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In this paper, we study the wave transport and localization properties of novel aperiodic
structures that manifest the intrinsic complexity of prime number distributions in imaginary
quadratic fields. In particular, we address structure-property relationships and wave
scattering through the prime elements of the nine imaginary quadratic fields (i.e., of
their associated rings of integers) with class number one, which are unique
factorization domains (UFDs). Our theoretical analysis combines the rigorous Green’s
matrix solution of the multiple scattering problem with the interdisciplinary methods of
spatial statistics and graph theory analysis of point patterns to unveil the relevant structural
properties that produce wave localization effects. The onset of a Delocalization-
Localization Transition (DLT) is demonstrated by a comprehensive study of the spectral
properties of the Green’s matrix and the Thouless number as a function of their optical
density. Furthermore, we employ Multifractal Detrended Fluctuation Analysis (MDFA) to
establish the multifractal scaling of the local density of states in these complex structures
and we discover a direct connection between localization, multifractality, and graph
connectivity properties. Finally, we use a semi-classical approach to demonstrate and
characterize the strong coupling regime of quantum emitters embedded in these novel
aperiodic environments. Our study provides access to engineering design rules for the
fabrication of novel and more efficient classical and quantum sources as well as photonic
devices with enhanced light-matter interaction based on the intrinsic structural complexity
of prime numbers in algebraic fields.
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1 INTRODUCTION

The spatial localization of light in open scattering environments with a refractive index that
randomly fluctuates over the wavelength scale has attracted intense research activities in the last
decades thanks to its wealth of mesoscopic physical effects with potential applications to advanced
photonics technology [1, 2]. Dielectric random media play an important role in a wide range of
optical applications such as, for instance, novel light sources and random lasers [3, 4], photonic filters
and waveguides [5], lens-less imaging systems [6, 7], broadband sensors and spectroscopic devices
[8]. Due to the crucial role played by wave interference effects in the multiple scattering regime, the
optics of disordered dielectric structures shows profound analogies with the transport of electrons in
metallic alloys and semiconductors [9, 10]. As a result, various mesoscopic phenomena known for
the electron wave transport in disordered materials, such as the weak localization of light, universal
conductance fluctuations, short/long range speckle correlations, and Anderson localization, have
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found their counterparts in disordered optical materials as well
[2, 9–11]. All these phenomena arise from wave interference
contributions in the multiple scattering regime which, in the case
of Anderson localization, completely break down the traditional
(i.e., perturbative) transport picture and bring light propagation
to a complete halt [9, 10]. However, despite a continued research
effort, Anderson localization of optical waves remains an evasive
phenomenon since it does not occur in open-scattering three-
dimensional random media when the vector nature of light is
considered [12]. This is credited to the detrimental effects of the
evanescent-field coupling of randomly distributed vector dipole
scatterers that confine electromagnetic waves at the sub-
wavelength (near-field) scale in dense scattering media [13,
14]. In fact, the excitation of sub-radiant (dark) near-field
modes, or “proximity resonances”, severely limits the
occurrence of the interference loops that drive localization
effects in such systems [13, 15]. Moreover, unavoidable
structural fluctuations in random media often limit their
applicability to optical device engineering [16]. As a result,
there is currently a compelling need to create optical media
that are structurally complex, yet deterministic, in order to
provide alternative routes for localization and strong light-
matter coupling effects without the involvement of any
statistical randomness.

In order to address this fundamental problem, we have
recently introduced a novel approach to wave localization
science and technology that leverages the structural complexity
of prime numbers in quadratic fields [17–20]. Building on our
previous work, in this paper we focus on two-dimensional (2D)
arrays of scattering dipoles arranged according to the
distributions of prime numbers in imaginary quadratic fields
(i.e., in the associated rings of integers) and systematically
investigate their structural, scattering, and wave transport
properties. For conciseness, we refer to these systems as
Complex Prime Arrays (CPAs) [17]. Our primary goal is to
provide a comprehensive analysis of the relationship between
structural and spectral properties that govern the distinctive
optical behavior of the entire class of CPAs with unique
factorization properties. In particular, we apply the
interdisciplinary methods of spatial statistics [21], spectral
graph theory [22], and multifractal scaling analysis [23, 24] to
gain information on the geometrical and connectivity properties
of the investigated structures that drive their characteristic
localization behavior. Using the Green’s matrix method, which
has been extensively utilized in the study of the scattering
resonances of open aperiodic media [13, 25–31], we
investigate the spectral statistics of scattering resonances by
means of extensive numerical calculations of large-scale
aperiodic arrays that cannot otherwise be accessed via
traditional numerical methods such as Finite Difference Time
Domain (FDTD) or Finite Elements (FEM). Importantly, the
Green’s matrix method allows one to obtain full spectral
information and access spatial and temporal localization
properties from the frequency positions and lifetimes (i.e., the
inverse of the resonance width) of all the scattering resonances
supported by the investigated systems. Based on the analysis of
spectral statistics, we demonstrate a clear Delocalization-Localization

Transition (DLT) characterized by a drop of the Thouless number
below unity and a switch of the level spacing from repulsion to
clustering with a power-law scaling as a function of the optical
density of the system. Finally, we address the Local Density of
States (LDOS) and Purcell enhancement in CPAs and
demonstrate Rabi splitting of embedded dipole emitters in the
strong-coupling regime. Our results show that CPAs are gapped
systems with a multifractal spectrum of localized resonances
resulting in a far-richer scattering and localization behavior
compared to both periodic and uniform random structures.
Our comprehensive analysis is meant to stimulate the
development of novel compact photonic devices with
broadband enhancement of light-matter interactions in both
the classical and quantum regimes.

The paper is organized as follows: in section 2, after a concise
introduction of the relevant number-theoretic background, we
discuss the diffraction and structural properties of CPAs. In
section 3 we address the wave transport and localization
properties of CPAs through the analysis of the Green’s matrix
spectra, level spacing statistics, spectrally-resolved Thouless
numbers. In section 4 we investigate the LDOS properties of
CPAs and establish their multifractal features by employing the
multifractal detrended fluctuations analysis. Section 5 introduces
the radiation analysis of CPAs by focusing on Eisenstein prime
arrays and demonstrates the Rabi-splitting of embedded
quantum emitters in the strong-coupling regime. The last
section draws our conclusions.

2 PRIMES IN IMAGINARY QUADRATIC
FIELDS: STRUCTURAL PROPERTIES

2.1 Algebraic Number Theory Background
In order to better appreciate our discussion of the structural and
optical properties of CPAs, we first introduce the relevant
mathematical background and terminology. The idea to
generalize the familiar properties of rational numbers to
algebraic number fields has a long history in mathematics
dating back to the pioneering works of Gauss, Kummer, and
Dedekind that initiated Algebraic Number Theory (ANT)
[32–34]. Closely related to the theory of representations of
integers by binary quadratic forms, quadratic field theory was
largely stimulated by the long search for the solution of Fermat’s
last theorem, whose complete proof was published by Andrew
Wiles in 1995 [35], as well as by Gauss’s seminal work on
quadratic reciprocity and cyclotomic fields [33, 36]. The vast
subject of ANT rapidly grew into a fascinating area of modern
number theory with fundamental connections to many other
branches of mathematics [37–41]. The basic notion of ANT that
we leverage in our paper is the concept of a quadratic field, which
is defined as a degree two extension of the field of rational
numbers Q. The previous statement means that, if we
consider d ≠ 1 to be a square-free integer (called radicand),
then the quadratic field denoted by “Q adjoin

��
d

√
” is the sets of

numbers:

Q( ��
d

√ ) � {a + b
��
d

√ |a, b ∈ Q} (1)
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By definition, this set of points forms a linear vector space overQ,
generated by the basis {1, ��

d
√ } with rational coefficients. The

dimension of such a vector space over the field Q is called the
degree of the field extension, which is equal to two in the case of
quadratic fields. We note that Q(

��
d

√
) is a subfield of R that

contains all the sums, differences, and quotients of numbers that
we can obtain from

��
d

√
, i.e., it is in fact the smallest extension ofQ

that contains
��
d

√
. The conjugate of the element α � a + b

��
d

√
is the

element �α � a − b
��
d

√
and the norm in the field is defined as

�N(α) � α�α � a2 − b2d. The norm is a multiplicative function,
therefore the norm of a product of different elements equals
the product of their norms. Elements u with norm �N(u) � ± 1
are called units. Two elements α and β are called associates if they
are linked by the multiplication with a unit, i.e., if α � uβ where u
is a unit. Quadratic fields with d > 0 are called real quadratic fields
while the ones with d < 0 imaginary quadratic fields.

