological
networks are generally directed as can been seen in the example in
Figure 1B.

2.3 Network Measures
To assess and compare the structural properties of the different
networks we use three well-established measures, the average in-
degree, the average clustering coefficient and average shortest

FIGURE 1 | The different network types: (A) illustration of rules determining incoming network links of the central individual (white). Left: visual angles needs
to be larger than a threshold value, θvisual �0.43, (purple shaded areas indicate visual angles that fulfill this requirement, light grey ones do not, threshold chosen
very high for the purpose of illustration). Center: metric distance between individuals needs to be below a certain threshold (indicated by a circle). Right:
incoming links are coming from fixed number of nearest neighbors (here 2) for the topological model. Numbers indicate closeness rank. (B) Examples of
the different networks for g � 1.4, ηpos � 0.5, N � 36, κ � 0.5, w � 0.3 using the same positions, orientations and total number of links (thresholds: θvisual � 0.254,
θmetric � 2.1035, θtopo � 5, yielding 180 directed links). (C) Average in-degree as a function of density for different threshold values indicated by line color. The
average in-degree of the different network types show a very distinct dependence on density. (D) Influence of ellipses, aspect ratio on avg. in-degree for
different density regimes indicated by line color for fixed thresholds, θvisual � 0.05, θmetric � 8, θtopo � 5. At low density circles (aspect 1) are visible over larger
distances leading to an increase in average in-degree. At high densities, elongated ellipses (high aspect ratio) cause fewer occlusions which in turn increases the
average in-degree. N � 225 in (C) and (D).
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path length. These measures have been used widely to classify and
compare different types of networks (see e.g., Newman [25];
Barthélemy [31]) and are known to influence contagion
processes, with shorter paths enabling a faster spreading of a
simple contagion process and a higher clustering leading to a
more robust spreading of a complex contagion process [32]. We
calculate the latter two quantities using themethods implemented
in Python’s networkx library [33].

2.3.1 In-Degree and Out-Degree
The in-degree dini of a node i is defined as the number of its
incoming links, dini � ∑j≠iAji. The average in-degree is given by
�d
in � 1

N∑N
i�1d

in
i . The out-degree is analogously defined as douti �∑j≠iAij.

2.3.2 Clustering Coefficient
In an undirected, unweighted network the clustering coefficient
of node i describes the probability that two neighbors, j and k of
node i are also linked among each other. This is calculated by
dividing the number ti of all triangles of actual links formed by i
by the number Ti of all possible triangles that could be formed by
i. Here, we use the following simple extension of this measure to
directed graphs from Fagiolo [34]:

ci � ti
Ti

�
1
2
∑j≠i∑k≠(i,j) Aij + Aji( ) Aik + Aki( ) Ajk + Akj( )

dtot
i dtot

i − 1( ) − 2d↔
i

dtot
i � din

i + dout
i , d↔

i � ∑
i≠j

AijAji .

(9)

The average clustering coefficient of a network is then given by
1
N∑N

i�1ci.

2.3.3 Average Shortest Path Length
The average shortest path length describes the average minimum
number of steps on the network needed to get from a node i to a
node j. It is defined as

a � 1
N(N − 1) ∑i,j d(i, j) (10)

where d(i, j) is the length of the shortest path between nodes i and
j. We use networkx’s implemented algorithm
average_shortest_path_length to determine the value
for a where possible (networks need to be weakly connected).

2.3.4 Relative Link Length
While the shortest path measures the topological distance
between nodes in spatial networks the link length, lij � rij if Aij

� 1, measures the Euclidean distance between two connected
agents. In order to make link length comparable across densities,
we measure link length in units of the longest possible link, lmax,
in the group. For the grid configuration used in this paper this
relative link length is given by

lrelij � lij
lmax

� rij
g

�
2

√ ( ��
N

√ − 1) . (11)

2.4 Contagion Models
We investigate two models, one of simple and one of complex
contagion, to demonstrate the differential impact of the network
topology on these processes. In simple contagion, the probability
of an infection in a time interval Δt can be decomposed into the
superposition of independent pair-wise interactions between a
non-infected (susceptible) individual and its infected (network)
neighbors. In complex contagion such a decomposition is not
possible as the infection probability is a non-linear function of the
number or fraction of infected neighbors. We emphasize that
“infection” does not refer here to disease spread, but to spreading
of information or behavior. Thus, throughout this work,
becoming infected refers to an individual becoming informed
or activated (see e.g., [20]). Both types of contagion models are
studied via discrete time approximation of the continuous time
stochastic infection and recovery processes using a (small)
numerical time step Δt � 0.05. In what follows we describe the
respective processes.

2.4.1 Simple Contagion Model
Each agent within the network can be in one of three states:
susceptible S, infected I or recovered R. A susceptible agent in
contact with a single infected neighbor can become infected with
a constant probability rate β. Thus, the infection probability for
such a pair-wise contact during a short time interval Δt is pΔt �
βΔt. The total infection probability of a susceptible individual
connected to ninf neighbors during the small time interval Δt for
such a simple contagion can be calculated to:

Psc,Δt ninf( ) � 1 − 1 − pΔt( )ninf . (12)

Infected individuals transition to the recovered state with a
finite, constant recovery rate c. Thus, the average infection
duration is τinf � c−1. For simplicity, we assume that the
recovered state is an absorbing state, i.e., once recovered an
agent does not change its state anymore. Starting from an
initial state of mostly susceptible agents and a small number
of infected the epidemic spread will terminate once there are no
more infected agents in the network.

2.4.2 Complex Contagion Model
The complex contagion model is analogous to the simple
contagion model described above, with exception of the
infection probability. Here, we assume a complex contagion
process with an overall infection rate of a susceptible
individual βcc given by a sigmoidal function S(rinf ) of the
fraction of its infected network neighbors rinf � ninf/d

in with
din being the in-degree of the susceptible individual:

βcc rinf( ) � βmaxS rinf , r0( ) � βmax

1 + tanh σ rinf − r0( )( )
2

(13)

Here, βmax sets the maximal possible infection rate, σ
controls the steepness of the sigmoidal function, whereas r0
sets the inflection point of the sigmoid with S(r0) � 1/2.
For large σ ≫ 1, Eq. 13 yields a sharp, step-like function
with βcc(0) ≈ 0 and βcc(1) ≈ βmax. For σ ≈ 1, βcc(rinf) is
approximately linear with βcc(0) � βmax[1 − tanh(σr0)]/2 and
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βcc(1) � βmax[1 + tanhσ(1 − r0)]/2. For σ � 0, the infection rate
becomes independent on rinf with βc � βmax/2. The overall
probability of an susceptible agent to get infected in a short
time interval Δt is thus simply:

Pcc,Δt rinf( ) � βcc rinf( )Δt. (14)

As the infection probability depends on the fraction of infected
individuals and not on the absolute number of infected neighbors,
this model describes a fractional, complex contagion process.

