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This article proposes the use of a novel approach to portfolio optimization, referred to as
“Fundamental Networks” (FN). FN is an effective and robust network-based fundamental-
incorporated method, and can be served as an alternative to classical mean-variance
framework models. As a proxy for a portfolio, a fundamental network is defined as a set of
“interconnected” stocks, among which linkages are a measure of similarity of fundamental
information and are referred to asset allocation directly. Two empirical models are provided
in this paper as applications of Fundamental Networks. We find that Fundamental
Networks efficient portfolios are in general more mean-variance efficient in out-of-
sample performance than Markwotiz’s efficient portfolios. Specifically, portfolios set for
profitability goals create excess return in a general/upward trending market; portfolios
targeted for operating fitness perform better in a downward trending market, and can be
considered as a defensive strategy in the event of a crisis.
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1 INTRODUCTION

The problem of portfolio optimization is one of the most important issues in asset management
[1]. Modern Portfolio Theory (MPT) has served as the foundation and industry standard for
portfolio optimization, being capable of demonstrating the concepts of diversification and risk-
return efficiency based on a mean-variance framework [2, 3]. However, within the last few
decades, practitioners and academics have become aware of its drawbacks. First, the high
sensitivity of the estimated mean-variance efficient portfolio to estimation errors in expected
return may lead to non-robust results [4–12]. Second, the mean-variance optimization requires
the inversion of a positive-definite co-variance matrix which would lead to large estimation
errors and will further offset the benefits of diversification. Hence, the portfolio cannot be
constructed for a large number of stocks [13]. Third, the lack of hierarchical structure in a
correlation matrix allows weights to vary freely in unintended ways, which is a root cause to the
mean-variance efficient portfolio’s instability [14]. Moreover, MPT only involves the analysis of
prices and is not able to incorporate the fundamental analysis which has been deemed value-
relevant to stock return by not only well-known investors mentioned earlier, but also multiple
researchers in the past [15–19].

To our knowledge, substitution of mean-variance framework has not been well discussed in the
area of portfolio optimization. Studies introduced fundamental analysis to mean-variance model are
still confined by the drawbacks. The application of financial networks started a new branch in
optimizing portfolios. However, few of them conveyed fundamental information. Therefore, the
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main purpose of our research is to bridge portfolio optimization
to fundamental analysis with network structure.

In this paper, we propose a novel approach for portfolio
optimization, referred to as “Fundamental Networks” (FN), an
effective and robust network-based fundamental-incorporated
method. It can be used as an alternative to the classical
Markowitz’s model. Compare to it, FN avoids the estimation
errors of expected return and standard deviation,and also
removes the requirement of a positive definite co-variance
matrix. As a proxy for a portfolio, a fundamental network is
defined as a set of “interconnected” stocks, among which linkages
are a measure of similarity of fundamental information among
stocks. The capital allocated to a stock is proportionate to the
concept of weighted degree in network theory.

The fundamental networks bridge portfolios to fundamental
information with network theory. The process of portfolio
optimization is decomposed into steps as asset selection and
capital allocation [20]. iterature referred to this paper is classified
as fundamental analysis and financial networks. However, few of
them addressed the both steps.

Fundamental analysis is the most common way to assess firm
value [19]. However, the application of fundamental analysis in
portfolio optimization tends to focus on the stock selection rather
than developing an effective and innovative weighting schema
based on fundamental information [18, 20–24]. Attempts
introduced an additional fundamental condition into
Markowitz’s model for both optimal selection and allocation.
Although these models are improved by selecting stocks of good
economic condition for the portfolio, major limitations from
Markowitz’s model have not been addressed [25–27]. Another
area of studies which is related to our work is fundamental
indexation, which assigns portfolio weights using metrics in
financial statements instead of stock price and capitalization
[28–30].

Pioneered by the remarkable work of [31]; network-based
methods have found their way into finance literature, and Recent
studies such as [32–35] explore their usefulness for optimal
investment purposes. Indeed, as noted in [36]; many financial
optimization problems including Markowitz’s, had an underlying
network structure. The topology of network encodes the complex
dependency structure of financial equities, extracts hierarchical
and clustering properties, and reduces data complexity while
preserving fundamental characteristics of information [34].
Because the functionality of complex networks relies on their
underlying structure and structural stability, most empirical
studies chose the minimum spanning tree (MST) as the base
structure for their financial networks [37–41].