In our paper we discuss the optical properties of CPAs
obtained from imaginary quadratic fields. Since we will be
studying arrays of prime numbers and their distinctive
aperiodic distributions, the primes are considered in the rings
of quadratic integers associated to quadratic fields. We remind
that rings are fundamental algebraic structures consisting of sets
of elements equipped with two binary operations that are
connected by a distributive law and satisfy properties entirely
analogous to those of the familiar addition and multiplication of
integers. Therefore, algebraic rings allow one to extend basic
arithmetic concepts, such as divisibility or prime factorization, to
more general settings [42]. A central result of number theory [39]
provides a convenient characterization for the integer ring OK

associated to the quadratic field K � Q(
��
d

√
) as follows: if d ≡ 1

mod 4, then O
Q(

�
d

√
) � Z[(1 + ��

d
√

)/2] � Z(τ), otherwise
O

Q(
�
d

√
) � Z[

��
d

√
]. This characterization also allows one to

define a norm in the ring O
Q(

�
d

√
) as N(α) � α�α �

(a + bτ)(a − bτ) where a → a + 1/2 and b → b + 1/2 if d ≡ 1
mod 4. It can be shown that if d < 0, the ring of integers Q(

��
d

√
)

has at most six units, which determine the maximum degree of
rotational symmetry of the corresponding CPAs.

An important example of a ring of algebraic integers is the one
of the Gaussian integers, i.e., O

Q(
��−1√
) � Z[i] ⊂ Q(

���−1√
),

explicitly defined by the set:

Z[i] � {a + jb |a, b ∈ Z} (2)

where j � ���−1√
denotes the imaginary unit. The Gaussian integers

were originally introduced by Gauss in relation to the problem of
biquadratic reciprocity, which establishes a relation between
the solutions of the two biquadratic congruences x4 ≡ q mod
p and x4 ≡ pmod q [33, 39]. Note that the norm of α in this ring is
N(α) � α�α � a2 + b2 and this coincides with the square of the
distance from the origin of the point with coordinate (a, b) in the
complex plane. Geometrically, Gaussian integers can be viewed as
points on a square lattice, i.e., points inR2 with integer coordinates.
It is also easy to see that the units in the ring Z[i] are ± 1 and ± j.

The reciprocity law can also be extended to higher-order
congruences, leading for example to the cubic reciprocity law
that was originally proven by introducing the algebraic ring

O
Q(

��−3√
) � Z[1+

��−3√
2 ] ⊂ Q(

���−3√
), denoted Z[ω] and specified by

the set:

Z[ω] � {a + e2πj/3b |a, b ∈ Z} (3)

This is the ring of Eisenstein integers, which are arranged
geometrically in a triangular lattice in the complex plane.
Eisenstein integers have the 6 units ± 1, ( ± 1 ±

���−3√
)/2. It

can also be established that for all other negative values of d
there are only two units, namely ± 1.

In order to introduce and characterize the CPAs investigated
in this paper we must review some basic facts on the
factorization problem in quadratic rings. We say that an
element of a quadratic ring of integers α is irreducible if it
cannot be factorized into the product of two non-units. On the
other hand, a non-unit element p of a ring is called a prime if,
whenever p divides the product βc of two elements of the ring, it
also divides either β or c. We remark that the irreducible
elements should not be confused with the prime elements. In
fact, a prime in a general ring must be irreducible, but an
irreducible is not necessarily a prime. The two concepts coincide
only for the special rings that admit a unique factorization.
Moreover, the rings that admits a Euclidean algorithm for the
greatest common divisor of two elements with respect to their
norm are called Euclidean domains (or norm-Euclidean). The
concepts reviewed here allow one to naturally generalize many
known arithmetical facts from rational integers to algebraic
rings. In particular, Gauss was able to prove that unique prime
factorization also occurs in the Gaussian and Eisenstein integers
[33]. However, rings associated to quadratic fields Q(

��
d

√
)

generally lack the unique factorization property, i.e., the
fundamental theorem of arithmetic may fail in generic rings
of integers. A classical example is provided by the integer ring
associated to the fieldQ(

���−5√
), which comprises all the complex

numbers of the form a + jb
�
5

√
where a and b are integers. In this

set there is no unique factorization because, for instance, the
number six can be written as a product of irreducible elements
of the ring in more than one way
i.e., 6 � 3 · 2 � (1 + ���−5√

) · (1 − ���−5√
). A ring in which every

non-prime element can be uniquely factored into the product
of primes or irreducible elements, up to reordering and
multiplication with associates, is called a Unique
Factorization Domain (UFD). Remarkably, it is possible to
show that there are only nine imaginary (d < 0) quadratic
rings that also are UFDs. These are the ones with radicand d �
−1, −2, −3, −7, −11, −19, −43, −67and − 163 [39]. This
important result, already conjectured by Gauss, is known as
the Baker-Stark-Heegner theorem and the nine values of d listed
above are called Heegner numbers. The first five Heegner
numbers identify rings that are Euclidean domains. On the
other hand, the rings of integers associated to the imaginary
quadratic fields with d � −19, −43, −67, −163 are non Euclidean.
This fundamental classification of algebraic rings gives rise to
markedly different geometrical and wave localization properties
for the corresponding CPAs, which will be addressed in detail in
the following sections.
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2.2 Generation and Structure of Complex
Prime Arrays
The scattering arrays that we study in this paper correspond to
the primes and irreducible elements in the nine imaginary
quadratic rings that are also UFDs. To generate these CPAs,
we rely on the fundamental classifications of primes based on the
norm and the discriminant of the field [43, 44]. The discriminant
δ of the imaginary quadratic field Q(

���−d√
) is defined as [43, 44]:

δ � d if d ≡ 1(mod4)
4d otherwise

{ (4)

The prime numbers in the ring of integers O
Q(

��−d√
) are found

by implementing the three following primality criteria [43, 44]:

• If N(α) is a rational prime, then α is a prime,
• An odd rational prime p is a prime inO

Q(
��−d√
) if p does not

divide δ and (δp) � −1,
• 2 is prime in O

Q(
��−d√
) if 2 does not divide δ and d ≡ 5

(mod 8).

where the Legendre symbol (δp) is equal to − 1 when δ is not a
quadratic residue (mod p) [43, 44]. An integer q is a quadratic
residue modulo p if q is congruent to a perfect square modulo p
[39]. With the above criteria, each element inO

Q(
��−d√
) was tested

for primality up to a maximum norm value Nmax that determines

the size of the array. Since the norm function for the primes in
O

Q(
��−d√
) forms an ellipse, we additionally removed all primes

located outside a circular region centered at the origin in order to
ensure that all the investigated CPAs are bounded by a circular
aperture. The generated CPA structures have a comparable
number of elements and are shown Figure 1. Specifically,
panels (a-i) display the CPAs corresponding to Heegner
numbers d � −1, −2, −3, −7, −11, −19, −43, −67, −163,
respectively. Moreover, panels (a-e) show the CPAs that
correspond to Euclidean fields. All these arrays feature very
distinct aperiodic patterns with a characteristic interplay
between structure and disorder [45]. Moreover, since
multiplication by a unit and complex conjugation both
preserve primality, these CPAs have different symmetries.
Specifically, the Gaussian and Eisenstein primes, shown in
panels (a) and (c) respectively, possess 8-fold and 12-fold
symmetry while the remaining Euclidean CPA structures have
4-fold symmetry [43, 44]. The coexistence between local structure
and global lack of periodicity in these systems is characteristic of
the fundamental dichotomy between structure and randomness
in the distribution of primes [45]. In particular, Terence Tao
showed in 2005 that Gaussian primes contain local clusters of
primes with minimal distances, or constellations, of any given
shape [46]. As we will establish in later sections, the structural
properties of CPAs have a strong influence on their wave
transport and localization properties. In addition, of particular

FIGURE 1 | Panels (A–I) show the point patterns generated by the prime numbers in the complex quadratic fields Q(
���−1√

), Q(
���−2√

), Q(
���−3√

), Q(
���−7√

), Q(
����−11√

),
Q(

����−19√
),Q(

����−43√
),Q(

����−67√
), and Q(

�����−163√
), respectively. These arrays are characterized by a number of points N equal to 2,658, 2,402, 2022, 2,582, 2,454, 2,732,

2,908, 2,940, and 2,254, respectively.
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interest for their transport properties are theorems on their
asymptotic density �ρ � N/πR2, defined as the number of
primes N inside a disk of radius R (i.e., the observation
window) in the limit of infinite large systems [44]. Note that
prime number arrays give rise to non-homogeneous point patterns
with a density that depends on the size of the observation
window. This fact was already known to the young Gauss
who, based on numerical evidence, conjectured at age sixteen
that the familiar primes (i.e., the primes in Z) are distributed with
the non-uniform asymptotic density �ρ(x) ∼ 1/ ln x for x → ∞.
This observation led to the celebrated prime number theorem
(PNT), demonstrated in 1896 by Jacques Hadamard and La
Vallée-Poussin [33].

