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After a brief description of the essentials of Monte Carlo simulation methods and the
definition of simulation efficiency, the rationale for variance-reduction techniques is
presented. Popular variance-reduction techniques applicable to Monte Carlo
simulations of radiation transport are described and motivated. The focus is on those
techniques that can be used with any transport code, irrespective of the strategies used to
track charged particles; they operate by manipulating either the number and weights of the
transported particles or the mean free paths of the various interaction mechanisms. The
considered techniques are 1) splitting and Russian roulette, with the ant colony method as
builder of importance maps, 2) exponential transform and interaction-forcing biasing, 3)
Woodcock or delta-scattering method, 4) interaction forcing, and 5) proper use of
symmetries and combinations of different techniques. Illustrative results from analog
simulations (without recourse to variance-reduction) and from variance-reduced
simulations of various transport problems are presented.
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1 INTRODUCTION

Monte Carlo simulation has become the tool of choice for solving the Boltzmann linear transport
equation for high-energy radiation (particles) in complex material structures. As compared with
alternative deterministic finite-difference methods, Monte Carlo simulation has several distinct
advantages. Firstly, it can describe arbitrary interaction processes, including those with cross sections
that are rapidly varying functions of the physical variables (e.g., the atomic photoelectric effect,
whose total cross section presents sharp absorption edges). Secondly, Monte Carlo simulation can
easily follow particles through material systems with complex geometries, where deterministic
methods would find great difficulties even to define the appropriate boundary conditions. Finally, the
stochastic nature of Monte Carlo methods permits a straightforward evaluation of statistical (class A)
uncertainties of simulation results, while finite-difference methods allow only rough estimations of
accumulated numerical errors. Although Monte Carlo codes have reached a high degree of
sophistication, simulation suffers from the drawback of requiring very large computation times,
particularly for fast charged particles and neutrons, which experience a very large number of
interactions before being brought to rest.

Generally, a Monte Carlo simulation involves a radiation source with specified characteristics,
which emits primary particles in various initial states. The state variables of a particle are the
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particle’s kind k (defined by its mass and charge), the kinetic
energy E (energy in the case of photons), position r and direction
of motion d̂. Primary particles propagate through a material
system consisting of homogeneous bodies limited by passive
surfaces. The materials in the system are assumed to be
homogeneous and isotropic; usually they are pure elements or
compounds with well defined stoichiometric composition and
with N atoms or molecules per unit volume. Particles undergo
discrete interactions with the material, in which they lose energy,
change their direction of motion, and occasionally, may release
secondary particles with lower energies1. Some interactions cause
excitations of the material, which decay with the emission of other
secondary particles. The result of the interaction cascade is that
each primary particle induces a “shower” of particles that evolves
by progressively increasing the number of particles and reducing
their average energy, until the energies of all involved particles fall
below the corresponding cutoff or absorption energies, at which
particles are assumed to be effectively absorbed in the material.

For a given material, each interaction mechanism (int) of
particles of kind k and energy E is characterized by a molecular
differential cross section (DCS). Because of the assumed isotropy
of the material, the DCSs depend only on the polar angle of
scattering, θ, and the energy transfer W. The DCSs are
conveniently expressed as

d2σk,int
dW d cos θ

� σk,int(E)pk,int(E;W, cos θ), (1)

where σk,int(E) is the total (integrated) cross section and pk,int(E;
W, cos θ) is the joint probability distribution function (PDF) of
the energy loss and the angular deflection cos θ. In the case of
polarized particles, the DCS may also depend on the azimuthal
scattering angle ϕ [1], although polarization does not affect the
total cross section. The product μk,int(E) � N σk,int(E) is the
interaction probability per unit path length, and its inverse λint �
μ−1k,int(E) is the mean free path between interactions.

The length s of the free flight of a particle to its next interaction
is a random variable with PDF

p(s) � λ−1 exp −λ−1s( ), (2)

where

λ−1 � ∑
int

μk,int(E) (3)

is the total inverse mean free path. The kind of interaction that
occurs at the end of a free flight, and the angular deflection and
the energy transfer in the interaction are random variables with
PDFs determined by the total cross sections and the DCSs of the
active interaction mechanisms.

A simulation code generates the trajectory of a particle as a
sequence of free flights, each ending with an interaction where the
particle changes its direction of flight, loses energy, and may
induce the emission of secondary particles. A Monte Carlo
calculation consists of the generation of a large number N of
showers by numerical random sampling from the relevant PDFs

(see e.g., Ref. [1] and references therein). The sought numerical
information on the transport process is obtained as an average
over the simulated showers.

A number of general-purpose Monte Carlo codes for
simulation of the coupled transport of photons and charged
particles are available (e.g., PENELOPE [1], MCNP [2], GEANT4 [3],
FLUKA [4], EGSnrc [5], EGS5 [6], TRIPOLI-4 [7], and PHITS [8]). They
perform detailed event-by-event simulation for photons, while
charged particles are simulated by means of a combination of
class I and class II schemes (see Ref. [9]). In class I or “condensed”
simulation schemes, the trajectory of a charged particle is split
into segments of predefined length and the cumulative energy loss
and angular deflection resulting from the interactions along each
segment are sampled from approximate multiple scattering
theories. Class II, or “mixed”, schemes simulate individual
hard interactions (i.e., interactions with energy loss or polar
angular deflection larger than certain cut-offs Wc and θc) from
their restricted DCSs, and the effect of the soft interactions (with
W or θ less than the corresponding cut-offs) between each pair of
hard interactions is described by means of multiple-scattering
approximations. Class II schemes describe hard interactions
accurately (i.e., according to the adopted DCSs) and also
provide a better description of soft events (because multiple
scattering approximations are more accurate when applied to
soft collisions only).