3 RESULTS

In a first step we study how different network properties such as
average in-degree, clustering coefficient, shortest path length and the
distribution of link length depend on network density. We use
networks ofN � 225 individuals unless stated differently. In the case
of visual networks we find that all these measures exhibit an
interesting non-monotonic relationship with density. The choice
of density as an independent parameter is reasonable when studying
social behavior because while animals might not be able to change
individual perceptual thresholds they can usually adapt their
distance to neighboring individuals. For example fish schools
have been shown to move closer together under the threat of
predation [20].

Given that the average in-degree is modified by network density
and the in-degree in turn affects both the clustering coefficient and
the average shortest path length we then explicitly investigate the
relationship between in-degree and clustering coefficient as well as
shortest path length. Here we still find that visual networks differ
qualitatively from both metric and topological networks.

In a second step we study how these static properties affect
information propagation by comparing the speed and reach of
simple and complex contagion processes through visual and
metric networks. Finally, we use the contagion processes to show
examples of anisotropy in contagious spreading that can be observed
in visual networks for certain combinations of density and sensory
limits and are absent in metric networks. For the study of anisotropy
we use larger networks of N � 400 individuals.

3.1 Density Dependence of Network
Properties
3.1.1 In-Degree
Figure 1C shows the average in-degree as a function of spatial
density of individuals for all three network types and various
sensory thresholds. In the case of topological networks the in-
degree is not affected by density due to the constraint that an
individual can only interact with a fixed number of neighbors
independent of their distance. For metric networks average in-
degree increases with density. This is explained by the networks,
construction where every individual is connect to all other
individuals within a fixed range and naturally, the number of
individuals within this fixed interaction radius increases with
density.

Visual networks, on the other hand, exhibit a different
relationship between density and average in-degree: depending

on the visual threshold the average in-degree either
monotonically decreases with density (very small visual
thresholds) or exhibits a maximum at intermediate densities
(higher visual thresholds), the exact position of which depends
on the value of the visual threshold. The decrease at high densities
is due to occlusions in the visual field that become more
prominent at high packing fractions and constrain visual
interactions. The decrease at low densities is the result of the
non-zero visual threshold. Individuals need to occupy a certain
angular area in the visual field of a focal individual before they
become connected and this requires them to be within a certain
distance to it. This behavior is similar to that of the metric
network with the maximal interaction radius being determined
by the visual threshold and the projected body size of the
individual. Since this projected body size heavily depends on
the ellipses aspect ratio, Figure 1D takes a closer look at the
variation of average in-degree with aspect ratio, which is 10

3 ≈ 3.3
in Figures 1A–C and throughout the rest of this paper.

In topological and metric networks the average in-degree does
generally not depend on the ellipse shape. An exception is the case
of metric networks at high density, where for elongated ellipses
(high aspect ratio) the average in-degree increases because ellipses
can move closer together with a high aspect ratio and thus slightly
increases the average in-degree by increasing the number of
individuals that can fit within a fixed interaction radius. For
visual networks one observes a strong dependence of in-degree on
aspect ratio at all ranges of density. For high densities elongated
ellipses (high aspect ratio) lead to less occlusions and thus a
higher average in-degree. For low densities, circles (aspect ratio 1)
remain visible best at large distances, leading to a higher average
in-degree for small aspect ratio. At intermediate densities these
two opposing effects can lead to a maximum of the average in-
degree at intermediate aspect ratios.

Note that throughout this study we vary density and network
thresholds only within limits that result in at least weakly
connected networks. This yields to a lower limit on density for
each threshold which becomes apparent in our results, i.e., in the
line corresponding to a 2 BL in Figure 1C ending at a density of
roughly 0.1 BL−2. Where possible, we consider densities from 0.01
to 2 BL−2. This covers a range of densities we can roughly estimate
from reported nearest neighbor distances and body length for
different animal species.

Juvenile golden shiners, schooling freshwater fish with an
average body length of 5.5 cm, exhibit median (first) nearest
neighbor distances of roughly �r1nnd � 3 to 7 cm [20]. Using ρ �
2/(π�r21nnd) in analogy to Eq. 2 this results in a density of roughly
0.4 to 2.1 BL−2. Buhl et al. [35] states the density of marching
desert locust as ranging from 20 to 120 with an average of
50 locusts/m2. Assuming an average body length of 7.5 cm
[36] this corresponds to a density of roughly 0.1 to 0.7 with
an average of 0.3 locusts/BL2. Lower densities are observed for
starling flocks where the average nearest neighbor distance lies
between 0.68 and 1.51 m [1]. Common starlings have a body
length of roughly 20 cm and a wingspan of roughly 35 cm [37].
For the sake of comparability we calculate a two-dimensional
density using the reported nearest neighbor distance in three
dimensions (which is likely lower than that in two dimensions)
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and 20 cm as body length, yielding an estimated range of density
from 0.01 to 0.06 starlings/BL2. We want to stress that these are
only very crude estimates of density to give the reader an
qualitative impression of where different animal species are
located in the considered density range. They do not
constitute a rigorous scientific measurement of density.

3.1.2 Other Network Measures
We study the effect of network density on the average clustering
coefficient, the average shortest path length and the distribution
of relative link lengths, measures that have proven useful in
characterizing types of spatial networks [26] and thus allow us
to contextualize visual networks in the broader landscape of
spatial networks.

Figure 2A summarizes the effect of spatial density of
individuals on the average shortest path length for all three
network types and the same sets of thresholds as in Figure 1.
For topological networks the length of the shortest path is
unaffected by network density. In metric networks the average
length of the shortest path decreases monotonically with
increasing density, which can be explained by the
simultaneous increase in in-degree (see Figure 1C). In visual
networks the average shortest path can exhibit a minimum, the
position of which depends on the visual threshold and roughly
matches with the maximum in the average in-degree (Figure 1C).