Returning to the distributions of complex prime arrays, the
asymptotic density is known to be larger for the Eisenstein and
Gaussian primes compared to the primes in all the other
quadratic fields [44]. We observe that this asymptotic property
is also satisfied by the finite-size CPAs that we considered in
Figure 1, indicating that the analyzed structures are sufficiently
large to manifest the distinctive prime behavior. In particular, the
values of prime densities estimated the analyzed CPAs are �ρ �
0.1678, 0.0781, 0.2859, 0.0775, 0.0790, 0.0765, 0.0746, 0.0767, and
0.0783 corresponding to d � −1, −2, −3, −7, −11, −19, −43, −67,
and − 163, respectively. As expected, Eisenstein and Gaussian
primes feature a larger density for roughly the same number of
points, while all the other CPAs have very similar density values.
The asymptotic density of primes in the imaginary quadratic
fields with d � −1, −2, −3 have been established theoretically and
satisfy [44]: �

2
√

π logR
< 2
π logR

< 3
�
3

√
2π logR

(5)

where the case d � −2 has the smallest density and the Eisenstein
primes (d � −3) has the largest one given a maximum norm R. As
it will appear later in this paper, the high degree of rotational
symmetry (6-fold) combined with the larger density of the
Eisenstein primes makes this CPA platform particularly
attractive for the engineering of photonic sources and
quantum emitters with high quality factors.

In panels (f-i) of Figure 1 we show the CPAs that correspond
to the non Euclidean imaginary quadratic fields (d � −19, −43,
−67, −163). Differently from the case of the Euclidean structures
discussed above, it is evident that all the non Euclidean CPAs
share a remarkable structural similarity. In particular, we observe
two opposing elliptical shaped patterns of prime gaps resulting
from the presence of linear sequences of primes arranged along
consecutive horizontal lines. Interestingly, the presence of
characteristic linear substructures of primes in the non
Euclidean CPAs manifests and surprising connection between
imaginary quadratic fields and prime generating polynomials that
is rigorously established by the Rabinovitch theorem discussed in
Refs. [47, 48]. The theorem states that for d < 0 and d ≡ 1 mod (4)
the following polynomial:

x2 − x + 1 + |d|
4

� p, x � 1, 2, . . . ,
|d| − 3

4
, (6)

generates different prime numbers p for the integer values of x
shown above if and only if Q(

���−d√
) is a UFD. Therefore, these

polynomially generated primes form long horizontal lines (with
maximum length proportional to d) in non Euclidean CPAs.
Moreover, these “lines of special primes” can be found both above
and below the origin depending if we consider the polynomial in
Eq. 6 or its counterpart with a positive linear term [48]. Due to the
symmetry of the CPAs, we observe that the number of primes
along these lines is equal to (d − 3)/2, which is twice the number of
primes generated by the polynomials. For example, in the CPA
with d � −163 there are 40 integer values of x such that the above
polynomial yields a prime. Consistently, since Q(

�����−163√
) is a

UFD, in the first quadrant of the corresponding structure we see a
streak of primes (directly above the horizontal line through the
center) consisting of 40 elements and there is a similar line
directly below it. Clearly, the number of primes doubles to 80
elements if we include also the contributions from the second
quadrant. Interestingly, similar substructures of primes along
remarkable lines determined by quadratic polynomials are also
present in other two-dimensional prime arrangements, most
notably in the Ulam spiral constructed by writing the positive
integers in a square spiral and highlighting only the prime
numbers [49, 50]. The symmetry and local structure of CPAs
play a central role in the understanding of light transport and
localization properties through these complex aperiodic systems.
In order to establish robust structure-property relationships in
the single scattering regime, we investigate in the following
subsections the diffraction properties of CPAs and perform a
comprehensive structural analysis based on the associated
Delaunay triangulation graphs.

2.3 Diffraction Properties of Complex
Primes
Aperiodic structures are classified according to nature of their
Fourier spectral properties. In fact, the wave intensity diffracted
in the far-field can always be regarded as a positive-definite
spectral measure and the Lebesgue decomposition theorem
provides a rigorous tool for spectral classification. This
theorem states that any positive spectral measure can be
uniquely expressed in terms of three fundamental spectral
components: a pure-point component consisting of discrete
and sharp diffraction peaks (i.e., Bragg peaks), an absolutely-
continuous component characterized by a continuous and
differentiable function (i.e., a diffuse background), and a more
complex singular-continuous component where the scattering
peaks cluster into self-similar structures creating a highly-
structured spectral background. Singular-continuous spectra
are difficult to characterize mathematically but are often
associated to the presence of multifractal phenomena [51].
Recently, spectral and spatial multifractality has been predicted
based on numerical computations [17] and experimentally
demonstrated for Gaussian and Eisenstein prime arrays [18,
19]. In this paper we extend these results to the entire class of
CPAs with unique factorization properties.

When arrays of sub-wavelength scattering particles are
illuminated by coherent radiation at normal incidence, the
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resulting far-field diffraction pattern is proportional to the
structure factor defined by [33]:

SN(k) � 1
N

∑N
n�1

∑N
m�1

e−jk·(rn−rm) (7)

where k is the in-plane component of the scattering wavevector
and rn denotes the vector position of the N particles in the array.
Being proportional to the Fourier spectrum of the analyzed point
patterns, the structure factor provides access to the spectral
classification of aperiodic structures [25, 52, 53].

In Figure 2 we report the structure factors computed for all
the investigated CPAs. The presence of sharp diffraction peaks
embedded in a weaker and highly structured diffuse background,
particularly evident in the case of Gaussian and Eisenstein
primes, can be clearly observed for all the investigated CPAs.
The singular-continuous nature of their diffraction spectra is
further supported by the monotonic behavior of the integrated
intensity function (IIF) of the local density of states shown in
Supplementary Figure S3 of the Supplementary Materials. In
particular, we find that the IIF is an aperiodic staircase function
with varying slopes that smoothly connect each plateau region
due to the emergence of continuous components at multiple
length scales [17, 18]. This coexistence of sharp diffraction peaks
with a structured background is typical of singular-continuous

spectra that are mathematically described by singular Riesz
product functions that oscillate at every length scale [52].
Singular-continuous spectra are often found in complex
systems with fractal structures, chaotic dynamics, and are also
commonly found in traditional quasicrystals [17]. Singular-
continuous spectral components have also been linked to
multifractal systems [18]. In section 4 we provide additional
evidence of multifractality through the analysis of the density of
states and Purcell spectrum of the investigated CPAs. The
structure factors shown in Figure 2 also demonstrate the
distinctive symmetries of the CPAs. In particular, we observe
8-fold and 12-fold symmetry in panels (a) and (c) while the
remaining structures exhibit 4-fold symmetry. We also remark
that the structure factors of the Euclidean CPAs shown in panels
(a-e) do not share any common structural motif or pattern due in
large part to the significant mismatch of rotational symmetry. In
contrast, the structure factors of the non Euclidean CPAs, which
are shown in panels (f-i), display common features characterized
by the presence of bright peaks along the horizontal lines.
Moreover, the number of sharp diffraction peaks increases as
the radicand d of the field increases as well. Interestingly, we
found that the number of peaks along the horizontal lines is
equal to (d + 41)/12, reflecting the connection with the
previously discussed linear patterns of polynomially generated
primes.

FIGURE 2 | Calculated structure factors corresponding to the prime arrays shown in Figure 1. These diffraction patterns are visualized using the fifth root of the
intensity to enhance the contrast.
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2.4 Spacing Analysis of Complex Primes
Traditional spectral Fourier analysis alone is unsuitable for the
characterization of the local structural features of aperiodic point
patterns and must be complemented by the interdisciplinary
methods of spatial statistics [21, 25].

In particular, in what follows we will focus on graph theory
methods to further investigate the structure and connectivity
properties of CPAs. In order to better understand the unique
geometrical features of the CPAs, it is instructive to first perform
spatial Delaunay triangulation analysis using color-coded edge
lengths in order to visualize the distribution of distances
between neighboring primes in the different structures [25,
54]. The Delaunay triangulation provides a convenient way
to impose a graph structure onto the CPAs and this
approach can also be employed to study the diffusive
transport through arbitrary point patterns [22, 44]. In
Figure 3 we display the color-coded Delaunay triangulations
for all the investigated CPAs. The edge length is color-coded
with increasing numerical values from blue to red color. In
panels (a) and (c) we observe that the CPAs of the fieldsQ(

���−1√
)

and Q(
���−3√

) support multiple paths from the center to their
outer boundaries comprised solely of short edges. In contrast,
the CPAs analyzed in panels (b) and (d-i) feature a broader
distribution of edge lengths. The color-coded Delaunay can be
used to identify areas of similar connectivity lengths inside the
overall structure [25]. In the investigated CPAs, short edges are
predominantly localized near the center regions. This tendency

is most prominent inside the elliptical regions surrounding the
centers of the non Euclidean CPAs shown in panels (f-i). We
also observe from Figure 3 that there is no smooth variation in
edge lengths, but rather they only take on specific values that are
localized within specific areas of the structures. This is
demonstrated by the repetitions of the same colors within
the structures.