In network theory, information about the relative importance
of nodes in a network can be obtained through centrality
measures, which are the most fundamental and frequently
used measures to reveal network structure [42–46]. Investment
decisions are usually derived from choosing “central” or “non-
central” assets from the network. “Non-central” investment
strategy claims that a portfolio containing the outskirts of the
network have greater diversification potential, and thus are
exposed to less risk [32, 34, 35, 45]. However, these studies
only select stocks, the allocation process is still under the

Markowitz’s mean-variance framework, therefore its
drawbacks inherited from the framework remain unsolved.

Our proposed FN can address both asset selection and capital
allocation for portfolio investment. In the selection stage, a
portfolio objective is set, such as maximizing changes of
return on equity (ROE). In the allocation stage, we construct a
fundamental network with proper network structure. To start
with, we define each selected stock as a node in the network, and
each node is described using its fundamental information set
which may include changes in net profit, asset turnover and
leverage ratio. Next, we define potential links in the network using
similarity measure of information sets among stocks, similarity
measure can be Euclidean distance or other common distance
measures. Finally, a network structure such as the minimum
spanning tree (MST) is applied to form connections among
stocks, and weighted degrees are derived for capital allocation.
Network efficiency is considered to be a measure of network
instability and error tolerance [47].

Two empirical models are provided in this paper as
applications of the FN. Model 1 is based on DuPont
framework where the objective of selecting stocks with high
ROE, changes in net profit, asset turnover and leverage ratio
serve as fundamental information set to describe a node. Model 2
is focused on operating income, where stock nodes are presented
as changes of gross profit. Both of these models use Euclidean
distance to construct a MST to be used as the desired network
structure. We evaluate model performance using Sharpe Ratio
from year 2006 to 2018. Model 1 outperforms the mean-variance
efficient portfolios for all risk cases, and Model 2 outperforms the
mean-variance efficient portfolios in the low-risk cases. In other
words, FN efficient portfolios are more mean-variance efficient in
out-of-sample performance than Markwotiz’s efficient portfolios.
In addition, the annual return of Model 1 is positively correlated
to the annual return of the S&P 500 Index, while Model 2 is
negatively correlated to that of the S&P 500 Index. Unlike the one
fixed optimization goal of mean-variance framework, FN provide
solutions to complex market conditions. In our study, Model 1 is
suggested for general market condition, while Model 2 serves as a
defensive strategy in the event of a crisis.

The major contributions of our proposed FN are:

• Proposing a Novel Framework for Portfolio
Optimization: creating an network-based fundamental-
incorporated method for portfolio optimization,
completely different from the classical Markowitz’s
model. Empirically, the out-of-sample performance is
suggested that network efficient portfolios reached higher
mean-variance efficiency than Markowitz’s solutions.

• Expanding Source of Information: incorporating
fundamental information and providing flexibility in
selecting portfolio objective. It can be any fundamental
variable or financial ratio representing profitability,
liquidity, solvency, operating efficiency etc.

• Lifting Restriction: removing portfolio size constraint in
mean-variance framework, referred to the positive-definite
requirement of co-variance matrix, so that enable large-
scale portfolio optimization.
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• Enhancing Robustness of Asset Allocation: increasing
stability and robustness of optimal capital allocation on
stocks by adopting optimal network structure.

The remainder of the paper is organized as follows: section 2
introduces the general mathematical model of fundamental
networks. In section 3, two empirical studies are provided and
evaluated. Section 4 presents our conclusions and avenues of
future research.

2 METHODOLOGY

2.1 Stock Portfolio as a Network
In our FN model, the asset selection rule is determined by the
chosen fundamental objective. The asset allocation process is to
minimize stock similarity under an optimal network structure.
For example, ROE is an indicator of corporate profitability. To
maximize profitability of a portfolio, we choose the changes of
ROE as the fundamental objective and filter a set of high
performance companies out of the entire market. We then
construct a network based on fundamental information set,
using the same example as in Model 1. Elements in the set
include changes in net profit, asset turnover and leverage ratio
among others. The allocation result is expected to be positively
correlated to the weighted degree of each node in the network.

The main novelty of this paper lies in the flexibility choosing
objective, information sets and risk measures based on
fundamentals. Objectives and information sets can be any
fundamental variable or financial ratio representing
profitability, liquidity, solvency, operating efficiency etc.
Common network structures can refer to, but are not limited
to minimum spanning trees, planar maximally filtered graphs,
market graphs [48]. Variations in node representation, network
structure and distance definition allow a variety of potential risk
measures to be applied. Such risk measures can be derived as
centrality, assortativity, and network efficiency among others.