Figure 2B shows the effect of density on the average clustering
coefficient. For topological networks the clustering coefficient
depends only on the threshold, θtopo, and shows no density
dependence. For metric networks the clustering coefficient
increases monotonically with density. This can again be
explained by network construction: since every node is
connected to all nodes within a radius prescribed by the
threshold, two neighbors of the same node are also likely to be
close to each other and thus share a connection. In the case of
visual networks, the clustering coefficient exhibits a non-
monotonic relationship with density. In particular, for some
threshold values we find a maximum at low densities followed
by a (threshold independent) minimum at intermediate density
values.

Average relative link length, depicted in Figure 2C, varies with
density similarly to the average in-degree, shown in Figure 1C.
Qualitative differences between the link length distributions of
the different network types, which are not adequately captured by
the average, can be seen in an example in Figure 3C and the SI.

3.2 Quantitative Comparison of Network
Types
While we have observed a variety of changes in networks measures
with density, we have also found that they can to a large degree be
explained by changes in the average in-degree. It is thus important
to discern how much of this difference between network types
persists when the average in-degree is kept fixed. The results,
shown in Figure 3, represent averages over all densities.

Figure 3A depicts the average shortest path, which decreases
as networks become more densely connected with little difference
between metric and topological networks. In visual networks,
however, shortest paths tend to be shorter, especially at low to
intermediate in-degrees. This decreased average shortest path
length can most likely be explained by the presence of long links
allowing shortcuts between spatially distant nodes (see
Figure 3C).

Figure 3B shows that for all three network types the average
clustering coefficient increases with the number of incoming links
per node. Again, there is little difference between metric and
topological networks, whereas over a wide range of in-degrees the
clustering of visual networks is substantially lower. This
phenomenon can be partly explained by the presence of long-
range connections breaking local clusters (cf. [38]). Additionally,
local clustering structure is disrupted by the visual blocking of
neighbors on either side of an individual. At very high average in-

FIGURE 2 | Density dependence of network measures: (A) Average
shortest path length as a function of density for all three network types. In
visual networks the shortest path length assumes a threshold dependent
minimum. In metric networks shortest path length decreases with
density. In topological networks no density dependence is observed. (B)
Average clustering coefficient as a function of density for all three network
types. In visual networks the average clustering coefficient assumes a
minimum at intermediate to high densities. The average clustering
coefficient increases with density in metric networks and shows no density
dependence in topological networks. (C) Average relative link length as a
function of density. Visual networks exhibit a threshold dependent
maximum while for metric networks link length increases with density.
Again, topological networks show no dependence on density. N � 225 was
used for all subplots.
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degree, when the networks become essentially all-to-all
connected, clustering approaches one. Visual networks
however, do not reach such high degrees due to occlusions.

Finally, Figure 3C, shows the average relative link length of the
different network types. While visual networks have a slightly
higher average relative link length, the difference between the
networks becomes more apparent when looking at the full
distributions, shown as an inset for an average in-degree of 50.
For comparison the distribution of the fully connected network is
added in grey. In metric networks all links up to the threshold
value are realized, where the distribution shows a sharp cutoff.
For our spatial distribution of relatively homogeneous density,
topological networks include all links up to a certain length and
then show a fast decay in the distribution. The distribution of
visual networks shows amuch slower decay for higher link length,
confirming the existence of substantially longer links in visual
networks and underpinning our attribution of differences in the
other two network measures to a difference in link length and
shortcuts via a few very long links.

3.3 Density Dependence of Contagion
Processes
In Density Dependence of Network Properties we showed that the
density dependence of the visual networks structural properties is
very distinct from that of the other two network types. In order to
understand their implications for dynamic processes, we compare
the evolution of simple and complex contagion dynamics on
visual to that on metric networks. We omit topological networks
because of the independence of their topological properties from
density and their similarity to metric networks in their
dependence on average in-degree (see Figures 2, 3).

3.3.1 Simple Contagion
For a connected network and a sufficiently low recovery rate a
simple contagion process will always spread through the entire
network activating all nodes eventually. In order to compare the

two network types we study the speed of the spread measured by
the inverse of the time it takes for the activation to spread from a
single individual to 75% of the network, 1/t75. The probability of a
node becoming infected is proportional to its number of infected
neighbors (see Eq. 12). Therefore we can expect the infection to
spread faster in networks with high average in-degree.

Figures 4A,B show examples of the time course of infection
for low and high densities respectively (for parameter sets refer to
the figure caption). For the parameters used, at low densities (A)
the infection spreads faster on visual networks, at high densities
(B) the metric networks have a speed advantage. The solid lines in
Figure 4C summarize the effect of density on speed for both
network types and confirms the observation that for lower
densities a simple contagion process will spread substantially
faster through a visual than through a metric network while at
higher densities this effect is reversed. The speed maximum of
visual networks in the low to mid density regime correlates nicely
with the shortest path length as shown in Figure 2 (for the
threshold value 0.05) and can be explained by the presence of
long-range connections.

However, the above examples are for one specific choice of
metric and visual thresholds, θmetric � 5 BL and θvisual � 0.05 rad.
As illustrated in Figure 4G, this choice allows visual links of (on
average) up to 13 BL and thus longer-ranged visual than metric
interactions (5 BL). For a full picture of the possible quantitative
differences between the two network types, we include two more
parameter values of the metric network. For θmetric � 13 BL the
maximal link length of metric and visual networks is similar
(dashed line) and the two networks have a comparable contagion
speed at low density, only diverging at higher densities when
occlusions in the visual network lead to a decrease in average in-
degree compared to the metric networks. For θmetric � 25 BL
metric interactions can be longer than visual ones (dotted line)
and the simple contagion process spreads faster on the metric
networks at all densities because of their higher average in-degree.

Considering metric networks as a simple model of acoustic
interactions, the different choices of thresholds could describe

FIGURE 3 | Degree dependence of network measures. All Figures were created using networks ofN � 225 averaged over all densities and thresholds. (A) Average
shortest path length as a function of average in-degree. At low in-degrees visual networks exhibit shorter shortest-path lengths than both metric and topological
networks. (B) Average clustering coefficient as a function of average in-degree. Consistent with the results in Figure 2 visual network display substantially lower clustering
across a wide range of in-degrees than bothmetric and topological networks. (C) Average relative link length as a function of average in-degree. For intermediate in-
degree, visual networks exhibit considerable longer links than both metric and topological networks. Inset: Example of the average distribution of relative link length for
networks of average in-degree 50. The grey shaded area indicates the link length distribution for a fully connected network. Parameters: g � 2.0,
θvis � 0.00505, θmetric � 9.2944, θtopo � 50, averaged over 40 networks.
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animals that can see further/equally far/shorter than they can
hear which will strongly depend on the animals physiology but
also on the properties of the surrounding medium.While in those
cases where metric interactions can be longer than visual ones
acoustic interactions can be understood to provide a faster
transfer of information across the group at all densities
(dotted line), for the opposite case (solid line), the fastest
mode of information transfer strongly depends on density.