We then study the distribution of the spacing of primes in the
CPAs by computing the statistical distributions of the edge
lengths of the Delaunay triangulations and by comparing them
with the nearest-neighbor distances obtained from the
corresponding point patterns. Our results are summarized in
the histogram plots shown in Figure 4 and confirm that only few
discrete values of nearest-neighbor distances and edge lengths can
be obtained in all cases. The non Gaussian nature of these edge
distributions unveils structural correlations that markedly
separate the aperiodic behavior of CPAs from the well-
characterized case of Poisson point patterns [21]. Interestingly,
the occurrence of only few values of the nearest-neighbor
distances in such large-scale aperiodic sequences is also
observed in uniform sequences modulo 1, which display a
complex quasi-periodic behavior [55–57]. In this case, the
nearest neighbor spacing can only assume three values [55]. In
order to extend our geometrical approach, we will introduce in
the next section additional metrics that deepen our
understanding of the salient geometrical and local connectivity
features of the graphs associated with CPAs, with important

FIGURE 3 | (A–I) Delaunay triangulation with color-coded edge according to their lengths of the point patterns displayed in Figure 1. The edge lengths increase
from blue (i.e., the shortest edge of the Delaunay triangulation of each CPA) to red (i.e., the longest edge of the Delaunay triangulation of each CPA).
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implications for the transport and localization of light in these
complex structures.

2.5 Graph Theory Analysis of Complex
Primes
In this section, we apply several quantitative metrics from graph
theory to better analyze the distinctive correlation and
connectivity properties of the investigated CPAs. In particular,
geometrical and topological parameters will be constructed from
the graph structure of the Delaunay triangulation associated with
each point pattern. In Table 1, we report the computed graph-
based topological parameters associated with the unweighted and
weighted Delaunay triangulation of each CPA. To facilitate
understanding, we provide below a brief introduction to all
the considered graph parameters.

We first consider the average node degree 〈D〉 of the CPAs,
which is the average number of edges per node. We can obtain 〈D〉
from the diagonal entries of the graph Laplacian matrix [22].
Interestingly, we notice that the average node degree does not
vary significantly across the different structures due to the
homogeneous nature of the corresponding Delaunay graphs.
However, small variations can be observed when considering the
Pearson correlation coefficient R, also known as the assortativity
coefficient. This coefficient measures the spatial correlations between
nodes with similar degree values, and it is computed as:

R � 1
σ2q

∑
ki ,kj

[e(ki, kj) − q(ki)q(kj)] (8)

where kj is the node degree of the jth node, q (kj) � (kj + 1)p (kj +
1)/∑ikip (ki) and σ2q is the standard deviation of q (kj), the node

FIGURE 4 | Panels (A–I) show the probability density function Pd1 of the nearest-neighbor distances of the point patterns reported in Figure 1 together with the
probability density function PD of the Delaunay triangulation edge lengths shown in Figure 3. These data are reported as a function of l/l0, where l0 is the mean nearest
neighbor distance in each configuration.

TABLE 1 | Geometrical and graph-based parameters of the invetisgated structures.

Structures 〈D〉 R CN CWS AC Cw 〈Snode〉

Q(
���−1√

) 5.9601 −0.15889 0.38463 0.42557 0.007222 0.4253 2.4673
Q(

���−2√
) 5.9609 −0.19228 0.38433 0.43316 0.0088351 0.4325 2.4578

Q(
���−3√

) 5.9476 −0.16895 0.38493 0.4256 0.010545 0.4246 2.4712
Q(

���−7√
) 5.962 −0.16709 0.38531 0.42495 0.0082481 0.4242 2.4731

Q(
����−11√

) 5.9617 −0.18754 0.38547 0.4251 0.009004 0.4246 2.4575
Q(

����−19√
) 5.9656 −0.1617 0.38198 0.42933 0.0079667 0.4287 2.4379

Q(
����−43√

) 5.9512 −0.21432 0.37683 0.43486 0.0060718 0.4341 2.4135
Q(

����−67√
) 5.9544 −0.22991 0.36705 0.44425 0.0052759 0.4439 2.3831

Q(
�����−163√

) 5.9441 −0.21767 0.35096 0.45546 0.0040188 0.4553 2.2650
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distribution [22, 25]. The coefficient R ranges between − 1 and 1,
with positive values indicating a spatial correlation between nodes
of similar degree and negative values indicating a correlation
between nodes of different degrees, i.e., where high-degree nodes
have a tendency to attach to low-degree ones. This last network
property is called disassortativity. It is generally the case that large
social networks are assortative in contrast to biological networks
that typically show disassortative mixing, or disassortativity [22,
58]. From Table 1, we can see that all the investigated CPAs are
disassortative. This behavior stems from the distinctive spatial
non-uniformity of the CPAs that has been recently characterized,
for Gaussian and Eisenstein primes, using multifractal analysis
[18, 19]. In addition, here we find that the CPAs of Q(

����−67√
)

feature the strongest disassortativity, and that this property is
displayed particularly by non Euclidean CPAs.We also computed
the Newman global clustering coefficient C of the graphs, which
measures to what extent the graph nodes tend to cluster together.
Since this metrics is based on cluster triplets, it quantifies the
tendency of forming “isolated islands” in the analyzed graph
structures [22, 25]. The global clustering coefficient is defined
as [25]:

CN � 3NT

P2
(9)

where NT � Tr (A3)/6 is the number of triangles, A is the graph
adjacency matrix, and P2 is the number of paths composed of two
edges in the graph that can be obtained by the formula
P2 � ∑N

i�1ki(ki − 1)/2. From Table 1, we see that the Euclidean
structures have a stronger tendency to cluster together globally
compared to their non Euclidean counterparts, as it can also be
directly appreciated by inspecting Figure 1. For example, we
notice many isolated “pockets of primes” in the Eisenstein array
shown in Figure 1 panel (c). This is in strong contrast with the
distribution of primes in the non Euclidean fields that tend to
align along horizontal lines, as can be seen in Figure 1F–I. It is
also interesting to consider the local clustering properties of the
graphs that are described by the Watts-Strogatz index
CWS � (∑N

i�1Ci)/N , where N is the total number of nodes and
Ci is the local clustering coefficient defined as [22]:

Ci � Ri

ki − 1
. (10)

Here, Ri is the redundancy of vertex i, defined as the mean
number of connections from a neighbor of i to the other
neighbors of i [22, 25]. This quantity measures how close
nodes and their neighbors are to forming their own complete
graph [22]. As we can appreciate from Table 1, the non Euclidean
structures generally outperform their Euclidean counterparts also
with respect to this quantitative metric, as the nodes of these
graphs are more likely to form complete subgraphs with their
neighboring vertices. This can be observed especially in
Figure 3F–I where the primes located within the central
elliptic-shaped regions form complete subgraphs with their
neighboring vertices. This explains the increase in CWS as |d|
rises, since the number of points in the elliptical-shaped region
increases with |d|. On the other hand, the algebraic connectivity

(AC) of a graph is a measure on how well-connected is the graph
overall. It is defined as the second smallest eigenvalue of the graph
Laplacian matrix [22]. We observe in Table 1 that the AC of non
Euclidean structures rapidly decreases as the radicand d of the
corresponding quadratic field increases.

We now consider the analysis of weighted graphs where the
weight of each edge is equal to the Euclidean distance between the
two neighboring vertices. For a given vertex vi, the weighted
clustering coefficient cwi is defined as [22, 59]:

cwi � 1
si(ki − 1) ∑

j,h

(wij + wih)
2

(11)

where wij is the weight on the edge connecting vertices vi and vj,
while si is the strength of vertex vi defined by the summation∑jwij

in which j ranges over all adjacent vertices to vi [59]. In Table 1,
we report the weighted clustering coefficient averaged over all
vertices in the graph, which we denote as Cw. The small difference
observed in Table 1 between the weighted clustering coefficient
and the Watts-Strogatz index reflects the fact that the local
clustering behavior of the CPAs is independent of the length
between edges. Finally, we computed the vertex entropy averaged
over all the vertices of each CPA graphs. The entropy on vertex vi
is denoted by Svi and it is defined as [60]:

Svi � −∑
m

qi,m log2(qi,m) (12)

where m ranges over all adjacent vertices vm of the vertex vi and
qi,m is defined as q � wi,m/∑jwi,j, where wi,j is the weight of the
edge connecting vertex vi and vj and j ranges over all adjacent
vertices of vi. We observe a decreasing trend in nodal entropy
from the non Euclidean CPAs that correlates well with the
previously discovered drop of their AC. The data in Table 1
establish the particular importance of the AC and the nodal
entropy as sensitive characterization parameters for the
geometrical analysis of CPAs and provide a comprehensive set
of metrics for the development of structure-property
relationships. By addressing the challenging moat problem, in
the next section we will provide an initial discussion of the
connection between the transport and the structural properties
of CPAs.

2.6 Transport and the Moat Problem
Diffusive transport through complex systems can be described
in a first approximation using the tools of spectral graph theory
[22, 58]. In this simple picture, a scalar quantity diffuses over
time through the edges of the graph with a diffusion dynamics
determined by the spectral properties of its adjacency matrix
(more precisely of its graph Laplacian operator). Therefore,
understanding the geometry and connectivity characteristics of
the graphs imposed over a complex point pattern can provide
invaluable information on the nature of its transport
properties, and help identifying robust structure-property
relationships. Moreover, the network or graph approach to
diffusion through two-dimensional CPAs has a direct
connection with one of the unsolved problems in number
theory, i.e., the Gaussian moat problem [61]. A general moat
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problem asks whether it is possible to walk to infinity by taking
steps of bounded length on primes. When considering rational
primes (prime numbers in Z) this is clearly not possible since
{(n + 1)! + i} with i � 2 . . . , n + 1 are n consecutive composite
integers. In other words, lim sup{pn+1 − pn} �∞, meaning that
there are arbitrarily large gaps in the rational primes. However,
the moat problem can be generalized to Gaussian primes or to
primes in other quadratic rings, where it is concerned with the
characterization of prime-free regions that encircle the origin
of the complex plane [44, 62–64]. In particular, the Gaussian
moat problem asks whether it is possible to walk to infinity by
taking steps of bounded length over the Gaussian primes, which
is currently an open question in number theory [61]. In this
context, the existence of a k-moat means that it is not possible
to walk to infinity with a step size smaller than k [44]. The
mathematical perspective behind the moat problem is clearly
relevant to achieve a rigorous understanding of the transport
properties of CPAs based on the relative ease of k-moats
formation. This approach has also been recently applied to

the transport through Guassian and Eisenstein primes [44,
62, 63].