The present article deals with strategies to speed up transport
simulations, generally known as variance-reduction techniques
(VRTs). Some Monte Carlo codes allow applying various of
these techniques automatically, while other codes may require
some extra coding by the user. Our aim here is to offer a general
perspective of the VRTs and of their capabilities. For the sake of
simplicity, we consider analog Monte Carlo simulations, in which
the transport process retains its Markovian character. In these
simulations, when a particle reaches an interface separating two
different materials, we stop the particle at the interface, and
proceed with the simulation in the next material by using the
appropriate interaction DCSs. In addition, we only consider VRTs
that are independent of the geometry, unless otherwise indicated.

In Section 2 we summarize the essentials of Monte Carlo
simulation. The basic ideas leading to the formulation of VRTs
for transport simulations are presented in Section 3, followed by
the description of various VRTs that are applicable to any Monte
Carlo transport algorithm. Results from illustrative simulation
examples are presented in Section 4. These were generated by
using the Monte Carlo code system PENELOPE [1, 10], which
simulates the coupled transport of electrons/positrons and
photons.

2 STATISTICAL UNCERTAINTY,
EFFICIENCY, AND VARIANCE REDUCTION

Formally, any Monte Carlo simulation is equivalent to the
evaluation of one or several integrals. This equivalence permits
a formal foundation for Monte Carlo techniques, which is best
illustrated by considering the calculation of the one-dimensional
integral of a function F(x) over an interval (a, b),1We use the term secondary to qualify particles emitted as a result of interactions
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I � ∫b

a
F(x) dx. (4)

To introduce randomness into this deterministic problem, we
consider an arbitrary PDF, p(x), such that.

p(x) ≥ 0 , if x ∈ (a, b) andF(x)≠ 0,
� 0 , otherwise,

{ (5a)

and

∫b

a
p(x) dx � 1, (5b)

and we express the integral in the form of an expectation value:

I � ∫b

a
f(x)p(x) dx � 〈f〉 (6a)

with

f(x) � F(x)
p(x). (6b)

Then, the integral can be evaluated by generating a large
number N of random values xi from p(x) and, by virtue of the
law of large numbers, we have

〈f〉 � lim
N→∞

1
N

∑N
i�1

f(xi). (7)

The integral that defines the variance of f,

var(f) � ∫b

a
f2(x)p(x) dx − 〈f〉2, (8)

can be evaluated in a similar way:

var(f) � lim
N→∞

1
N

∑N
i�1

f2(xi) − 1
N

∑N
i�1

f(xi)⎡⎣ ⎤⎦2⎧⎨⎩ ⎫⎬⎭. (9)

Actually, in a Monte Carlo simulation run, the number N of
random values generated is finite and, if we repeat the
calculation a number of times (with “independent” seeds of
the random number generator) we get different values of the
estimator

�f � 1
N

∑N
i�1

f(xi), (10)

which fluctuate about the mean

〈�f〉 � 〈 1
N

∑N
i�1

f(xi)〉 � 1
N

∑N
i�1

〈f〉 � 〈f〉 (11)

with variance

var(�f) � var
1
N

∑N
i�1

f(xi)⎡⎣ ⎤⎦ � 1
N2

∑N
i�1

var(f) � 1
N

var(f). (12)

Here the properties of the expectation and the variance have
been used. The central limit theorem then implies that, for
sufficiently large N, the probability distribution of �f is the

normal distribution with variance var(f)/N. In the limit N →
∞, the quantity

σ2(�f) � 1
N

1
N

∑N
i�1

f2(xi) − �f
2⎧⎨⎩ ⎫⎬⎭ (13)

is an unbiased estimator for var(�f). The results of the Monte
Carlo simulation should always be given in the form �f ± kσ(�f).
With the coverage factor k � 3, the uncertainty bar contains the
true value 〈f〉 of the integral with a probability of 0.997 (3σ rule).

It is worth noticing that the PDF p(x) can be selected
arbitrarily, with the proviso that it complies with Eq. 5a. It is
to be expected that Monte Carlo calculations with different PDFs
would yield estimates �f with different statistical uncertainties
σ(�f). As a figure of merit to evaluate the effectiveness of a Monte
Carlo calculation, it is common to use the efficiency ϵ defined as

ϵ �
�f
2

σ2(�f)
1
T
, (14)

where T is the computer (CPU) time spent in the calculation.
Although during the calculation the value of ϵ fluctuates
randomly, the amplitude of its fluctuations decreases when N
increases and ϵ tends to a constant value when N → ∞, because
σ2(�f) and T are proportional to N−1 and N, respectively.

The variance-reduction techniques (VRTs) are strategies
aimed at increasing the efficiency of the calculation of the
integral without modifying its expectation, i.e., aimed at
reducing the relative statistical uncertainty attained after a
given CPU time. They normally operate by modifying the
PDF p(x) to lessen the variance. It is worth pointing out that a
reduction of the variance implies an increase in efficiency only
when the sampling process remains simple enough not to
outweigh the reduction of variance.

3 VRTS IN TRANSPORT SIMULATIONS

AMonte Carlo simulation of radiation transport can be regarded
as the simultaneous evaluation of a number of integrals of the
type

Q � ∫ q(x)p(x) dx (15)

where Q is the quantity of interest, q(x) is the contribution of an
individual shower, the random variable x (usually an array of
random variables) characterizes each individual shower, and p(x)
is the PDF for the occurrence of that particular shower. For
example, Q may be the average energy deposited into a certain
volume V of the geometry, in which case q(x) is the energy
deposited by the set of particles in a shower (not only the primary
particle). The simulation of each individual shower provides a
random value of q(x) distributed according to p(x). Notice that
the PDF p(x) is ultimately determined by the interaction DCSs of
the transported particles, and does not need to be specified.