3.3.2 Complex Contagion
In the complex contagion model considered here, the probability
of getting infected is a sigmoidal function of the fraction of
infected neighbors. Thus individuals only have a high infection
probability if their fraction of infected neighbors, rinf, exceeds the
threshold r0. A fractional contagion process is not guaranteed to
spread through the entire network. If no node has a fraction of
infected neighbors ≥ r0, the remaining infection rates of the
individuals may drop far below the recovery rate and the process
can come to a halt. To account for the possibility of incomplete
spread we compare the network types with respect to the fraction
of the network that gets infected before the process stops, instead
of the contagion speed for the complex contagion.We refer to this
as the reach of the contagion.

Where in the case of simple contagion having a high in-degree
increases a node’s rate of infection, because it increases its
probability to have infected neighbors, the contrary is true for
fractional contagion in the case of a low overall prevalence of the
“infected” state. Assuming a fixed number of infected neighbors
(as we use to initiate the processes in Figures 4D–F), an increase
in in-degree will only lower a node’s fraction of infected
neighbors and thus decrease infection probability.

Figure 4D and E show the time course of infection for the same
density regimes as in A and B. Compared to the simple contagion
process the roles of the networks appear reversed: at low densities
the fractional contagion process spreads faster and further in
metric than in visual networks, while at high densities visual
networks are faster and become infected to a larger fraction. It
is also clear, that most networks do not get fully infected for this
choice of parameters. Figure 4F compares the fraction of infected
nodes in both network types as a function of density for the same
set of thresholds as in Figure 4C. The effect of density is clearly
reversed between the complex and the simple contagion process
which can be attributed to the opposing effect of an increase in in-
degree on the infection probability of a node as discussed above.

Coming back to the interpretation of the two network types as
based on two different senses (vision and hearing), we can now

FIGURE 4 | Simple and complex contagion on visual and metric networks. (A) Example trajectories for a simple contagion process at low densities for visual
(purple) and metric (orange) networks showing faster spread in metric networks. (B) same as (A) but for high densities showing faster spread for visual networks. (C)
Comparison of visual and metric network with respect to the speed of infection via simple contagion. In metric networks the speed of spread increases monotonically
with density. In visual networks the contagion speed assumes a maximum at intermediate densities. Line-styles correspond to different thresholds of the metric
network as illustrated in (G). Shaded grey areas correspond to the density ranges in (A) and (B) respectively. (D) Example trajectories for a complex contagion process at
low densities showing faster spread in metric networks. Note, that most trials do not reach full activation in either network type. (E) Same as (D) for high densities,
showing faster spread in visual networks. Again, most trials do not reach full activation. (F) Comparison of average reach (i.e., final fraction of activated individuals) as a
function of density for both network types. In metric networks average reach decreases with density, while visual networks show aminimum at intermediate densities. As
in (C) line-styles correspond to different metric thresholds and shaded areas correspond to the examples in (D) and (E) respectively. (G) Illustration of different thresholds.
Parameters:N � 225,Φ ∈ [0, 0.3],γ � 0.03, β � 0.3, r0 � 0.35, σ � 10. Lines in (C) and (F) are averages over 100 networks and 100 runs per network, starting the contagion
process with one (simple contagion) or five (complex contagion) randomly chosen individuals.
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see that in addition to the group density the optimal mode of
transmission (acoustic or visual) does also depend on the type of
contagion process. A combination of both interaction types may
allow robust communication independent of group density.

Another notable feature that distinguishes visual from metric
networks here is their consistency and robustness over a wide
range of densities. While contagion speed for metric networks
quickly increases with density (for all threshold values), visual
networks provide comparable speeds at high and low densities.
Similarly, for each metric threshold there is an upper density limit
for the transmission of a complex contagion, but we can find
visual thresholds that allow a complex contagion to (partially)
pass at all densities.

3.4 Quantitative Comparison of Contagion
Processes on Visual and Metric Networks
In Quantitative Comparison of Network Types a degree-
controlled comparison of the different network types
revealed that for intermediate average in-degrees visual
networks on average have a lower shortest path length, a
lower average clustering coefficient and links that span
larger distances than their metric and topological
counterparts (Figure 3). In order to illustrate the effect that
these differences can have on dynamic processes, we again
compare the evolution of simple and complex contagion
dynamics on visual to that on metric networks for an
exemplary set of parameters, see caption of Figure 5.

Figure 5A depicts the spreading speed of a simple contagion
on visual networks in units of the spreading speed on degree-
matched metric networks, tmetr

75 /tvis75 , as a function of average in-
degree (black dots). Spreading on visual networks is faster
(indicated by values larger than 1) for a wide range of
intermediate average in-degrees. The ratio of average
shortest path lengths, ametric/avisual, (grey dots) mirrors the
qualitative shape of the speed ratio indicating that the
increased speed of the simple contagion process on visual

networks can be attributed to their shorter average shortest
paths (compare Figure 3A).

Figures 5B,C illustrate the effect of the lower clustering
coefficient of visual networks on the reach of the complex
fractional contagion. As already discussed in Density
Dependence of Contagion Processes in the context of
Figure 4F, as long as the number of infected individuals in
the network is low and infections are randomly distributed
(illustrated in the inset of Figure 5B), each additional link is
most likely decreasing the focal node’s infection probability in the
fractional contagion process (because it is more likely to a
susceptible than to an infected individual). This is the case in
Figure 5B for both network types and explains the decrease of the
average reach with increasing average in-degree. A spatial
clustering of infections (as in the initial conditions of
Figure 5C, illustrated in the inset) increases the fraction of
infected individuals in the neighborhood of nodes with a high
local clustering and close to the “wave front” of the infection (the
border between susceptible and infected individuals). Therefore,
the average reach of the fractional contagion remains
substantially larger on metric than on visual networks with
increasing average in-degree for a spatially correlated initial
activation (Figure 5C).

Put differently, visual networks have a longer average link
length for a comparable average in-degree, which results in a
lower clustering and in nodes receiving inputs from many,
possibly far away and not spatially correlated neighbors. This
makes it difficult for any node to reach the required fraction of
infected neighbors in case of a very spatially confined spreading
(i.e., a single wave front passing throught the group). The long
range connections lead to a diffusion of information and an
overall decrease in the local fraction of infections. Thus the same
mechanisms that have proven helpful in the case of simple
contagion (i.e., the long links, providing short cuts), hinder the
spread of information for complex contagion. The hampering
effect of long range connections has also been described in the
sociological literature where its is known as the “weakness of long
ties” [32].