In order to extend this approach to all the considered CPAs,
here we use the graph created from the Delaunay triangulation to
computationally explore the farthest distances reachable in the
CPAs, given a maximum step size. We find that the previously
introduced AC and nodal entropy parameters of the CPAs play
indeed an important role in this context and largely control the
transport properties of CPAs. To quantitatively study this
problem we first create weighted graphs by assigning a weight
to each edge equal to the distance between the two primes
connected by that edge. We then can find the farthest distance
reached for a given moat value k by removing all the edges with
lengths greater than k. In the resulting graph, the node associated
with the point of largest norm in the Minimum Spanning Tree
(MST) is called the Frontier prime [22, 44]. The norm of this
prime yields the farthest distance reached with a maximum step
size k. Since this is a hard computational problem, the symmetry
of the structures must be exploited to limit the investigation to
only a portion of the structures [44]. Specifically, an octant of the
plane is considered for the Gaussian primes, a 12th of the plane
for the Eisenstein primes, and a quadrant of the plane for all the
remaining CPAs [44]. Representative examples of this method are
shown in Figure 5. For this analysis we have investigated largest
systems with up to N � 3 × 104 particles. In particular, in panels
(a) and (b) we show the farthest primes reached when the
considered moat value is k � 2 and k � �

8
√

, respectively, and
the CPA corresponds to the field Q(

���−1√
). It is clear from the

plots that a farther prime element and a further distance from the
origin are reached when the moat size is increased. Similarly,
panels (c) and (d) show the farthest primes reached when the
considered moat values are k � �

3
√

and
�
5

√
, respectively, for the

CPA ofQ(
���−3√

). By comparing panels (b) and (d) we can observe
that the farthest distance reached is similar in both CPAs even
though the maximum allowed step size in the CPA of Q(

���−3√
) is

smaller. It follows that the transport through the Eisenstein
primes reaches a farthest distance for a given maximum step
size compared to the Gaussian primes. This example suggests a
method to assess the ease of transport through all the investigated
CPAs. Building on this idea, we systematically investigate the
farthest distance that is reachable for a given moat value k in all
the CPAs with Heegner number discriminant d. Figure 5E shows
the results of our analysis for all the CPAs (labelled in the legend
by the values of their discriminant) when consideringmoat values
k ranging from one to

��
41

√
. Our results indicate that, by gradually

increasing the moat value k, the farthest distance will be first
reached by the Eisenstein primes, while the shortest distance
(i.e., most impeded transport) is obtained in the CPA of
Q(

�����−163√
). Moreover, we found that the transport through

the non Euclidean CPAs is generally more impeded compared
to their Euclidean counterparts. We can qualitatively explain
these results based on the difference between the structural and
graph connectivity parameters of these two classes of graphs. In
particular, as we discussed in the previous section, Euclidean/non
Euclidean CPAs differ fundamentally in the values of their AC,
density, and node entropy (see Table 1). In particular, the
Eisenstein primes have the largest AC, entropy, and density,

FIGURE 5 | Minimum spanning tree analysis applied to the Gaussian
prime array when the maximum allowed edge length k (also named moat
value) is equal to 2 panel (A) and

��
8

√
panel (B). Panels (C) and (D) show the

same study performed on the Eisenstein configuration when k is equal to��
3

√
(panel c) and

��
5

√
(panel d). Panel (E) compares the maximum distance

Dmax, evaluated form the origin of each structures, of all the investigated CPAs
for given moat values k.
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describing a compact, structurally complex, and highly-
interconnected network that favors diffusion processes
compared to less dense and more ordered structures with
reduced connectivity. In the next section, based on rigorous
electromagnetic scattering theory, we will address the optical
wave scattering and transport properties of CPAs and establish
the validity of structure-property relationships in these complex
systems.

3 Wave Transport Through Prime Number
Landscapes
We now investigate the spectral and wave transport properties of
vertically-polarized electric dipoles spatially arranged according
to the distributions of primes in imaginary quadratic fields. As
already introduced in section 2.2, we will focus here only on the
nine structures that are UFDs. Multiple scattering effects are
studied by analyzing the properties of the Green’s matrix that is
defined as:

Gij � i δij + ~Gij( ) (13)

where the elements ~Gij are given by [65]:

~Gij � i
4
H0(k0|ri − rj|) (14)

with H0 (k0|ri −rj|) the zero-order Hankel function of the first
kind, k0 the wavevector of light, and ri the position of the i-th
scatterer in the array. The non-Hermitian matrix (13) describes
the electromagnetic coupling among the dipoles and it enables the
systematic study of the scattering properties of two-dimensional
(2D) waves with an electric field parallel to the invariance axis of
the CPAs (i.e., z-field component) [66]. The real and the
imaginary parts of the complex eigenvalues Λn of Eq. 13
correspond to the detuned frequency ω0—ω and decay rate Γn
(both normalized to the resonant width Γ0 of an isolated dipole)
of the scattering resonances of the system [28, 65, 67]. Although
the 2D model defined by the matrix (13) does not take into
account the vector nature of light [13, 15, 27], it still provides
robust physical information on light localization in complex 2D
media [28, 65, 67]. Moreover, this 2D model has been recently
employed to describe the “disorder-induced” transparency in
high-density hyperuniform materials [66], to correctly
describes the coupling between two-level atoms in a structured
reservoir [68, 69], and to design aperiodic arrays for the efficient
generation of two-photon processes [20]. In addition, it can also
be conveniently utilized as the starting point for the design of
three-dimensional photonic devices based on the membrane
geometry [70, 71]. We will study the Thouless number g and
the level spacing statistics in the low and high optical density ρλ2

regimes by numerically diagonalizing the N × N matrix (14),
where ρ is the number of scatterers per unit area and λ is the
optical wavelength. In the following, we will focus on a subset of
four representative arrays that fully capture the main features of
the wave transport properties of CPAs. In particular, we will
discuss the CPAs in the associated quadratic fields Q(

���−2√
),

Q(
����−11√

), Q(
����−67√

), and Q(
�����−163√

). The results obtained from

the diagonalization of the Green’s matrix for all the other
structures are presented in Supplementary Figures S1, S2 of
the Supplementary Materials.

We find that at low optical density (i.e., ρλ2 � 106), all the
investigated systems are in the diffusive regime. In fact, their
eigenvalue distributions, color-coded according to the log 10 of
the modal spatial extent (MSE), do not show the formation of any
long-lived scattering resonances. The MSE parameter quantifies
the spatial extension of a given scattering resonances Ψi of the
system and it is defined as [72]:

MSE � ∑3N
i�1

Ψi| |2⎛⎝ ⎞⎠2∣∣∣∣∣∣∣∣∣∣∑
3N

i�1
Ψi| |4 (15)

To gain more insight on the transport properties of CPAs, we
study the behavior of the Thouless number g as a function of the
frequency ω [15, 27, 67]. Specifically, we sample the real parts of
the eigenvalues Λn in 500 equi-spaced intervals and we calculate
the Thouless number in each frequency sub-interval by using the
relation [15, 27]:

g(ω) �
�δω
�Δω � (1/I[Λn])−1

�R[Λn] −R[Λn−1] (16)

The symbol {/ } in eq. (16) denotes the sub-interval averaging
operation, while ω indicates the central frequency of each sub-
interval. We have verified that the utilized frequency sampling
resolution does not affect the presented results. The outcomes of
this analysis are reported in Figure 6E–H. Consistently with the
low value of the optical density, we found that the Thouless
number is always larger than the one, which corresponds to the
diffusion regime.