Since, centrality, assortativity and network efficiency are
measures of similarity and stability in graph theory, these can
be considered as diversification and robustness of allocation in
portfolio theory [33, 34].

2.2 Fundamental Network Framework
In this paper, we introduce the concept of “Fundamental Network
Framework” as a general process equating portfolio optimization
with finding optimal network topology features (Figure 1). The
framework is consisted of three stages: asset selection,
fundamental network construction and asset allocation.

2.3 Fundamental Network Construction
According to Figure 1, Stage 1 and 2 is to define and construct
fundamental networks by modeling a portfolio with topological
features. A fundamental network is referred to a connected,
undirected and weighted graph G(V, E, W).

Definition 1 (Fundamental Network) Define a connected,
undirected and weighted graph

G(V , E,W) (1)

where V � {v1, . . ., vn} denotes a set of stocks. Every stock and its
fundamental/financial ratio information is represented as a node.
E � {e1, . . ., en} is the edge set. W is the weighted adjacency matrix
and wi,j ∈ W, wi,j represents the edge weight between nodes vi
and vj.

In stage 1 (Figure 1), we need to define the fundamental
objective such as profitability, and then refer a specific variable for
the objective. In this paper, we only allow one dimension
objective. Definition 2 is to mapping a stock to the
fundamental variable. For instance, ROE is selected to describe
profitability noted as the utility U � u(V) � ROE.

Definition 2 (Utility) Define a utility as

U � u(V) (2)

where u() is a utility function.

FIGURE 1 | Flowchart for Portfolio Optimization under Fundamental Network Framework. Two empirical examples are specified in Table 2.
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Then filter stocks with the variable selected to establish a stock
pool for later optimization. Notice that VU are the selected stocks
based on U and Uthreshold. It can represent any predetermined
objective such as profitability, liquidity, solvency, or operating
efficiency.

Definition 3 (Stock Pool) Select a subset of stocks
satisfying

VU ∈ V ,∀v ∈ VU , u(v)≥Uthreshold (3)

where Uthreshold is a threshold level of U.
Stage 2 is mainly to construct fundamental networks based on

selected stock pool. Specifically, each node represents the
fundamental(s) of a stock. A linkage between two nodes
represents the dissimilarity of the corresponding stocks. In this
paper, dissimilarity measure is referred to Euclidean distance.

Definition 4 (Fundamental Node) Define V � {v1, . . ., vn}, a
node is

vi � {I(i,q)|q � 1, 2, . . . ,m} (4)

where vi is the fundamental information set of stocki and I(i,q) is
referred to qth fundamental variable representing a stock. I(i,q)
ranges from financial ratios to the variables in the financial
statements such as leverage ratio, net income,Δgrossprofit, etc.
Note that m is noted as the number of variables to define a
node.

Definition 5 (Dissimilarity) Define Euclidean distance as the
measure of dissimilarity between two nodes i, j, D � {d(i, j), ∀i, j ∈
[1, n]}.

d(i, j) �
���������
I(i,q) − I(j,q)

√
, q � 1, 2, . . . ,m; (5)

A network with the set VU can be constructed by Definition
1–3. Given node set VU, network structure E is derived from
network generation algorithms such as small-world networks,
scale-free networks and minimum spanning tree etc. The

FIGURE 2 | Fundamental Network: Model 1, 200 stocks in 2009. Size of node is positively correlated to weighted degree and investment allocation.

FIGURE 3 | Fundamental Network: Model 2, 200 stocks in 2009. Weighted degree is higher for the nodes (larger) near the end points than those in the middle since
no hierarchical structure is detected.
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topology features of G(VU, E, W) vary when choosing different
network models. It is found a more complex topology often
comes with a greater systemic risk [37, 49, 50] and a structural
optimized network structure will also lead to an optimized
portfolio [35, 51].

Fundamental network structural stability and dissimilarity in
graph theory is defined in our model as portfolio risk in portfolio
theory. Network efficiency is considered to be a risk tolerance
measure in graph theory [47]. By bridging stock portfolios to
networks, we are able to use network efficiency as a risk measure
of a portfolio.

In this paper, we use minimum spanning tree (MST) as
the base network structure. A minimum spanning tree (MST)
is a tree T(VU, ET, WT) ∈ G(V, E, W) with minimum total edge
weight.