The Monte Carlo estimator of the quantity Q is obtained by
generating a sufficiently large number N of showers and setting.
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�Q � 1
N

∑N
i�1

qi, (16a)

and

σ2( �Q) � 1
N

1
N

∑N
i�1

q2i − �Q
2⎧⎨⎩ ⎫⎬⎭, (16b)

where qi is the contribution (deposited energy in the above
example) of the i-th shower. Generally, a shower consists of a
number n of particles, and each of these particles may contribute
to the score, that is

qi � ∑n
j�1

qij, (17)

where qij stands for the contribution of the j-th particle of the
shower.

In radiation transport simulations, VRTs are implemented by
assigning each particle a weight w, which is a factor, usually real
and non-negative, that multiplies all the contributions of that
particle to the scored quantities. Primary particles emitted from
unbiased sources are usually assigned a weight equal to unity.
Biased sources can also be considered by assigning appropriate
weights to the emitted particles. Generally, secondary particles
inherit the weight of the parent particle that induced their emission.

In a very general way (see e. g., Ref. [11]), VRTs can be
classified as sppliting-based and importance-sampling-based
techniques. The latter modify the interaction PDFs, p(s) and
pk,int(E;W, cos θ), while the former manipulate the numbers and
weights of transported particles without altering the interaction
PDFs. Most VRTs are based on the following considerations.

Let �Q denote the result of an analog simulation (without
applying any VRT, with all weights equal to unity) and �QVRT the
result of simulating the same arrangement with some sort of VRT
(with certain particle weights wj), i.e.,

�Q � 1
N

∑N
i�1

∑
j

qij⎛⎝ ⎞⎠ (18a)

and

�QVRT � 1
N

∑N
i�1

∑
k

wkqik⎛⎝ ⎞⎠, (18b)

with the respective associated variances.

σ2( �Q) � 1
N

1
N

∑N
i�1

∑
j

qij⎛⎝ ⎞⎠2

− �Q
2

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ (19a)

and

σ2( �QVRT) � 1
N

1
N

∑N
i�1

∑
k

wkqik⎛⎝ ⎞⎠2

− �Q
2
VRT

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭. (19b)

It is then possible that with a proper selection of weights wk,
and the associated contributions qik, we can keep the result

unbiased, i.e., such that �QVRT � �Q, within statistical
uncertainties and, at the same time, have an increased
efficiency. Generally the efficiencies of quantities other than Q
may decrease, but their expectation values should remain
unaltered. As a rule of thumb, the variance σ2( �QVRT) is
reduced when the number of contributions to the score
increases and their weights become more uniform.

Unfortunately, VRTs are extremely problem-dependent, and
general recipes to optimize efficiency cannot be given. We limit
our considerations to simple VRTs that can be readily
implemented in a generic transport code, with no specific
requirements about the simulation geometry, to reduce the
variance of a given quantity Q, keeping the estimators of other
quantities, of lesser interest, unbiased. More elaborate VRTs, such
as the DXTRAN method implemented in MCNP [2, 12], which
rely on partially-deterministic methods, will not be considered.

3.1 Splitting and Russian Roulette
These two techniques, which are normally used in conjunction,
are effective in problems where interest is focused on a limited
volume in the space of state variables (r, E, d̂), the “region of
interest” (RoI). The basic idea of splitting and Russian roulette is
to favour the flux of radiation towards the RoI and inhibit the
radiation that moves away from that region, thus saving part of
the numerical work that would be wasted tracking particles that
are not likely to contribute to the scores. Situations in which these
VRTs are utilized include the calculation of dose functions in
deep regions of irradiated objects, the evaluation of radial doses
from collimated beams at positions far from the beam axis, and
studies of backscattering of particle beams. Splitting is also useful,
e.g., in simulations where primary particles are read from pre-
calculated phase-space files [13]; since these files are limited in
size, splitting the primary particles allows reducing the statistical
uncertainty, at the cost of increasing the simulation time.2

Splitting consists of transforming a particle, with weight w0

and in a certain state, into a number S > 1 of copies with weights
w � w0/S in the same state. Splitting should be applied when the
particle “approaches” the RoI. The Russian roulette technique is,
in a way, the reverse process: when a particle tends to move away
from the RoI it is “killed” with a certain probability K (0<K< 1)
and, if it survives, its weight is increased by a factor 1/(1 −K).
Here, killing means that the particle is just discarded (and does
not contribute to the scores anymore). Evidently, splitting and
killing leave the simulation unbiased.

Splitting reduces the variance, but one should avoid using
splitting factors that are too large, because the extra work needed
for tracking the various split particles may reduce the simulation
efficiency and increases the computation time. By contrast,
Russian roulette increases the variance (because it produces
fewer contributions with higher weights) and reduces the CPU
time. Russian roulette can be used for avoiding the simulation of
low-weight particles, which would spend the same CPU time as

2It is worth noticing that the finite size of the phase-space files implies a “latent”
uncertainty, which sets a lower limit to the uncertainty attainable by splitting [14].
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for particles with large weights to produce very small
contributions to the scores.