To corroborate our findings, we have analyzed the probability
density function of the first-neighbor level spacing statistics of the
complex Green’s matrix eigenvalues P(s), where s � |ΔΛ|/〈|ΔΛ|〉
is the nearest-neighbor Euclidean spacing of the complex
eigenvalues |ΔΛ| � |Λn+1 −Λn| normalized to its average value.
The study of level statistics provides important information on
the electromagnetic propagation in both closed and open
scattering systems [73, 74]. In particular, the concept of level
repulsion (i.e., P(s) � 0 when s goes to zero) is used to characterize
the degree of spatial overlap between the resonant scattering
modes of arbitrary systems [75]. In fact, the level statistics analysis
allows one to unambiguously discriminate between a decloalized
(diffusive) regime characterized by level repulsion and a
localization regime characterized by level clustering (i.e., by
the absence of level repulsion) as a function of ρλ2. We have
shown in Ref. [17] that the distribution of level spacing for the
Gaussian and Eisenstein prime arrays in the low scattering regime
manifests level repulsion described by the critical cumulative
probability defined as [76]:

I(s) � exp μ −
���������
μ2 + (Acs)2

√[ ] (17)

where μ and Ac are fitting parameters. The results shown in
Figure 6I–L and in Supplementary Figure S1 of the
Supplementary Materials establish the critical level spacing
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statics as a robust property for all the other investigated CPAs as
well at small optical density. The critical cumulative probability
was successfully applied to describe the energy level spacing
distribution of an Anderson Hamiltonian containing 106

lattice sites at the critical disorder value, i.e., at the metal-
insulator threshold where it is known that all the wave
functions exhibit multifractal scaling properties [76]. Our
findings demonstrate the applicability of critical statistics to
CPAs in the weakly scattering regime reflecting the singular-
continuous nature of their diffraction spectra that support
critically localized eigenmodes with self-similar scaling
properties (see also Supplementary Material for more details
on the singular-continuous nature of the investigated arrays).

On the other hand, at large optical density ρλ2 � 5.5, we
observe the appearance of spatially confined long-lived scattering
resonances, as shown in Figure 7A–D. Specifically, clear
dispersion branches populated by scattering resonances that
are localized over small clusters of dipoles are forming near ω
≈ 0 in all the investigated CPAs (see also the Supplementary
Material for additional details). Moreover, Figure 7A–C show
the formation of spectral gap regions where the critical scattering
resonances reside, demonstrating the effect of local correlations
on wave interference across the structures. Critical modes in
aperiodic systems are spatially extended and long-lived
resonances with spatial fluctuations at multiple length scales
characterized by a power-law scaling behavior [18, 77, 78].
Interestingly, we found that the CPA associated to Q(

�����−163√
)

does not support the formation of spectral gaps, reflecting the less

coherent nature of interference phenomena in this aperiodic
environment. Furthermore, at large optical density, we find
that g becomes lower than unity for ω ≈ 0, indicating the
onset of light localization, as reported in Figure 7E–H. We
also observe that the non Euclidean CPA associated to the
field Q(

�����−163√
) features a significantly reduced number of

localized scattering resonances compared to the other
investigated CPAs. This behavior can be traced back to its
distinctive geometrical structure characterized by the presence
of polynomially generated linear clusters of primes that can only
efficiently confine radiation along the vertical y-direction.

The presence of a clear delocalization localization transition in
the analyzed CPAs is also confirmed by the behavior of their level
spacing statistics at large optical density. Under this condition, we
observe a clear level clustering effect that is fundamentally
different from the Poisson statistics predicted for
homogeneous random media (black-dotted lines in
Figure 7I–L) and describing non-interacting, exponentially
localized energy levels [75, 79]. In contrast, the level spacing
distributions observed in all CPAs are well-reproduced
considering the inverse power law scaling curve P(s) ∼ s−β that
is displayed by the continuous black lines (see also
Supplementary Figure S2 of the Supplementary Materials). In
the context of random matrix theory, it has been demonstrated
that the power-law distribution describes complex systems with
multifractal spectra that produce uncountable sets of hierarchical
level clustering [80, 81]. Moreover, this power-law scaling appears
to universally describe the transport physics, for values of the

FIGURE 6 | Eigenvalues distribution of the Green’s matrix (13) in the low scattering regime (i.e., ρλ2 � 10–6) for two representative Euclidean [panels (A,B)] and non
Euclidean [panels (C,D)] CPA. In particular, panels (A–D) refer to the arrays generated by following the prime elements in the complex quadratic fieldsQ(

���−2√
),Q(

����−11√
),

Q(
����−67√

), andQ(
�����−163√

), respectively. The Thouless number g as a function of the frequency ω and the level spacing statistics P(s) extrapolated from the distributions of
panels (a–d) are reported in panels (E–H) and (I–N). These data demonstrate that the investigated arrays are in the diffusive regime: g is always larger than unity
[horizontal black dashed line in panels (E–H)] and P(s) is well-reproduced by the critical statistic in Eq. 17 [continuous black line in panels (I–N)].
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exponent β in the range 0.5 < β < 2, of complex systems exhibiting
anomalous diffusion. These are correlated random systems in
which the width of a propagating wavepacket σ2 increases upon
propagation according to t2] with ] ∈ [0, 1] [80]. Specifically, such
a behavior was observed in one-dimensional scattering systems
characterized by incommensurate sinusoidal modulations [81], in
quasi-periodic Fibonacci structures [82], in a family of tight-
binding Hamiltonians defined on two-dimensional octagonal
quasi-periodic tilings [83], and more recently, in three-
dimensional scattering arrays designed from sub-random
sequences [15]. The exponents β and ] are connected through
the relation [80, 81, 84]:

σ2(t) � t2] ∼ t2(β−1)/�d (18)

where �d is the system’s dimensionality. By substituting the values
of the parameter β obtained from the numerical fits of the data in
Figure 7I–L into Eq. 18, we find that the exponent ] is equal to
0.05 and 0.06. Similarly small values for the exponent ] are also
obtained at large optical density for the non Euclidean structures,
confirming the onset of the localization regime. These results
indicate that a significant wave interference correction to classical
diffusion can be obtained using the investigated CPAs [85].

Finally, Figure 8A,B display the scaling, as a function of the
number N of prime elements, of the minimum values of the
Thouless number for two representative CPAs corresponding to

the quadratic fields Q(−2) and Q(−163), respectively. All these
curves cross the DLT threshold value g � 1 approximately at the
same optical density, demonstrating the robustness of the
transition with respect to the number of scattering dipoles in
the arrays. Moreover, we show in panels (c) and (d) a
comprehensive summary of the light localization properties of
all the investigated CPAs, separately considering the Euclidean
structures in panel (c) and the non Euclidean ones in panel (d)
previously shown in Figure 1. We observe a clear DLT for all the
investigated arrays. To better understand the observed DLT-
transition in these novel structures, we can estimate the ratio
between the localization length ξ and the systems size L. For a 2D
uniform and isotropic random system, the localization length is
approximately provided by [9]:

ξ ∼ lt exp[πR(ke)lt/2] (19)

with lt the transport mean free path andR(ke) the real part of the
effective wavenumber in the medium. Although the numerical
factor in Eq. 19may not be accurate [9, 86], it nevertheless tells us
that the localization length in 2D systems is an exponential
function of lt and can be extremely large in the weak
scattering regime (i.e., at low optical density). Moreover, in
our point dipole limit the transport mean free path coincides
with the scattering mean free path and can be simply estimated as
lt � ls � 1/ρσd. Here, σd is the cross section of a single point

FIGURE 7 |Complex eigenvalue distributions, Thouless number, and level spacing statistics of the same structures analyzed in Figure 6 are reported, respectively,
in panels (A–D), (E–H), and (I–N) when ρλ2 � 5.5. These data not only show a Thouless number g < 1 at ω ≈ 0, but also show that P(s) describes level clustering with a
power-law scaling [continuous black lines in panels (I–N)]. The Poisson distribution that is characteristic of uniform random systems is also reported with a black dashed
line as a comparison.

Frontiers in Physics | www.frontiersin.org August 2021 | Volume 9 | Article 72345613

Dal Negro et al. Wave Transport and Localization in Prime Number Landscapes

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


scatterer, which is related to its electric polarizability α(ω) [68]. At
resonance, σd is equal to k30|α(ω0)|2/4 [28, 66]. Considering that,
under the effective medium theory, ke can be approximated as
k0 + i/(2ls) [66, 68], we can rewrite Eq. 19 as πλ exp [π3/(2ρλ2)]/
(2ρλ2), which directly connects the localization length of isotropic
random structures with their optical density. In order to simply
account for the discovered DLT behavior we must consider
the ratio ξ/L. Consistently, we found that ξ/L is very large
(i.e., ξ/L ≫ 1) at low optical density indicating diffusion, while
it becomes smaller than one, indicating localization, at the larger
values of ρλ2 used in our analysis. Therefore, we have established
that CPAs are promising aperiodic structures to engineer novel
complex photonic environments with light localization
properties. Moreover, these systems feature broadband spectra
of localized optical resonances with distinctive scaling properties
associated to their geometrical multifractality [18, 19], as we will
discuss in the next section.