Definition 6 (Minimum Spanning Tree) Given a connected,
undirected weighted graph G(VU, E,W), the minimum spanning
tree (MST) is a tree T(VU, EMST,WMST)4 G with minimum total
edge weight defined as:

wMST � ∑
ei,j∈EMST

wi,j,∀G4G (6)

where G is subgraph of G and EMST 4 E, WMST 4 W.

2.4 Risk Measurement and Asset Allocation
In stage 3 (Figure 1), after the network is constructed, we
introduce total network efficiency (TNE), which is a measure
of systemic attack and error tolerance, as the risk measure in our
model. A network with higher network efficiency has a higher
tolerance to errors and attacks [47].

Definition 7 Total Network Efficiency (TNE)

TNE(G) � ∑
i≠ j∈G

1
di,j

(7)

where di,j is the distance of all paths from node vi to vj ∈ G(VU, E,
W), ∀i ≠ j. Note that G(VU, E, W) is a undirected graph, so
di,j � dj,i.

TNE is positively related to the number of nodes and edges
since it is defined as the sum of reciprocal of all edges in a
network. Therefore, increasing size of an FNwill increase its TNE,
indicating a reduction of instability and an increase in
diversification.

In addition, given a certain number of nodes, a minimum
spanning tree has the maximum of TNE ∀G ∈ G. Mathematically,
according to Definition 7, a minimum spanning tree Tminimizes∑i,jdi,j, ∀i, j ∈ G such that TNET ≥TNEG,∀G ∈ G, where G is
arbitrary subgraph of G. Given a total number of n stocks where

TABLE 2 | Model Specifications.

FN framework Steps Model 1 Model 2

Stage 1 Fundamental Objective Profitability Operating Fitness
Fundamental Variable Δ ROE Δ Operating Income

Stage 2 Node Representation Δ Profit Margin Δ Gross Profit
Δ Asset Turnover
Δ Leverage Ratio

Dissimilarity Measure Euclidean Euclidean
Network Structure MST MST

Stage 3 Risk Measure TNE TNE
Allocation Weighted Degree Weighted Degree

In accordancewith Figure 1, this table specifies fundamental information and network related variables for different optimal objectives. Δ is the difference of the variable between year t and
year t-1. The FN framework allows nodes to be defined in multi-dimensional space such that Model 1 is in I R3 and Model 2 is in I R.

TABLE 1 | Performance Comparison.

R̂ σ ̂ Sharpe
̂

t

Year Model 1 Model 2 MV Model 1 Model 2 MV Model 1 Model 2 MV

2007 −0.10 0.09 −0.10 0.25 0.22 0.22 −0.40 0.40 −0.48
2008 −0.81 −0.28 −0.41 0.55 0.37 0.43 −1.48 −0.75 0.94
2009 0.94 0.34 0.41 0.43 0.23 0.18 2.20 1.45 2.24
2010 0.13 0.28 0.26 0.24 0.22 0.31 0.55 1.30 0.82
2011 0.21 0.06 0.16 0.38 0.23 0.28 0.55 0.27 0.58
2012 0.30 0.10 0.15 0.22 0.15 0.23 1.34 0.65 0.68
2013 0.54 0.20 0.14 0.19 0.13 0.15 2.90 1.58 0.93
2014 0.22 0.07 0.07 0.17 0.12 0.23 1.31 0.59 0.31
2015 −0.01 0.09 −0.08 0.21 0.21 0.23 −0.05 0.43 −0.33
2016 1.12 0.00 0.14 0.43 0.15 0.16 2.60 −0.02 0.88
2017 0.27 0.17 0.09 0.15 0.17 0.20 1.83 0.99 0.44
2018 0.05 0.02 −0.41 0.21 0.24 0.32 0.25 0.09 −1.26
Average 0.24 0.10 0.04 0.29 0.20 0.25 0.97 0.58 0.32

On average, both Model 1 and 2 are more mean-variance efficient than the benchmark. Model 1 is featured with high return and Model 2 has the lowest volatility.
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VUi � {v1, . . . , vn}, u(vi) ≥ Uthreshold, the minimum spanning tree
set T � {Ti(VUi, Ei,W)}, i � 1, . . ., n are the portfolios with
maximized.

Finally, investment allocation is calculated from the weighted
degree of the nodes in the network. From a network perspective, a
stock with high weighted degree is systemically important as it is
assigned a large portion of investment.