The effectiveness of these VRTs relies on the adopted values of
the parameters S andK, and on the strategy used to decide when
splitting and killing are to be applied. To take care of these
questions, most Monte Carlo codes make use of the so-called
weight-windows, which serve to homogenize the weight values of
the particles reaching certain RoIs, avoiding the occurrence of
“variance bombs” (particles with huge weights) that would
produce large increases of the variance. Usually, weight-
window methods split the relevant portion of the particle-state
space (k, r, E, d̂) into cells and assign to each cell a weight window
(wl, wu). When a particle reaches a cell with a weight outside the
window, it is split or killed with probability such that the weight of
the resulting particles is within the cell window. The cell structure
and corresponding weight windows are usually defined from
knowledge of partial simulation results.

3.1.1 Consistent Adjoint Driven Importance Sampling
Method
Elaborate VR schemes (see, e.g., Ref. [15]) combine source biasing
and weight-window strategies, by considering an importance
function that measures the likelihood of particles in that cell to
contribute to the score. Approximate importance functions can
be inferred from previous simulations, or from a deterministic
discrete-ordinate transport calculation.

Global strategies for automatically determining importance
functions have been developed, mostly for photon and neutron
transport because these particles have relatively large mean free
paths. Thus, the Consistent Adjoint Driven Importance
Sampling (CADIS) method, determines the importance
function from a deterministic adjoint calculation [16]. The
FW-CADIS method [17] uses a similar strategy starting from
a deterministic forward calculation. These are hybrid methods,
in the sense that they combine Monte Carlo simulation with a
deterministic (discrete-ordinate) calculation. They have been
implemented in various codes (e.g., MCNP and TRIPOLI-4) for
coupled neutron-gamma simulations and shielding calculations
[18, 19].

3.1.2 Ant Colony Method
A simpler, and easier to implement, procedure to progressively
build an importance function from information acquired from
the simulation itself is provided by the ant colony method [20].
Ant colony algorithms were first proposed by Dorigo et al. [21]
and are based on the collective behavior of ant colonies in their
searching for food: ants that find food sources return to the nest
laying down trails of pheromone. Paths to abundant sources are
followed by a greater number of ants and the pheromone level
increases, guiding other ants to these sources.

The ant colony method is applied to particles within a limited
volume of the particle-state space (k, r, E, d̂), which is split into
cells. In the absence of symmetries, we may use Cartesian space
coordinates, r � (x, y, z) and represent direction vectors by means
of the polar angle θ and the azimuthal angle ϕ,
d̂ � (sin θ cos ϕ, sin θ sinϕ, cos θ). We can then define cells
consisting of finite intervals of the continuous variables x, y, z,

E, θ, and ϕ, for the various kinds k of particles. If the problem
under consideration has some symmetry, it may be advantageous
to adapt the cell structure to that symmetry. From now on, the
application volume and its cell partition are assumed to be
defined; to simplify the formulas, each cell is denoted by a
single index i and, accordingly, the value of the importance of
a cell is written as Ii. We say that a particle passes the cell i when it
begins a step of his trajectory within that cell.

The ant colony algorithm described here is consistent as long
as all particles that enter the cell structure from outside, or that
start their trajectories from within the structure, have weights
equal to a power of 2. If this is not the case, i.e., if a particle enters
or starts its journey in the cell structure with a weight w such that
2n−1 < w < 2n, Russian roulette with killing probability K � 1 −
w/2n is played. Evidently, this protection is unnecessary when the
only VRT applied is the ant colony method in a single cell
structure.

The importance map is determined from information
gathered either from preliminary simulations or in the course
of the simulation run. LetN(P)

i denote the total weight of particles
that passed the cell i, and let N(C)

i be the total weight of particles
that passed that cell and, subsequently, they or any of their
descendants reached the RoI. The fraction

Pi � N(C)
i /N(P)

i (20)

characterizes the relevance of the cell. Evidently, Pi ranges
between 0 (none of the particles that pass cell i, nor its
descendants, reach the RoI) and 1 (all particles passing the cell
i arrive, themselves or their descendants, to the RoI). The
importance of cell i is defined as

Ii � 2[κi], (21)

where [κi] denotes the closest integer to κi, and

κi ≡
5
Pi − P0

P0
, if Pi ≤P0,

12
Pi − P0

1 − P0
, if Pi >P0.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (22)

The quantity P0 is the probability that a primary particle, or
one of its descendants, arrives in the RoI. Notice that the
importance defined in Eq. (21) is positive and increases with
the likelihood that particles passing the i-th cell contribute to the
scores. As a matter of fact, the definition of κi is somewhat
arbitrary; other increasing functions of Pi and such that κi(P0) � 0
would do the job. The numerical coefficients in the definition of
Eq. (22) yield values of the exponent [κi] between −5 and 12.
Practical experience indicates that moderate variations of those
coefficients do not produce significant improvements of the
effectiveness of the method.

Once a suitable importance map is acquired, splitting and
Russian roulette are activated as follows. When a transported
particle having weight w moves from the cell i to the cell f,

• if w If > 1, the particle is split into S � w If particles, each
one with weight w′ � w/S � I−1f ;
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• if w If < 1, Russian roulette is applied with killing probability
K � 1 − w If; when the particle survives, it is assigned the
weight w′ � w(1 −K)−1 � I−1f , and

• if w If � 1, no action is taken.

The definition of Ii as a power of 2, Eq. (21), combined with
this strategy, implies that particles that passed a given cell have
the same weight, w � I−1i , irrespective of their previous evolution.
We recall that more uniform weights normally have associated a
smaller variance.

The ant colony method has been proven to be effective in
simulations of clinical linear electron accelerators [22, 23], in a
study of the response of MOSFET dosimeters [24], in dosimetry
calculations of radiosurgery treatments [25], in the
optimization of certain radiotherapy procedures [26], and in
calculations of specific absorption fractions in Nuclear
Medicine [20].