4 Multifractality of Local Density of States
The decay dynamics of a light emitter embedded in a complex
dielectric environment can be rigorously understood by
computing its local density of states (LDOS) and the
corresponding Purcell enhancement factor as a function of
frequency. The knowledge of the LDOS spectra allows one to
accurately determine the spectral locations of the resonant modes
with the highest quality factors, such as those that are located near

the bandgap regions [16, 25, 26, 54, 70–72, 87]. In order to
characterize the emission dynamics in these complex aperiodic
environments, we have computed the enhancement of the LDOS
with respect to its free space value, or the Purcell spectrum, for all
the CPAs consisting of approximately 1,000 electric dipoles with
the electric polarizability α(ω) � −4Γ0c2/[ω0(ω2 − ω2

0 +
iΓ0ω2/ω0)] [66]. Here, ω0 is the resonant frequency and Γ0
identifies the linewidth. We have fixed ω0 � 4.3 × 1015 and Γ0
� 7.4 × 1015. In this way, the polarizability α(ω) describes the
scattering properties of arrays composed by 30 nm radius
dielectric nanocylinders of constant permittivity ε � 10.5 with
an average interparticle separation of 220 nm embedded in air
[20, 88]. In order to compute the LDOS ρ(rs, ω), we have
evaluated the field scattered at rs when the system is excited
by a dipole source p � 1/μ0ω

2 also located at rs and oriented along
the z-axis (i.e., parallel to the invariance axis of the scatterers).
Specifically, the scattered field is computed by solving the self-
consistent Foldy-Lax equations:

Ei � μ0ω
2G(r, rs;ω)p + ω2

c2
α(ω)∑

i≠j
G(ri, rj;ω)Ej (20)

where ri is the position of the scatterer i and G (r, rs; ω) is the
Green function (14) [68]. For a systemwithN scattering elements,
the linear system (20) can be solved numerically. Once the
exciting field at rs is known, the Purcell spectrum P (rs; ω) can
be evaluated through the formula 4(1/4 +I[E(rs;ω)])/(ω2μ0p),
whereI[E(rs;ω)] is the imaginary part of the scattered field at the
position of the excitation. The results of this analysis are reported
in Figure 9 for all the investigated CPAs. Consistently with what
previously observed for the Eisenstein and Gaussian primes [20],
we report for all the analyzed CPAs the presence of singular
LDOS spectra with a characteristic fragmentation of spectral gap
regions into smaller sub-gaps separated by localized modes.
Interestingly, we discover that this fragmentation is more
pronounced for the Euclidean structures compared to the non
Euclidean ones, which show significantly smaller spectral gaps.
The singular nature of the LDOS in complex systems with
singular-continuous spectra, including the distribution of
prime numbers, can be accurately described using multifractal
scaling analysis [54, 82, 89–91].

In order to characterize the multifractal scaling of the LDOS
fluctuations observed in Figure 9 for all the CPAs we apply
Multifractal Detrended Fluctuation Analysis (MDFA) [24]
using the numerical routines developed by Ihlen for the
study of non-stationary complex signals [23]. The MDFA is a
powerful technique that extends the traditional Detrended
Fluctuation Analysis (DFA) [92] to the case of non-
stationary time series with multifractal scaling properties.
This is achieved by considering the scaling of their
fluctuations with respect to polynomial trends defined over
sub-intervals of the analyzed signals (i.e., local detrending).
The local nature of the scaling procedure is essential because,
in contrast to homogeneous fractals (or monofractals), the
scaling of multifractals is locally defined around each point.
More precisely, the scaling behavior around any point of a
general multifractal measure μ is accounted by its local

FIGURE 8 | Panels (A) and (B) show the scaling with respect to the
system size of the minimum value of the Thouless number as a function of ρλ2

near by the DLT-threshold. Panel (A) refers to the CPA in the Q(
���−2√

) field,
while panel (B) to the CPA in the Q(

�����−163√
) field. Panels (C) and (D)

compare the minimum value of the Thouless number as a function of ρλ2 for
the Euclidean structures and non Euclidean structures, respectively. These
data refer to systems with approximately 2,500 scattering elements. The
dashed line at g � 1 marks the transition value from diffusion (g > 1) to
localization (g < 1). The error bars are estimated from the standard deviations
associated to the fluctuations of the Thouless number with respect the
different choices of the binning used to sample the frequency ω in Eq. 16.

Frontiers in Physics | www.frontiersin.org August 2021 | Volume 9 | Article 72345614

Dal Negro et al. Wave Transport and Localization in Prime Number Landscapes

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


(i.e., position dependent) power law μ(x
⃗ + a

⃗
) − μ(x

⃗
) ∼ ah(x

⃗).
Here the generalized Hurst exponent h(x

⃗
), or singularity

exponent, quantifies the strength of the singularity of the
multifractal signal around that specific point. In addition, it
can be shown that the set of all the points that share the same
singularity exponent is a fractal set with a continuous
distribution of fractal dimensions, characterized by the
singularity (or multifractal) spectrum [93]. The MDFA
enables accurate determination of the multifractal parameters
of a signal, including the multifractal spectrum. This is achieved
by considering the local scaling of generalized fluctuations with
respect to smooth trends over piecewise sequences of locally
approximating polynomial fits, i.e., Fq(n) ∝ nh(q) where h(q) is
the generalized Hurst exponent, or q-order singularity exponent
[23]. The generalized parameter h(q) reduces to the
conventional Hurst exponentH ∈ [0, one] for stationary signals.

In our analysis the multifractal LDOS signal xt is regarded as a
discrete series of data points labelled by the integer parameter
t ∈ N and the generalized fluctuations Fq(n) are defined as the q-
order moments over N intervals of size n according to [23, 24]:

Fq(n) � 1
N

∑N
t�1

Xt − Yt( )q⎛⎝ ⎞⎠1/q

(21)

where:

Xt � ∑t
k�1

(xk − 〈x〉) (22)

Moreover, Xt is subdivided into time windows of size n samples
and Yt denotes the piecewise sequence of approximating trends
obtained by local least squares fits. Finally, 〈x〉 is the mean value
of the analyzed time series corresponding to the LDOS signal.
Finally, the multifractal spectra of the LDOS, shown in the insets
of Figure 9 for the corresponding CPA, are computed from the
mass exponent τ(q) using the Legendre transform [20, 24]:

D(q) � qτ′(q) − τ(q) (23)

The broad anddownward concavities of themultifractals spectra of the
LDOS of CPAs are indicative of the strong multifractal behavior of
these complex systems [18, 20]. The width Δh(q) of the support of the
multifractal spectra is directly related to the degree of spatial non-
uniformity of the corresponding signals [18]. Our results demonstrate
that the strongest LDOSmultifractality occurs for the Eisenstein prime
structures and it drops significantly for themore non Eucliedean CPAs
that are characterized by more regular geometries. This trend is
consistent with the reduction in nodal entropy and algebraic
connectivity that was previously identified for non Eucliedean CPAs.

FIGURE 9 | (A–I) LDOS/Purcell enhancement as a function of frequency ω of vertically polarized dipoles (i.e., electric field along the z) spatially arranged according
to the distributions of complex primes in the imaginary quadratic fields shown in Figure 1. The insets show the corresponding multifractal spectra D(q) as a function of
h(q). All the multifractal spectra are reported on the same scale with D(q) ∈ [0, one] and h(q) ∈ [0, 4].
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We are now well-positioned to establish robust structure-
property relationships valid for all the investigated CPAs by
correlating their structural and spectral information. In
particular, here we investigate the connection between
geometrical and transport properties by showing in Figure 10
the dependence of the critical optical density ρλ2T at which the
DLT appears in the different structures on the algebraic
connectivity parameter, the node entropy, and the width of
the multifractal spectra Δh(q). Moreover, we compare in
panels (a), (b), and (c) the histogram plots of ρλ2T (blue bars)
as a function of the absolute value of the radicand of the field |d|
with the histograms plots of the AC density (yellow bars), the
node entropy S (green bars), and the width Δh(q) (orange bars) of
the multifractal LDOS/Purcell spectra, respectively. Interestingly,
we observe that the AC and nodal entropy strongly correlate with
the DLT threshold values for all the systems. In particular, these
parameters decrease when |d| increases and this correlation is
particularly evident in the non Euclidean CPAs. This analysis
shows that non Euclidean CPAs are structurally more
homogeneous than their Euclidean counterparts, consistently
with their reduced nodal entropy. The implications of these
structural properties on transport are displayed clearly in
panels (d), (e), and (f), where we report ρλ2T as a function of
the structural parameters AC, S, and Δh(q), respectively. The
error bars in these figures reflect the uncertainty in the estimation
of the ρλ2T at which the minimum values of g becomes less than
unity due to the fluctuations of the Thouless number with respect
to size of the binning interval used to compute Eq. 16. Notably,
we found an approximate linear relationship with respect to the
nodal entropy S (see Figure 10E. Our findings demonstrate that
the structural complexity and inhomogeneity of CPAs are the key
ingredients that drive the discovered localization transitions.

These results establish relevant structure-property relationships
that qualitatively capture the complex interplay between light
scattering and localization in these novel complex environments.
Building on these structurally-driven transport properties, in the
final section of the paper we will discuss the ability of CPAs to
enter the strong coupling regime that is relevant for the
engineering of novel quantum sources.

5 Prime Numbers in the Quantum Regime:
Rabi Splitting
Spectral fractality has profound implications on the relaxation
dynamics of quantum sources [20, 94]. In the following section,
we will address the decay rate of a two-level atom (TLA) with
transition frequency ωif � ω̂ embedded inside a CPA-structured
vacuum with multifractal scaling properties. In particular, we will
focus on the strong coupling regime where the interaction of the
emitter with CPA photonic environment is faster than the
dissipation of energy from either system. The strong coupling
is fundamental in quantum-based measurements and quantum
information protocols, as well in the testing of the long-standing
questions about macroscopic quantum coherence [95–98].