Definition 8 (Investment Allocation) Given a connected
weighted graph.

G(VU, E, W), VU � {v1, . . ., vn} is a n-stocks portfolio satisfying
∀vi ∈ VU,U(vi) ≥Uthreshold, where vi represents the fundamental
information set of a stock Ii.
Define X � (x1, x2, . . ., xn) as the vector of investment allocation,
xi as the proportion of investment in stock i, and ∑n

i�1xi � 1.

xi �
∑j∈N(vi)wi,j

∑i,j∈Vwi,j
, (8)

where N(vi) is the neighbor set of vi, wi,j represents the edge weight
between two stocks’ fundamentals vi and vj.

3 EMPIRICAL ANALYSIS AND RESULTS

In this section, we present two empirical solutions in portfolio
optimization as applications of Fundamental Networks. While

minimizing fundamental network structural instability, the
models are distinct from their fundamental objectives and
node variables to adapt to different market scenarios. Our
optimized portfolios outperforms Markwotiz’s under certain
market conditions.

3.1 Data and Models
Financial statement data are from the Compustat database,the
sampled stocks are S&P 1,500 index members from 2006–2018.
There are around 550 to 580 stocks each year after excluding
those missing necessary data. The backtest started from 04/15/
2007 and the positions are adjusted at the first trading day
right after each April 15th when all companies had released
their financial statements. Risk free rate refers to 1-year
t-bill rate. Price returns are calculated annually between
each April 15th. Fundamental variables are selected from
annual financial statements. A detailed description of
fundamental variable settings is shown in Table 2. All
fundamental values can be found in the supplementary
data set.

To illustrate the flexibility of FN framework in selecting
portfolio objectives and fundamental information, we introduce
two models in the empirical analysis Table 2. Model 1 maximizes
company profitability described by changes of Return on Common
Equity (ROE). In accordance with DuPont Analysis, each node is
defined by changes in net profit, asset turnover and leverage ratio.
Model 2 is focused on operating fitness, fundamental objective is
defined as changes of operating income, and stock nodes are
presented as changes of gross profit.

In the FNmodels, Euclidean distance is referred to the measure of
diversification. Therefore, instead of restricted by the positive-definite
requirement of co-variance matrix in mean-variance framework,
portfolio size in FN models can be as large as the stock Universe.
In our examples, the portfolio size ranges up to around 550 stocks.

The FN networks displayed in Figures 2, 3 are portfolios
selected from efficient frontiers of Model 1 and 2 in 2009,

FIGURE 4 | Fundamental Network Efficient Frontiers Model Out-of-Sample Performance. Model 1 (blue) is generally more mean-variance efficient than the
benchmark while Model 2 (red) only outperforms in the low risk region (q ≤ 45%). Mean-variance efficient frontier is the benchmark (black).

TABLE 3 | Regressions Analysis and Diagnostics.

β Coefficient α R2 p-value

Model 1 0.7812 0.0622 0.2205 3.172E-15
Model 2 -0.5435 0.044 0.1102 6.73E-08

A positive β indicates that the premium between Model 1 and Markowitz’s is positively
correlated with market return while Model 2 is opposite with a negative β.
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each consisted of 200 stocks. Each node represents a stock
while linkages measure similarity of their fundamental
information. Size of node is positively correlated to
weighted degree and investment allocation.

Apparently, the structural complexity of the two networks varies
significantly that Model 1 has a hierarchical structure and higher
interconnectedness than Model 2. This outcome is related to the
complexity-stability debate [52] that whether a positive correlation
exists between them. Interconnectedness is a key feature in
measuring network complexity. In finance, many studies
suggested that interconnectedness conveys higher systemic risk in
bank networks [53]. According to [54]; there is no economic theory
at hand that can be used to answer the question of the optimal level
of interconnectedness for a financial system from a general
equilibrium perspective. However, our empirical results suggest
that the portfolios with high interconnectedness have higher
volatility in out-of-sample performance (Table 1).

3.2 Empirical Results
The assessment of the performance is based on out-of-sample
statistics in the holding period which is 252 trading days.
In stead of individual portfolios, this paper is to compare all the
portfolios on the efficient frontiers. Therefore, we investigate the
performance from both risk and time perspectives.