3.2 Path-Length Biasing
As mentioned above, the path length s to the next interaction is a
random variable whose PDF is given by Eq. (2). The VRTs
described in this Subsection operate by sampling s from a
modified PDF, p′(s), and, to keep the simulation results
unbiased, they replace the weight w of the particle with a new
value w′ such that [15].

w′ p′(s) ds � wp(s) ds,
that is

w′ � w
p(s)
p′(s). (23)

3.2.1 Exponential Transform
There are situations in which one is mostly interested on the
transport properties in localized spatial regions. For instance, in
shielding calculations we wish to evaluate the dose in deep
volumes of irradiated objects, while in backscattering studies
our interest is focused on the surface region where the local
dose varies quite abruptly (build-up effect). In those situations,
the VRT of exponential transform [27] allows concentrating the
simulated interactions near or within the RoI. This technique
consists of modifying the value of the mean free path λ, which is
replaced with

λ′ � λ

a
, (24)

where a is a positive constant. That is, the PDF of the free-flight
length to the next interaction is replaced with

p′(s) � 1
λ′

exp −s/λ′( ), (25)

and random values of the path length s are sampled by the
inverse-transform method, which gives the familiar sampling
formula

s � −λ′ ln(1 − ξ). (26)

Here ξ is a random number distributed uniformly between 0
and 1. The modified weight

w′ � w
p(s)
p′(s) �

w

a
exp −s

λ
(1 − a)[ ] (27)

must be used in all subsequent contributions to the scores.
When a > 1 the interactions occur at smaller path lengths, if

a � 1 the simulation is analog, and when 0 < a < 1 the path lengths
between interactions are stretched. In the case of photon beams
impinging on thick material blocks, the exponential transform
with a < 1 is useful in shielding calculations, while with a > 1 helps
in determining the dose in the build-up zone, near the entrance
surface of the beam. Naturally, the “constant” a can be made
direction-dependent (see, e.g., Ref. [2])

In principle the exponential transform is only valid when
particles move in a homogeneous body surrounded with vacuum.
It may not be applicable in complex geometries, where the
transported particle may enter a different material before
reaching the position of the next interaction, except when
specific interface crossing strategies are adopted.

3.2.2 Forced-Interaction Biasing
Calculations of the dose in low-density gas volumes, or of the
emission of secondary particles from thin material bodies use to
have low efficiencies in analog simulations because the
probability of having an interaction in those volumes and
bodies is exceedingly small. A simple VRT that is very
effective in these cases consists in forcing an interaction in a
restricted path length interval, say between 0 and a given
maximum length L. This is accomplished by sampling the
path length s to the next interaction from the PDF [2].

p′(s) � λ−1 ∫L

0
exp −s′/λ( ) ds′[ ]−1

λ−1 exp(−s/λ), (28)

limited to the interval (0, L). The path length s can then be
sampled by the inverse transform method, which leads to the
sampling formula

s � −λ ln[1 − ξ(1 − exp(−L/λ)]. (29)

Notice that when L→∞, this formula reduces to the familiar
form of Eq. (26). To compensate for the effect of forcing the
interaction, the weight w of the particle is replaced with the new
weight

w′ � w
p(s)
p′(s) � w[1 − exp(−L/λ)]. (30)

Since both the exponential transform and the forced-interaction
biasingmodify the particle weight, theymay produce particles with
very large or very small weights. It is then convenient to combine
these VRTs with splitting and Russian roulette so as to keep the
weights between reasonable limits.

3.3 Woodcock Method
This VRT, also known as the delta scattering method [28–30], is
helpful in simulations of photon beams. It takes advantage of the
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high penetration of photons to simplify their tracking through
material systems with complex geometries. This is made possible
by assuming that, in addition to the physical interactions, the
transported photons may undergo delta interactions, i.e., fake
interactions that do not modify the state variables of the particle.
Photons are transported freely across the system using an
augmented inverse mean free path, Λ−1, which is required to
be larger than the actual total inverse mean free paths in all the
materials crossed by a trajectory ray. The event at the end of each
free flight is assumed to be either a real interaction or a delta
interaction (which does nothing). Delta interactions occur with
probability 1 − λ−1/Λ−1, where λ−1 is the actual total inverse mean
free path in the current material. Thus, the probability of real
interactions per unit path length, which is equal to λ−1, remains
unaltered.

This procedure avoids the need for computing intersections of
particle rays with interfaces at the expense of having to determine
which material is at the end of each free flight. Hence delta
scattering will improve the efficiency for geometries where
locating a particle (i.e., finding the material at its current
position) is faster than normal tracking. It is particularly
effective in calculations of dose distributions from photon
beams in voxelized structures such as those obtained from
computerized tomography. The Woodcock method is also
applicable to fast neutrons, and to any kind of particles that
have relatively large mean free paths. Unfortunately, the
efficiency gain from this method is small when secondary
charged particles are also tracked.

3.4 Interaction Forcing
Sometimes, a high variance results from an extremely low
interaction probability. Consider, for instance, the
simulation of the energy spectrum of bremsstrahlung
photons emitted by medium energy (∼ 100 keV) electrons in
a thin foil of a certain material. As radiative events are much
less probable than elastic and inelastic scattering, the
uncertainty of the simulated photon spectrum will be
relatively large. Another difficult situation is found in the
calculation of dose from photon beams on thin foils, where
the interaction probability is very small. In such cases, an
efficient VRT is to artificially increase the interaction
probability of the process A of interest, i.e., to force
interactions of type A to occur more frequently than for the
real process. Our practical implementation of interaction
forcing consists of replacing the mean free path λA of the
real process by a shorter one, λA,f � λA/F with F > 1. This
implies that between each pair of “real” A interactions we will
have, on average, F − 1 “forced” A interactions. We consider
that the PDFs for the energy loss and the angular deflections
(and the directions of emitted secondary particles, if any) in the
forced interactions are the same as for real interactions, i.e., the
VRT does not affect the interaction PDFs.