As a proof-of-concept demonstrator, we focus here on the
radiation from Eisenstein prime arrays. These structures are the
best candidate ones to achieve strong light-matter interaction. In
fact, based on our previous analysis, the Eisenstein prime arrays
possess the most compact (high-density) and complex aperiodic
geometry characterized by the highest nodal entropy value and
the broadest multifractal LDOS spectrum. In addition, among all
the CPAs the Eisenstein structures also display the highest degree
of rotational symmetry, which favors the formation of spectral
badgap regions in low-index photonic environments [99] and, in

FIGURE 10 | Histograms of the estimated values of the DLT-threshold (ρλ2T ) of all the investigated arrays together with their algebraic connectivity AC in panel (A),
nodal entropy S in panel (B), and multifractal width Δh(q) in panel (C). Panels (a–c) compare ρλ2T with respect to AC, S, and Δh(q), respectively.
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combination with aperiodic order, is known to give rise to highly-
localized optical modes [27, 70, 71]. This feature is clearly visible
in Figure 11A, where we show the Purcell spectrum P (rs; ω) �
ρ(rs, ω)/ρ0(ω) evaluated at the center of an Eisenstein array with
N � 1,062 scattering particles. A broadband distribution of
highly-confined band-edge resonant modes can be observed in
the Purcell spectrum of this structure. An enlarged view of the
highest peak of P (rs; ω) is shown along with its Lorentzian fit in
Figure 11B. This localized optical mode, shown in the inset of
panel (b), has an eigenfrequency ω � 4.85 × 1015s−1, and an
effective linewidth Γ � 8.8 × 109s−1, yielding a quality factor Q �
ω/Γ � 1.5 × 105 and a Purcell enhancement factor P � 5.5 × 105.
The inset of panel (b) is computed using a square grid of
vertically-polarized electric dipoles with a resolution of 19 nm
(i.e., almost 5 × 105 dipoles are considered). We now use this
highly-localized mode to demonstrate numerically the strong
coupling regime following the approach described in Refs. [66,
68]. The computational analysis proceeds as follows: first, we add
an extra scattering dipole at position rs with the electric
polarizability:

αTLA(ω) � − 4Γrc2
ω̂[(ω2 − ω̂2 + i(Γr + Γnr)ω2/ω̂)] (24)

The parameters Γr, and Γnr are, respectively, the radiative and
intrinsic nonradiative linewidth [66, 68].We then tune its resonance
frequency ω̂ to the one of the localized mode (i.e., ω̂ � ωC). For
simplicity, we assume Γnr � 0. As a consequence, the electric

polarizability (24) describes either a classical resonant scatterer
or a quantum two-level atom far from saturation [69].
Subsequently, we illuminate the hybrid system composed of the
investigated systems and the TLA with an incident plane wave,
resulting in the coupled self-consistent equation [68]:

Ei � E0(ri,ω) + k2α(ω)∑
i≠j

G0(ri, rj,ω)Ej

+ k2αTLA(ω)G0(ri, rs,ω)ETLA (25)

where the locally exciting field on the TLA is given by:

ETLA � E0(rs,ω) + k2α(ω)∑N
i�1

G0(rs, ri,ω)Ei (26)

By substituting Eq. 26 into Eq. 25, we can evaluate the exciting
field on each of the N scatterers in the CPA dielectric
environment by solving the self-consistent Foldy-Lax equations:

Eext
1

Eext
2

«
Eext
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

E0
1

E0
2

«
E0
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +M

Eext
1

Eext
2

«
Eext
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (27)

where M is the N × N matrix defined by:

k4αTLAαG
1s
0 G

s1
0 k2αG12

0 + k4αTLAαG
1s
0 G

s2
0 . . . k2αG1N

0 + k4αTLAαG
1s
0 G

sN
0

k2αG21
0 + k4αTLAαG

2s
0 G

s1
0 k4αTLAαG

2s
0 G

s2
0 . . . k2αG2N

0 + k4αTLAαG
2s
0 G

sN
0

« « 1 «
k2αGN1

0 + k4αTLAαG
Ns
0 Gs1

0 k2αGN2
0 + k4αTLAαG

Ns
0 Gs2

0 . . . k4αTLAαG
Ns
0 GsN

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

FIGURE 11 | (A) LDOS enhancement/Purcell factor as a function of frequency ω for vertically polarized electric dipoles spatially according to the Eisenstein prime
arrays evaluated at the center of the structure. The blue markers identify the optical mode with the largest Purcell enhancement that is fitted by a Lorentzian lineshape, as
reported in panel (B). Panel (C) displays the strong coupling between a TLA, positioned at the center of the structure, and the optical mode reported in panel (b). The Rabi
splitting is evaluated numerically by calculating the absolute value of the induced dipole moment |p(ω)| of the TLA as a function of the detuned frequency Δω and the
radiative linewidth Γr. (D) Rabi splitting 2ΩR of a TLA coupled with the optical modes with the largest Purcell enhancement factor for each investigated CPA. The
continuous lines are the analytical predictions obtained from the analysis of the complex poles of the dressed polarizability while the markers indicate the numerical data.

Frontiers in Physics | www.frontiersin.org August 2021 | Volume 9 | Article 72345617

Dal Negro et al. Wave Transport and Localization in Prime Number Landscapes

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Once the locally exciting fields on each scattering dipole are
known, we can compute the induced dipole moment of the probe
scatterer pTLA � ϵ0αTLA(ω)ETLA (rs, ω), whose absolute value
yields the Rabi splitting [66, 68]. Figure 11C shows the resulting
spectrum as a function of the detuned frequency Δω and the
radiative linewidth Γr. We note that the single Lorentzian peak is
now split into two symmetric peaks by increasing Γr, which
demonstrates the onset of Rabi-splitting in the system.

To provide a comprehensive overview of the strong coupling
regime of CPA dielectric environments, we have extended our
numerical study to all the investigated CPAs. The results of this
analysis are presented in Figure 11D. The markers denote the
numerical results evaluated by solving Eq. 27, while the
continuous lines refer to the analytical expression of the Rabi
frequency ΩR derived by analyzing the poles of the dressed
polarizability of the system
α̂(ω) � αTLA/[I − k2αTLA(ω)Sreg(rs, rs,ω)] [68, 69]. Here, Sreg is
the regularized scattered Green function [68, 69]. ΩR is equal to
(g2 − Γ2r /16)1/2, where the coupling constant g is given by the
relation

���������
(ΓrΓCPC/4)

√
. To evaluate the Rabi-frequency as a

function of Γr, we have selected the optical mode that
produces the largest Purcell enhancement in each CPAs.
Figure 11D summarizes our results that determine the ability
of the investigated CPAs to produce strongly-coupled hybrid
states. Interestingly, we found that, with the exception of the CPA
corresponding to d � −19, all the non Euclidean structures do not
produce any Rabi-splitting, reflecting their inability to support
pronounced bandgap regions with highly-localized band-edge
modes. The anomalous case of d � −19 case, being structurally
very similar to the Euclidean CPAs (see Table 1 and Figure 10)
shares similar performances and represents the transition
boundary between the two different classes. All the remaining
non Euclidean CPAs show significantly reduced density, algebraic
connectivity, and node entropy resulting in “less disordered”
dielectric environments, in agreement with the smaller widths of
their P (re, ω) multifractal spectra. In contrast, the “more
disordered” geometries of the Euclidean CPAs give rise to
more suitable photonic environments for the generation of
highly-localized optical resonances in the strong coupling regime.

6 CONCLUSION

In conclusion, we have presented a comprehensive analysis of
the structural, spectral, and localization properties of novel
aperiodic arrays of scattering dipoles that inherit the intrinsic
complexity of prime numbers in imaginary quadratic fields. We
have presented a theoretical analysis that combines the
interdisciplinary methods of spatial statistics and graph
theory analysis of point patterns with the rigorous Green’s
matrix spectral approach to the multiple scattering problem
of optical waves. Our work has unveiled the relevant structural

properties that result in a wave localization transition in the
investigated structures. Specifically, we have demonstrated the
onset of a Delocalization-Localization Transition (DLT) by a
comprehensive analysis of the spectral properties of the Green’s
matrix and the Thouless number of these systems as a function
of the optical density. Moreover, we showed that CPAs are
gapped systems with a multifractal spectrum of localized
resonances resulting in a far-richer scattering and localization
behavior compared to periodic and uniform random structures.
Furthermore, we establish a connection between their
localization, multifractality, and graph connectivity
properties. Finally, we employed a semi-classical approach to
demonstrate and characterize the strong coupling regime of
quantum emitters embedded in these novel aperiodic
environments. This study provides access to engineering
design rules for the fabrication of novel and more efficient
classical and quantum sources as well as photonic devices with
enhanced light-matter interaction based on the intrinsic
structural complexity of prime numbers in imaginary
quadratic fields. Our comprehensive analysis is meant to
stimulate the development of novel design principles to
achieve broadband enhancement of light-matter interactions
in both the classical and quantum regimes.
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