FIGURE 5 | Structural differences influence dynamics on networks: (A) The ratio of contagion speeds (time to 75% infected or recovered, tmetr
75 /tvis75) shows a similar

dependence on average in-degree as the ratio of average shortest path lengths (ametr/avis, grey). Dots represent averages and errorbars one standard deviation over 100
networks (static) or 100 runs on 100 networks (dynamic). (B) and (C) Effect of clustering coefficient on fractional contagion. (B) Initial activation by 15 randomly selected
individuals (see black ellipses in inset for an example). (C) Initial activation by 15 individuals in one corner of the group (inset). Lines represent averages over 100
networks with 100 runs of the fractional contagion dynamic each, shaded areas represent one standard deviation of the networks, average reach. A higher clustering
coefficient (as in metric networks, compare Figure 3) is beneficial for a spatially clustered initial activation, (C). Parameters: N � 225, Φ ∈ [0.0, 0.3], γ � 0.01, β � 0.3,
r0 � 0.4, σ � 10.

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 71657610

Poel et al. Visual Networks

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


3.5 Polarization
While so far we have studied the effect of density and degree on the
structural properties of and contagion processes on the different
network types, we have not considered the influence of the group’s
polarization which we have kept between 0 and 0.3. While under
natural conditions polarizationmay correlate with density and thus
indirectly influence network structure, for our grid-like positioning
of ellipses, metric and topological network links are not influenced
by the orientation of individuals because of their sole dependence
on the Euclidean distance between individuals. For visual networks,
however, the orientation of an ellipse may crucially influence its
visibility and thus its social interactions. A high polarization may
therefore lead to an anisotropy in spreading only on visual
networks, i.e., a difference in speed of propagation in direction
of the polarization to that perpendicular to it. Figure 6 illustrates
this effect with two examples of a combination of group density and
visual threshold that leads to an anisotropy at high polarization,
which is notable in the speed of a simple contagion process on
visual networks.

Figures 6A,B depict the average propagation of a simple
contagion process through a group of 400 individuals in a

square 20x20 grid with average distance of 1.5 BL and 5.0 BL
respectively between grid neighbors (g � 1.5 and g � 5.0). The
contagion process is initiated by one individual in the lower left
corner at t � 0 for high (Φ ∈ [0.0, 0.2], left) and low (Φ ∈ [0.8, 1.0],
right) polarization along the x-axis. The average time it takes the
infection to spread from the initial position at (0,0) to any other
point in the group (given by an x and y position in body length) is
indicated by color intensity (averages over 30 networks with 50
runs each). For low polarization the contagion process spreads
evenly in all directions (circular equitemporal regions) while for
high polarization spreading speed is enhanced either along (A) or
perpendicular (B) to the direction of polarization (elliptic
equitemporal regions).

Panels C and D show examples of the underlying spatial group
configurations. They include examples of the visual field of one
focal individual. Angular areas that exceed the visual threshold
used for the construction of networks for A and B (θvisual � 0.01
BL in A,C,E and θvisual � 0.1 BL in B, D, F), are shown as shaded
purple areas and corresponding visual network neighbors are
filled in purple. For the low visual threshold and high density used
in C, at high polarization links can span longer distances and are

FIGURE 6 | Anisotropic spreading of simple contagion for high group polarization: (A) Propagation time of a simple contagion process initiated at t � 0 by one
individual in the bottom left corner of a 20 × 20 grid with g � 1.5 BL and high (left,Φ ∈ [0.8, 1.0]) and low (right,Φ ∈ [0.0, 0.2]) polarization along the x-axis. Average time to
activation (time, t > 0, at which an individual at position (x,y) is infected) is obtained as an average over 30 visual networks with 50 runs each and θvisual � 0.01. (B) Like (A),
but for g � 5.0 and θvisual � 0.1. (C) and (D) Illustrations of the spatial configurations and visual fields used in the contruction of networks underlying the results of (A)
and (B) respectively. Visual angles αij > θvisual are shown as shaded purple areas for one exemplary focal individual. Orange circles indicate the metric thresholds used in
the construction of (E), θmetric � 6, and (F) θmetric � 7. (E) Average time to activation averaged over 3 outer rows in x (solid lines) and y (dashed lines) direction for high
(purple, orange) and low (grey) polarization. The contagion spreads faster parallel than perpendicular to the polarization for the visual networks (left). For metric networks
(right) polarization has no effect on activation time. Parameters as in (A) and (C). (F) As in (E) but with parameters as in (B) and (D). For this combination of density and
visual threshold the contagion spreads faster perpendicular to the polarization. Metric thresholds were chosen to yield similar contagion speeds as low polarization visual
networks. Parameters: N � 400, γ � 0.03, β � 0.1.
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more numerous in direction of the polarization as occlusions are
less prominent in this direction because of the smaller visual
angles. For the high visual threshold and low density used in D, at
high polarization links are more likely to exist perpendicular to
the polarization because of the larger angular areas of ellipses
when seen from the side. These unevenly distributed links
increase spreading speed in the direction of higher link density
and length. In Panel E and F we summarize the above results by
averaging over the outer three rows of individuals in x (solid lines) and
y (dashed lines) direction for high (purple) and low (grey) polarization.
For low polarization perpendicular and parallel propagation times
are similar, while for high polarization propagation time is reduced
either parallel (E) or perpendicular (F) to the polarization. Metric
networks with a threshold of θmetric � 6 BL (illustrated by orange
circle in C) and θmetric � 7 BL (D) show no difference in
propagation times for high and low polarization (E,F). Metric
threshold values were chosen to yield similar contagion speeds as
the visual counterparts.

4 DISCUSSION

Animal groups represent examples of spatially-embedded
interaction networks, where the spatial density of individuals
does not only vary due to external factors but can be actively
modulated by the group members based on environmental
context [20]. We have shown, that when describing such
systems with highly variable density by considering fixed
interaction thresholds, potentially related to sensory or
cognitive limitations, the fundamental properties of the
resulting interaction network, their qualitative dependence on
density and their emergent collective dynamics will crucially
depend on the type of the network used. In particular, each
network type shows a characteristic qualitative dependence of the
average degree on density, which influences the density
dependence of other network measures as well as the speed
and reach of two classes of contagion processes (Figures 1, 2,
4). We characterized visual networks as a distinct class of
interaction networks and highlighted the often neglected
dependence of collective behavior on density and network type.