For the sake of programming simplicity, the length of the free
jump to the next A interaction (real or forced) of the transported
particle is sampled from the exponential distribution with the
reduced mean free path λA,f. To keep the simulation unbiased, we
must manipulate the weights of the particles. Let w be the weight

of the transported particle. We correct for the introduced
distortion of the mean free path as follows:

• A weight wf � w/F is assigned to the deposited energy, the
released secondary particles, and to any other alteration of
the medium (such as, e.g., charge deposition) that result
from A interactions (real and forced) of the transported
particle. For non-forced interactions of types other than A,
the particle weight w is used.

• Interactions of type A (real and forced) are simulated to
determine the energy loss and the possible emission of
secondary particles, but the state variables of the
transported particle are altered only when the interaction
is real. As the probability of having a real A interaction is
1/F , the energy E and direction of movement d̂ of the
projectile are varied only when the value ξ of a random
number falls below 1/F , otherwise E and d̂ are kept
unchanged (forced A interactions do not alter the state
variables of the transported particle).

Of course, interaction forcing should be applied only to
interactions that are dynamically allowed, i.e., for particles
with energy above the corresponding “reaction” threshold.
Evidently, quantities directly related to forced interactions will
have a reduced statistical uncertainty due to the increase in
number of these interactions. However, for a given simulation
time, other quantities may exhibit standard deviations larger than
those of the analog simulation because of the time spent in
simulating the forced interactions. It is worth noticing that
our implementation of interaction forcing introduces forced
interactions randomly along the particle trajectory,
independently of the geometry, and it keeps the weight of the
transported particle unaltered. This is at odds with the VRT of
forced-interaction biasing (frequently referred to also with the
name of interaction forcing), where forced events alter the weight
of the transported particle and occur with probabilities that need
to be specified in accordance with the local geometry.

Interaction forcing can be activated locally, at any stage of the
trajectory of a particle. Evidently, repeated application of
interaction forcing may produce particles with very small
weights. In practice this may be avoided by using this VRT
only for particles within a given weight window (wl, wu). For
instance, if interaction forcing is the only VRT applied and if
primary particles are assigned unit weights, a window (0.5,1.5)
ensures that interaction forcing with F > 2 will be applied only to
the primary particles. This weight-window control is more
effective than, e.g., combining interaction forcing with Russian
roulette.

Interaction forcing has been efficiently used in simulations of
electron-probe microanalysis [31, 32], photon beams from
medical electron accelerators [33], the response of ionization
chambers [34], and the calculation of doses absorbed in small
organs in Nuclear Medicine treatments [20].

Although this VRT effectively reduces the statistical
uncertainties of results involving the emission of secondary
particles and the energy deposition in very thin volumes, it
violates energy conservation (because the sum of energies
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deposited along a track differs from the energy lost by the
projectile) and, therefore, yields energy deposition spectra that
are biased. Consequently, it cannot be used, e.g., in simulations of
energy spectra from scintillation or semiconductor detectors,
which require computing the distribution of total energy
deposited by all particles in a shower into the sensitive volume
of the detector. Because it is very difficult to avoid this kind of
bias, many simulations of energy-deposition spectra are purely
analog.

3.5 Other Methods
Exploitation of local symmetries present in the simulation is often
very useful in reducing the variance [33]. For instance, when the
radiation beam and the geometry are locally symmetric under
rotations about an axis, splitting can be made more effective if the
position and the direction of each of the S split particles are
rotated around the symmetry axis by a random angle φ � 2πξ.
Thus, the S split particles are assigned different positions and
directions, and this gives a net information gain and an increase
in efficiency [35].

Splitting is also useful to favor the emission of secondary
particles by taking advantage of the emission symmetries of these
particles. The method can be applied, e.g., in simulations of x-ray
emission spectra from targets irradiated by electrons with
energies of the order of 100 keV and smaller. These electrons
emit bremsstrahlung photons and x rays with quite small
probabilities. The energy of bremsstrahlung photons depends
basically of the polar emission angle and it is quite costly to
sample. It is then practical to split each emitted bremsstrahlung
photon by assigning to the split ones random values of the
azimuthal emission angle, in order to increase the likelihood
that one of these photons reaches the detector. Similarly, the

number of x rays released in the relaxation of ionized atoms may
be increased by splitting them and assigning to the split x rays
independent random directions. These VRTs are frequently
referred to as directional bremsstrahlung or x-ray splitting; they
have been employed, e.g., in simulations of microanalysis
measurements [32] and clinical linear accelerators [36], and in
dosimetry calculations of radiosurgery [25], usually accompanied
with Russian roulette to reduce the number of photons not
moving towards the RoI [37]. It is also worth noticing that
directional splitting can be applied in combination with
interaction forcing.

As a last example, we quote the so-called “range rejection”
method, which simply consists of absorbing a particle when it
(and its possible descendants) cannot leave (or reach) the RoIs.
Range rejection is useful, e.g., when computing the total energy
deposition of charged particles in a given spatial RoI. When the
residual range of a particle (and its possible descendants) is less
than the distance to the nearest limiting surface of the RoI, the
particle will deposit all its energy either inside or outside the
considered RoI (depending on its current position) and
simulation of the track can be stopped. Range rejection is not
adequate for photon transport simulation because the concept of
photon range is not well defined (or, to be more precise, because
photon path length fluctuations are very large). Care must also be
exercised when applying range rejection to high-energy electrons
or positrons because of the possibility that bremsstrahlung
photons emitted by these particles leave or reach the RoI. It is
worth mentioning that this technique does not modify the
weights of the particles involved.