Specifically, we note Sharpe Ratio as Sharpe(q, t), where t is the
time and q represents qth percentile of the risk distribution,
q � {0, 5%, 10%, . . ., 1}. To compare models with different risk
measures, we normalize risk into [0, 1]. Then Sharpe ratio can be
represented at intervals of 5% from 0 to 1, for a total number of 21
risk levels.

Sharpeq � 1
n

∑
t�1,2,...,n

Sharpe(q, t) (9)

where Sharpeq is the average Sharpe ratio of qth percentile
portfolios over time t.

For example, efficient frontiers are constructed for each year.
Sharpe(5%, 2008) is referred to Sharpe ratio of the portfolio on
the frontier with the lowest 5% risk at the year 2008. Sharpe5% is
the average of all the portfolios with lowest 5% risk from the years
between 2007–2019 Figure 4.

In addition, we introduce Sharpêt as the average of Sharpe ratios
for all portfolios on the efficient frontier at time t. Similarly, R

̂
and σ ̂

represent average return and volatility of the efficient frontier at time t.
In Table 1, theModel 1 significantly outperformsMarkwotiz’s in

the year of 2012–2014, 2016, and 2017. These years are often
considered to be “good” years where the market earnings growth
are positive. The model 2 maximizes operating income and
outperforms Markowitz’s in “bad” years (2007, 2008, 2015, 2018).
The result is consistent with [55] who suggested that high
operating performance companies have low volatility and
outperforms high volatility stocks.

Define R � R(q, t), ∀q, t to be the actual return of the efficient
frontier for all time t; R0 � R0(q, t), ∀q, t is the actual return of
mean-variance efficient frontier for all time t; RMarket is the annual
return of the stock market which is represented by the annual
return of the S&P 500 Index in this paper.

Let the premium between fundamental network frontier and
mean-variance frontier to be:

R(q, t) − R0(q, t) � βRMarket(q, t) + α,∀q, t (10)

As a result, Model 1 creates excess return when market grows
but may suffer loss when market drops. Meanwhile, Model 2 has
a negative β which means it outperforms Markowitz’s when
market goes down. Model 1 refers to an aggressive strategy by
optimizing company profitability. Model 2 is a defensive strategy
with emphasis on operating income (Table 3).

4 CONCLUSION AND DISCUSSION

We propose a novel approach, named Fundamental Networks
(FN), for asset allocation under a network framework, which
allows network stability measures to become applicable for
portfolio optimization. FN avoids confrontation of estimation
errors and the positive definite requirement of the covariance
matrix in mean-variance framework. Our FN model provides
robust and well-diversified solutions for investment.

Two examples with different fundamental objectives and variables
are demonstrated in the paper. We conclude that network efficient
portfolios, when properly defined with fundamental variables, are
also mean-variance efficient in out-of-sample performance under
certain market conditions. Moreover, our approach is adaptive
to different market conditions. Portfolios set for profitability goals
create excess return in an upward trending market, and outperform
Markowitz’s benchmark when averaged across years. On the other
hand, portfolios targeted for operating fitness produce better returns
in the down trending market, and can be used as a defensive strategy
in times of crisis. This empirical result also suggests that fundamental
networks with lower interconnectedness are less volatile than those
with higher complexity.

In conclusion, FN takes into consideration all filtered stocks and
their interconnections, including some stocks which are insignificant
but indispensable for the diversification of portfolios. The
fundamentals-integrated network reveals both interesting known
structures (similarity among stocks) and other structural patterns
that are typically lost in the mean-variance framework. When
combined with fundamentals and financial ratio information, such
patterns can be developed as strategies under different market
conditions. This coherent and principled network approach should
prove useful for various forms of portfolio construction not limited to
fundamental information. More generally, the proposed model is
expected to be applied to other complex systems, because of its ability
to generalize and connect networks from arbitrary data sets.

There are several avenues for future work. Firstly, a theoretical
interpretation of fundamental networks is desired. Secondly, we
can investigate, compare, discover patterns for optimal solutions
with various fundamental objectives and variables. Thirdly, we
can test and analyze more network structures (e.g., planar
maximally filtered graph, market graph, maximum cliques
among others), and network topological features (e.g., density,
assortativity and community structure and others). Finally,
fundamental networks open the door for multi-layer stock

Frontiers in Physics | www.frontiersin.org August 2021 | Volume 9 | Article 7210077

Yan et al. Portfolio Optimization by Fundamental Networks

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


networks modeling fundamental-price dynamics, a potential
interpretation for market efficiency.
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