When modelling the collective behavior of animal groups with
variable densities and fixed thresholds, intermediate-threshold
visual networks display several key advantages. In contrast to
metric networks, the average degree does not monotonically
increase with density and thus avoids unrealistically high values
at high densities. In contrast to topological networks they show a
non-trivial dependence of the (in-) degree on density, and more
crucially the finite visual threshold introduces a maximal
interaction distance, which makes their behavior more realistic
at low densities. In addition, they exhibit amaximum in the average
(in-) degree at intermediate spatial densities of individuals which
could explain preferred group densities.

Our results further demonstrate that for wide ranges of group
densities visual networks are characterized by the existence of
long-ranged links, absent in metric or topological interaction
networks with comparable in-degrees which are accompanied by
a lower average shortest path and clustering coefficient

(Figure 3). The role of such long-range links in facilitating
simple contagion processes such as information diffusion, has
been studied extensively in network science and is known as the
“strength of weak ties” or the “small-world” phenomenon [39,40].
Here we observe their influence in an increased spreading speed
of the simple contagion on visual networks as compared to metric
ones of similar degree (Figure 5). On the other hand, visual
networks have in general smaller clustering coefficients in
comparison to metric and topological networks, which is
disadvantageous for the spread of fractional, complex contagion
processes, assumed to be involved in spreading of behaviors [12]
and known as the “weakness of long ties” [32]. We can observe this
effect in our simulations of a complex fractional contagion process
on visual and metric networks of the same degree. Here, the
contagion process spreads to a larger fraction of the metric than
the visual network and this effect becomes even more apparent
when the initial activation is spatially correlated (Figure 5).

In summary, how fast and how far a behavior or information
will spread, is dependent upon the network density, the agent’s
sensory limits and the type of contagion process. The use of
multiple types of interactions (like visual or acoustic) may enable
organisms to compensate the shortcomings of one type of sensory
interaction and thus enable reliable collective response across a
range of densities or sensory limits varying under changing
environmental conditions.

Finally, we show that only visual networks have a strong
dependence on the aspect ratio and orientation of individuals.
More specifically, the breaking of a group’s orientational symmetry
due to alignment of individuals induces a symmetry breaking in the
interaction network and consequently spatial anisotropy of social
interactions. For two exemplary combinations of density and visual
threshold we found anisotropy in the spreading of a simple
contagion process on visual networks of polarized groups. More
detailed studies of this dependence could reveal advantages or
disadvantages of different spatial configurations of animal
collectives observed in nature, especially when studied together
with their visual detection ability [41].

Overall, our work provides compelling arguments for the
consideration of visual networks in the study of social
behavior. Nevertheless, it marks only a first step towards a full
understanding of their role in collective animal behavior. While
our results for artificially generated, static networks based on a
square grid allow us to systematically study the effect of density,
they do not capture the temporal nature and full range of
structures observed in animal groups. Luckily, recent
improvements in tracking software promise faster and more
convenient access to realistic animal network data, including
visual networks [42]. Using networks constructed from animal
tracking would provide information about naturally occurring
group sizes, densities and polarization as well as spatio-temporal
fluctuations within these measures and thus allow to study their
effects within a naturally occurring parameter range. Additional
knowledge about the sensory limits specific to the studied
organism (including the addition of a visual blind angle) will
further improve the interaction networks and may enable a direct
comparison between networks based on different senses like
sound perception and vision.
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A next step could then be to move on to non-static networks
and to study the effect of different macroscopic states such as
milling or swarming on network structure and spreading
dynamics. Here, one could also use movement models that
simulate the trajectories of all individuals based on the
different types of social interactions. This approach could then
go beyond the SIR-type spreading of information and investigate
how movement information, e.g., a preferred direction of a few
informed individuals, can spread and influence the group when
using different interaction modes (visual, metric, topological).

Such an approach could also take into account the interactions
of a group with the environment, asking, for example, how the
detection of visual cues and the trade-off between private (external)
and social information depends on group structure. It has been
shown that predator detection based on sensory limits is dependent
on density and group size and varies between different
macroscopic states of fish schools [41] whereas interactions with
the environment may induce density fluctuations. We hypothesize
that visual networks are more robust to such spatial perturbations
(i.e., a local increase or decrease in density).

Finally, let us note that, by starting with themost basic approach
and considering binary connections (1 or 0 for presence or absence
of links), we laid out the fundamental effects of the different
networks dependency on density and threshold. A natural
extension to weighted networks in the visual model would be to
use relative angular area (angular area divided by the total field of
view) as a link weight. Such an approach would entail an additional
dependence of average link strength on density, which would in
turn affect the weighted counterparts of the network measures. For
the purpose of this paper, i.e., to establish visual networks as
fundamentally different from other spatial networks by making
direct comparisons between network types, the introduction of link
weights would have been impractical as it would have introduced
additional and arbitrary dependencies on density by the choice of
link weights for each network type. Observed differences between
the weighted networks would be heavily influenced by the choice of
link weights and could therefore be less clearly attributed to sensory
limits and the different rules establishing links. A comparisons
between weighted networks will thus be most informative when
studying a specific biological system which justifies the choice of
link weights. Nevertheless, we expect essential features of the visual
network, i.e., the existence of an upper bound on the degree at high
densities, a lower clustering, the existence of longer links and the
anisotropy of visual interaction networks due to orientational
symmetry breaking, to also hold for weighted networks.

In conclusion, our work proposes experimentally testable
hypothesis, e.g., in the context of behavioral contagion in
animal groups [12,43], as well as a theoretical foundation

for future investigation on how collective information
processing could be dynamically tuned by individual-level
behavioral adaptations affecting local density [20]. We
highlighted several important qualities of visual networks,
including their unique dependence on density and
polarization, which encourages further research in this area.
Overall, visual networks provide a promising and necessary
addition to the established toolkit for the study of social
interactions and collective behaviour and emphasize the
need to include system-specific sensory limits.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors. The networks analyzed
for this study were created using the code provided in https://doi.
org/10.5281/zenodo.4983257.

AUTHOR CONTRIBUTIONS

WP and PR conceived the idea and designed the study. WP and
CW performed the research. All authors discussed the results and
wrote the manuscript. All authors contributed to manuscript
revision, read, and approved the submitted version.