As a final comment, we would like pointing out that wery
frequently, an effective increase of efficiency may be obtained by
simply avoiding unnecessary calculations. This is usually true for

FIGURE 1 | X-ray emission spectra from a tungsten target bombarded by 100 keV electrons at normal incidence. Error bars represent statistical uncertainties with
a coverage factor k � 3. The upper left plot (A) is the result from a 30 min analog simulation. The upper right plot (B)was generated in a run of 15 min of the same code by
using the VRTs of interaction forcing and emission splitting of bremsstrahlung photons and x-rays, as described in the text. The lower plots display the relative difference
between these results (C) and a comparison of the relative uncertainties of each simulation (D).
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simulation codes that incorporate general-purpose geometry
packages. In the case of simple (e.g., planar, spherical,
cylindrical) geometries the program may be substantially
simplified and this may speed up the simulation appreciably.
In general, the clever use of possible symmetries of the problem
under consideration may lead to spectacular variance reductions.
For example, when both the source and the material system are
symmetric under rotations about an axis, the dose distribution
also has that symmetry and it can be tallied by using cylindrical
bins. This amounts to removing one spatial coordinate (the
azimuthal angle) and leads to an effective reduction of the
variance of the calculated local dose.

4 SIMULATION EXAMPLES AND
PRACTICAL ASPECTS

We present here examples of simulations that have low
efficiencies when formulated in analog form and where VRTs
prove to be effective. As already mentioned, using a VRT allows
increasing the efficiency of the calculation of a certain quantity
or a set of related quantities, at the expense of worsening the
efficiencies of other quantities. Once a quantity of interest is
identified, the user selects the VRTs to be applied among those
offered by the simulation code, or those that can be coded
additionally, and sets the values of the parameters that define the
adopted VRTs. In principle, the optimal parameter values
(i.e., those giving the highest efficiency) can only be
determined from trial simulations. In many cases, knowledge
of the energy-dependent mean free paths, and the CSDA ranges
of charged particles, allows estimating appropriate values of the

VRT parameters, avoiding the burden of performing trial
simulations.

It is not obvious how to quantify the efficiency of calculated
continuous distributions (such as energy spectra or dose
distributions), which are delivered in the form of histograms
with multiple bins. In such cases, the effectiveness of VRTs is best
appreciated from a plot of the simulated histogram with statistical
uncertainties displayed as error bars.

The simulations reported here were all performed by using the
PENELOPE code running on an Intel Core i7-8550U computer at
1.99 GHz. The parameters of the adopted VRTs were fixed
beforehand, guided by previous experience. They may not be
optimal, i.e., the efficiency could be improved further by varying
those parameter values. The following examples show that even a
blind setting of the VRT parameters may save quite a fraction of
the computer time.

4.1 Electron-Induced Photon Emission
High-energy electrons emit bremsstrahlung photons and induce
the emission of x-rays from atoms ionized by electron impact.
These are the photons released, e.g., from x-ray generators and
from the target in electron-probe microanalysis measurements
[32]. The difficulty of simulations of photon emission by
electrons with energies of the order of, or lower than 100 keV
is the low probability with which these electrons induce the
emission of photons. The VRT of interaction forcing has been
proven to be effective to cope with this problem. Figure 1 displays
results from simulations of 100 keV electrons impinging
normally on a foil of tungsten with a thickness equal to the
CSDA range of the electrons (R � 1.526 × 10–3 cm). The displayed
histograms are energy distributions of photons emitted from the

FIGURE 2 | Depth-dose distribution (energy deposited per unit mass thickness) in a 3 cm air layer irradiated by 1.25 MeV photons at normal incidence. (A) Result
from an analog simulation, after 83 min of CPU time. (B)Result from the variance-reduced simulation (interaction forcing withF � 5, 000), 10 min CPU time. Other details
are the same as in Figure 1.
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irradiated surface of the foil obtained from 1) an analog
simulation (without any VRT applied) run for half an hour
(left plot), and 2) a 15-min simulation using interaction
forcing of inner-shell ionization with F � 7.5 and of
bremsstrahlung emission with F � 300, combined with
emission splitting of x-rays and bremsstrahlung photons with S �
3 (right plot). The VRT was applied only to primary electrons by
defining a narrow weight window, which excluded all secondary
particles.

The forcing factors were determined by setting the mean free
paths λA,f of the forced interactions of primary electrons (E �
100 keV) equal to a fraction of the CSDA range. With forcing
factors determined in this way, we ensure that each primary
electron undergoes on average a certain number of forced
interactions along its trajectory. In the present simulations
we took λA,f � R/25 for both bremsstrahlung and x-ray
emission. Splitting proves to be useful when the photon
detector covers a small solid angle [32]; in our case, all
photons that leave the irradiated surface are counted and,

consequently, using a larger splitting factor would not
improve the efficiency appreciably.

The lower left plot in Figure 1 displays the relative differences
between the analog and variance-reduced simulations, which
average to zero within statistical uncertainties as expected. The
lower right plot shows the relative uncertainties of the two
simulation results. Notice that, because of the different forcing
factors for bremsstrahlung emission and inner-shell ionization,
the relative uncertainties of the x-ray lines differ from the
continuous trend of the bremsstrahlung background. The
combined use of interaction forcing and photon-emission
splitting is seen to effectively increase the efficiency of
simulations of photon spectra, without altering the reliability
of the results.

4.2 Dose in Thin Material Bodies
Another difficult calculation is that of the deposited energy in
bodies having thicknesses much less than the total mean free
paths of the transported particles. This situation is encountered,
e.g., in simulations of the response to photon beams of ionization
chambers, where the active gas is almost completely transparent
to photons. Again, interaction forcing provides an effective
practical solution in this case.

Results from analog and variance-reduced simulations of the
spatial dose distribution from a 1.25 MeV photon beam in a 3 cm-
thick air layer at normal incidence are displayed in Figure 2. The
analog simulation lasted for 83 min and involved the generation
of 2 × 109 showers (a part of them involving no interactions at all).
In the variance-reduced simulation, we applied interaction
forcing to the interactions of photoabsorption, Compton
scattering and pair production, all them with F � 5, 000. We
used a weight window with end points equal to 0.95 and 1.05, so
that interaction forcing is activated only for primary photons; the
plotted distribution was generated in a 10-min run. It is seen that
the application of a single VRT leads to an spectacular increase in
efficiency. It is worth noticing that the variation of the dose with
depth in Figure 2 is due to the transport of secondary particles; if
electrons and positrons were not followed, the depth-dose would
be essentially constant within the air layer.

4.3 Energy Deposition in Complex
Geometries
The application of VRTs in cases with complex geometries and
small RoIs may require careful planing and even modifications of
the simulation code. It is in these cases where the ant colony
method proves to be effective, mostly when combined with
interaction forcing. As an example, we consider the situation
described in Figure 3: a 10 cm by 10 cm parallel beam of 6 MeV
photons impinges normally on a collimator followed by a cubic
water phantom. The collimator is a 10 cm thick lead block with a
cylindrical hole in the direction of the beam and 1 cm radius. The
simulation is designed to determine the lateral dose profile (in the
direction of the x axis) at a depth of 10 cm in the water phantom
by scoring the energy deposited in a 0.2 cm thick layer split into
bins of 0.1 and 0.2 cm in the directions of the x and y axes,
respectively. The analog simulation is slow partially because of the

FIGURE 3 |Geometrical setup adopted in the simulation of dose profiles
from photon beams in water.
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work spent in following secondary radiation that is generated and
absorbed within the lead collimator.

In the variance-reduced simulation we applied the ant colony
method. The geometry volume was partitioned by means of a
uniform ortogonal mesh of planes into cubic cells of 0.5 cm side,
each one identified by the three indexes (kx, ky, kz). An additional
index, kp, designated the particle kind (� 1 for electrons and
positrons, and � 2 for photons). Finally, a fifth index, kE, indicated
the energy bin: the energy range covered by the simulation, from
0 to 6 MeV, was split into 3 cells of 2 MeV width. That is, the
adopted importance map was defined as a five-dimensional
matrix I(kx, ky, kz, kp, kE).

The RoI has been defined as the set of cells where the lateral
dose profile is tallied (i.e., a row of cells parallel to the x axis).
Initially, no variance reduction technique is applied, and the
importance map is built from the progressing analog simulation
until the gathered information is sufficient to switch on the
VRT. It has been considered that after 1,000 showers have
contributed to the RoI scores, the information in the
importance map is detailed anough to activate splitting and
Russian roulette guided by the ant colony algorithm described in
Section 3.1.2. As the building of the importance map continues
during all the simulation, its “quality” improves progressively.
Of course, the importance map can be stored and reused in
subsequent runs.

Figure 4 displays transverse dose profiles resulting from the
analog (upper left panel) and the variance-reduced simulation
(upper right panel) runs. Notice that the analog run was ten times
longer than the variance-reduced one. The difference between the
magnitude of the respective uncertainties is evident. While the
profile obtained from the variance-reduced simulation is nearly

symmetric, as expected, the result from analog simulation still
shows a slight asymmetry. The lower left panel displays the
relative differences between both calculations, which average
to zero within statistical uncertainties. Finally, the lower right
panel shows the relative uncertainties of the two simulation
results. Although there is not much difference between the
relative uncertainties, consideration of CPU times shows that
the use of the ant colony method increases the efficiency by a
factor of about 100.

5 CONCLUDING COMMENTS

We have described a set of relatively simple VRTs that operate
either by manipulating the numbers and weights of the
transported particles or by modifying the mean free paths for
the relevant interaction processes. The ant-colony method
(Section 3.1.2), in spite of its conceptual simplicity, has proven
to be effective in focusing the radiation flux towards small RoIs in
complex geometries. The VRT of interaction forcing (Section
3.4), has been shown to be useful in simulations with PENELOPE of
processes with intrinsic small probabilities, such as calculations of
absorbed doses in thin material bodies and the emission of
photons from samples irradiated by electron beams.

The examples in the last Section evidence the usefulness of
VRTs to speed up simulations of radiation transport in difficult
situations. The effectiveness of these techniques is mostly
determined by the edequacy of the adopted VRTs and their
defining parameters. Although optimal parameters may be
determined from trial simulations, a great deal of exploratory
work can be saved by considering the dimensions of the material

FIGURE 4 | Dose profile of a collimated 6 MeV photon beam in water using the geometry shown in Figure 3. (A) Result from an analog simulation, after 720 min of
CPU time. (B) Result from the variance-reduced simulation (ant colony method, as described in the text), generated after 72 min CPU time. Other details are the same as
in Figure 1.
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system relative to the mean free paths of the relevant interaction
processes, and to the CSDA ranges of charged particles. General-
purpose Monte Carlo codes should provide tables of these
quantities, as functions of the energy of the particles,
calculated from the DCSs adopted in the code. The auxiliary
program tables.f of the PENELOPE code system can be used to
generate such tables for electrons, positrons and photons in
arbitrary materials.
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