FUNDING

WP and PRwere funded by the Deutsche Forschungsgemeinschaft
(DFG) (German Research Foundation), Grant RO47766/2-1. PR
acknowledges funding by the DFG under Germany’s Excellence
Strategy–EXC 2002/1 “Science of Intelligence”–Project 390523135.

ACKNOWLEDGMENTS

We acknowledge the support by Luke Longreen with exploratory
simulations of visual networks as part of his lab rotation.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphy.2021.716576/
full#supplementary-material

REFERENCES

1. Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, et al.
Interaction Ruling Animal Collective Behavior Depends on Topological rather
Than Metric Distance: Evidence from a Field Study. Proc Natl Acad Sci (2008)
105:1232–7. doi:10.1073/pnas.0711437105

2. Strandburg-Peshkin A, Twomey CR, Bode NW, Kao AB, Katz Y, Ioannou
CC, et al. Visual Sensory Networks and Effective Information Transfer in
Animal Groups. Curr Biol (2013) 23:R709–R711. doi:10.1016/
j.cub.2013.07.059

3. Rahmani P, Peruani F, and Romanczuk P. Flocking in Complex
Environments—Attention Trade-Offs in Collective Information Processing.
PLoS Comput Biol (2020) 16:e1007697. doi:10.1371/journal.pcbi.1007697

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 71657613

Poel et al. Visual Networks

https://doi.org/10.5281/zenodo.4983257
https://doi.org/10.5281/zenodo.4983257
https://www.frontiersin.org/articles/10.3389/fphy.2021.716576/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2021.716576/full#supplementary-material
https://doi.org/10.1073/pnas.0711437105
https://doi.org/10.1016/j.cub.2013.07.059
https://doi.org/10.1016/j.cub.2013.07.059
https://doi.org/10.1371/journal.pcbi.1007697
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


4. Kumar R, Novak J, and Tomkins A. Structure and Evolution of Online Social
Networks. In: Link Mining: Models, Algorithms, and Applications. New York,
NY: Springer (2010). p. 337–57.

5. Mislove A, Marcon M, Gummadi KP, Druschel P, and Bhattacharjee B.
Measurement and Analysis of Online Social Networks. In: Proceedings of the
7th ACM SIGCOMM conference on Internet measurement; 2007 October 24–26;
San Diego, CA (2007). p. 29–42.

6. Balcan D, Colizza V, Gonçalves B, Hu H, Ramasco JJ, and Vespignani A.
Multiscale Mobility Networks and the Spatial Spreading of Infectious Diseases.
Proc Natl Acad Sci (2009) 106:21484–9. doi:10.1073/pnas.0906910106

7. Isella L, Stehlé J, Barrat A, Cattuto C, Pinton JF, and Van den Broeck W.
What’s in a Crowd? Analysis of Face-To-Face Behavioral Networks. J Theor
Biol (2011) 271:166–80. doi:10.1016/j.jtbi.2010.11.033

8. Moussaïd M, Helbing D, and Theraulaz G. How Simple Rules Determine
Pedestrian Behavior and Crowd Disasters. Proc Natl Acad Sci (2011) 108:
6884–8. doi:10.1073/pnas.1016507108

9. Moussaïd M, Kapadia M, Thrash T, Sumner RW, Gross M, Helbing D, et al.
Crowd Behaviour during High-Stress Evacuations in an Immersive Virtual
Environment. J R Soc Interf (2016) 13:20160414. doi:10.1098/rsif.2016.0414

10. Wirth T, andWarrenW. The Visual Neighborhood in Human Crowds: Metric
vs. Topological Hypotheses. J Vis (2016) 16:982. doi:10.1167/16.12.982

11. Krause J, James R, Franks DW, and Croft DP. Animal Social Networks. USA:
Oxford University Press (2015).

12. Rosenthal SB, Twomey CR, Hartnett AT, Wu HS, and Couzin ID. Revealing
the Hidden Networks of Interaction in mobile Animal Groups Allows
Prediction of Complex Behavioral Contagion. Proc Natl Acad Sci (2015)
112:4690–5. doi:10.1073/pnas.1420068112

13. Ling H, Mclvor GE, Westley J, van der Vaart K, Vaughan RT, Thornton A,
et al. Behavioural Plasticity and the Transition to Order in Jackdaw Flocks. Nat
Commun (2019) 10:1–7. doi:10.1038/s41467-019-13281-4

14. Sarfati R, Hayes JC, Sarfati É, and Peleg O. Spatio-temporal
Reconstruction of Emergent Flash Synchronization in Firefly Swarms
via Stereoscopic 360-degree Cameras. J R Soc Interf (2020) 17:
20200179. doi:10.1098/rsif.2020.0179

15. Wild B, Dormagen DM, Zachariae A, Smith ML, Traynor KS, Brockmann D,
et al. Social Networks Predict the Life and Death of Honey Bees. Nat Commun
(2021) 12:1–12.

16. Vicsek T, and Zafeiris A. Collective Motion. Phys Rep (2012) 517:71–140.
doi:10.1016/j.physrep.2012.03.004

17. Couzin ID, Krause J, Franks NR, and Levin SA. Effective Leadership and
Decision-Making in Animal Groups on the Move. Nature (2005) 433:513–6.
doi:10.1038/nature03236

18. Camperi M, Cavagna A, Giardina I, Parisi G, and Silvestri E. Spatially Balanced
Topological Interaction grants Optimal Cohesion in Flocking Models. Interf
Focus (2012) 2:715–25. doi:10.1098/rsfs.2012.0026

19. Lemasson BH, Anderson JJ, and Goodwin RA. Collective Motion in Animal
Groups from a Neurobiological Perspective: the Adaptive Benefits of Dynamic
Sensory Loads and Selective Attention. J Theor Biol (2009) 261:501–10.
doi:10.1016/j.jtbi.2009.08.013

20. Sosna MMG, Twomey CR, Bak-Coleman J, Poel W, Daniels BC,
Romanczuk P, et al. Individual and Collective Encoding of Risk in
Animal Groups. Proc Natl Acad Sci (2019) 116:20556–61. doi:10.1073/
pnas.1905585116

21. Bastien R, and Romanczuk P. A Model of Collective Behavior Based Purely on
Vision. Sci Adv (2020) 6:eaay0792. doi:10.1126/sciadv.aay0792

22. Fichtel C, and Manser M. Vocal Communication in Social Groups. In: Animal
Behaviour: Evolution and Mechanisms. Springer (2010). p. 29–54.

23. Demartsev V, Strandburg-Peshkin A, Ruffner M, and Manser M. Vocal Turn-
Taking in Meerkat Group Calling Sessions. Curr Biol (2018) 28:3661–6.
doi:10.1016/j.cub.2018.09.065

24. Romenskyy M, Herbert-Read JE, Ioannou CC, Szorkovszky A, Ward AJ, and
Sumpter DJ. Quantifying the Structure and Dynamics of Fish shoals under
Predation Threat in Three Dimensions. Behav Ecol (2020) 31:311–21.
doi:10.1093/beheco/arz197

25. Newman ME. The Structure and Function of Complex Networks. SIAM Rev
(2003) 45:167–256. doi:10.1137/S003614450342480

26. Barthélemy M. Transitions in Spatial Networks. Comptes Rendus Physique
(2018) 19:205–32. doi:10.1016/j.crhy.2018.10.006

27. Lima SL. Collective Detection of Predatory Attack by Birds in the Absence of
Alarm Signals. J Avian Biol (1994) 25:319–26.

28. Ward A, and Webster M. Sociality: The Behavior of Group-Living Animals.
Springer Nature (2016).

29. Palachanis D, Szabó A, and Merks RMH. Particle-based Simulation of
Ellipse-Shaped Particle Aggregation as a Model for Vascular Network
Formation. Comput Part Mech (2015) 2:371–9. doi:10.1007/s40571-015-
0064-56

30. Leblanc S. Information Flow on Interaction Networks. Princeton University
(2018) Ph.D. thesis.

31. Barthélemy M. Spatial Networks. Phys Rep (2011) 499:1–101. doi:10.1016/
j.physrep.2010.11.002

32. Centola D, and MacyM. Complex Contagions and theWeakness of Long Ties.
Am J Sociol (2007) 113:702–34. doi:10.1086/521848

33. Hagberg AA, Schult DA, and Swart PJ. Exploring Network Structure,
Dynamics, and Function Using Networkx. In: G Varoquaux, T Vaught,
and J Millman, editors. Proceedings of the 7th Python in Science Conference.
Los Alamos, NM: Los Alamos National Lab. (LANL) (2008) p. 11–5.

34. Fagiolo G. Clustering in Complex Directed Networks. Phys Rev E (2007) 76:
026107. doi:10.1103/PhysRevE.76.026107

35. Buhl J, Sumpter DJT, Couzin ID, Hale JJ, Despland E, Miller ER, et al. From
Disorder to Order in Marching Locusts. Science (2006) 312:1402–6.
doi:10.1126/science.1125142

36. Showler AT. Desert Locust, Schistocerca gregaria Forskål (Orthoptera:
Acrididae) Plagues. Dordrecht: Springer Netherlands (2008) p. 1181–6.
doi:10.1007/978-1-4020-6359-6_885

37. Craig A, and Feare C. Starlings and Mynas. London, GB: A&C Black (2010).
38. Brockmann D, and Helbing D. The Hidden Geometry of Complex, Network-

Driven Contagion Phenomena. Science (2013) 342:1337–42. doi:10.1126/
science.1245200

39. Granovetter MS. The Strength of Weak Ties. Am J Sociol (1973) 78:1360–80.
40. Watts DJ, and Strogatz SH. Collective Dynamics of ‘small-World’networks.

nature (1998) 393:440–2. doi:10.1038/30918
41. Davidson JD, Sosna MMG, Twomey CR, Sridhar VH, Leblanc SP, and Couzin

ID. Collective Detection Based on Visual Information in Animal Groups. J R
Soc Interface (2021) 18:20210142. doi:10.1098/rsif.2021.0142

42. Walter T, and Couzin ID. Trex, a Fast Multi-Animal Tracking System with
Markerless Identification, and 2d Estimation of Posture and Visual fields. Elife
(2021) 10:e64000.

43. Herbert-Read JE, Buhl J, Hu F, Ward AJW, and Sumpter DJT. Initiation and
Spread of Escape Waves within Animal Groups. R Soc Open Sci (2015) 2:
140355. doi:10.1098/rsos.140355

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Poel, Winklmayr and Romanczuk. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 71657614

Poel et al. Visual Networks

https://doi.org/10.1073/pnas.0906910106
https://doi.org/10.1016/j.jtbi.2010.11.033
https://doi.org/10.1073/pnas.1016507108
https://doi.org/10.1098/rsif.2016.0414
https://doi.org/10.1167/16.12.982
https://doi.org/10.1073/pnas.1420068112
https://doi.org/10.1038/s41467-019-13281-4
https://doi.org/10.1098/rsif.2020.0179
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1038/nature03236
https://doi.org/10.1098/rsfs.2012.0026
https://doi.org/10.1016/j.jtbi.2009.08.013
https://doi.org/10.1073/pnas.1905585116
https://doi.org/10.1073/pnas.1905585116
https://doi.org/10.1126/sciadv.aay0792
https://doi.org/10.1016/j.cub.2018.09.065
https://doi.org/10.1093/beheco/arz197
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1016/j.crhy.2018.10.006
https://doi.org/10.1007/s40571-015-0064-56
https://doi.org/10.1007/s40571-015-0064-56
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1086/521848
https://doi.org/10.1103/PhysRevE.76.026107
https://doi.org/10.1126/science.1125142
https://doi.org/10.1007/978-1-4020-6359-6_885
https://doi.org/10.1126/science.1245200
https://doi.org/10.1126/science.1245200
https://doi.org/10.1038/30918
https://doi.org/10.1098/rsif.2021.0142
https://doi.org/10.1098/rsos.140355
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Spatial Structure and Information Transfer in Visual Networks
	1 Introduction
	2 Methods
	2.1 Network Construction: Spatial Distribution and Shape of Nodes
	2.2 Network Construction: Edges
	2.2.1 Visual Networks
	2.2.2 Metric Networks
	2.2.3 Topological Networks

	2.3 Network Measures
	2.3.1 In-Degree and Out-Degree
	2.3.2 Clustering Coefficient
	2.3.3 Average Shortest Path Length
	2.3.4 Relative Link Length

	2.4 Contagion Models
	2.4.1 Simple Contagion Model
	2.4.2 Complex Contagion Model


	3 Results
	3.1 Density Dependence of Network Properties
	3.1.1 In-Degree
	3.1.2 Other Network Measures

	3.2 Quantitative Comparison of Network Types
	3.3 Density Dependence of Contagion Processes
	3.3.1 Simple Contagion
	3.3.2 Complex Contagion

	3.4 Quantitative Comparison of Contagion Processes on Visual and Metric Networks
	3.5 Polarization

	4 Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


