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Most materials are mechanically heterogeneous on a certain length scale. In many
applications, this heterogeneity is crucial for the material’s function, and exploiting
mechanical heterogeneity could lead to new materials with interesting features, which
require accurate understanding of the local mechanical properties. Generally used
techniques to probe local mechanics in mechanically heterogeneous materials include
indentation and atomic force microscopy. However, these techniques probe stresses at a
region of finite size, so that experiments on a mechanically heterogeneous material lead to
blurring or convolution of the measured stress signal. In this study, finite element method
simulations are performed to find the length scale over which this mechanical blurring
occurs. This length is shown to be a function of the probe size and indentation depth, and
independent of the elastic modulus variations in the heterogeneous material, for both 1D
and 2D modulus profiles. Making use of these findings, we then propose two
deconvolution methods to approximate the actual modulus profile from the apparent,
blurred measurements, paving the way for an accurate determination of the local
mechanical properties of heterogeneous materials.

Keywords: deconvolution, heterogeneity, indentation, fintie element model (FEM), length scale

1 INTRODUCTION

Controlling the mechanical heterogeneity of materials could lead to new innovative materials with
interesting properties [1], such as scaffolds for tissue engineering [2], stimuli-responsive materials
[3], materials with soft-lithography applications [4] and materials with enhanced lifetime [5]. To
design such materials, and to understand their mechanical performance, methods are needed that
can accurately measure the spatial variation of mechanical properties. This is challenging, since the
mechanical response of a material depends strongly on the length scale at which it is probed [6,7].
The most common method to measure local mechanical properties in heterogeneous materials is
indentation, in which an indenter is pushed on a material and the local resistance force to
deformation is acquired with a force sensor. Using an appropriate contact model, such as
Hertzian contact theory [8], the local elastic modulus E can be obtained from the measured
force-displacement relation. However, the indenting probe deforms the material in a region of finite
size, so that variations in mechanical properties that occur on length scales that are similar to the size
of the deformed region or smaller necessarily appear smoothed out. This is illustrated in Figure 1,
which shows a material with a sharp gradient in the modulus. Probing the material using spatially-
dependent indentation leads to a blurred profile, which is a convolution of the actual modulus profile
and the volume of material probed by the indenter. Depending on the size of the probe, this blurring
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FIGURE 1 | Schematic representation of a material that has a step-wise
modulus profile and the resulting modulus profile measured by an indentation
experiment at several positions across the modulus interface. The four insets
a-d display the heterogeneous stress profiles in the material, color coded

for the stress, as the material is indented with, in this example, a

spherical probe.

may occur on the nm scale for nano-indentation using atomic
force microscopy [9-13], on the pm-scale for micro-
indentation [14].

Reference [15] characterization, or on the mm-scale or larger
for macroscopic probes [16-18]. Previous studies have shown
that the extent of mechanical blurring depends on the indentation
depth [6] and occurs over an area that is at least three times the
contact area of the probe with the substrate [7]. However, the
exact dependence of the mechanical response on the probe size
and depth remain unknown. Clearly, the characterization of
mechanically heterogeneous materials would benefit from a
better understanding of the effects of mechanical blurring, and
from ways of improving the spatial resolution of mechanical
measurements.

A similar problem occurs in optical imaging, where the
captured image is a convolution of the real image and the
so-called point spread function, which describes the response
of the imaging system to a point force and thereby characterizes
the degree of blurring. If the point spread function of an optical
device is known, deconvolution methods can be used to deblur
the signal and increase the image quality [19,20]. In this work,
we explore a similar deconvolution strategy for indentation
measurements on mechanically heterogeneous materials. We
first identify the mechanical analogue of the point spread
function. We do this by performing finite element
calculations on materials with a known modulus profile E(r),
indented by a spherical probe. From the calculated normal force
F(r), we obtain an apparent local modulus E,(r), which we
compare to the real modulus E(r) to assess the degree of blurring
and to estimate the mechanical point spread function. We find
that the blurring is independent of the magnitude of E, which is
a prerequisite for deconvolution to be feasible, since the real
modulus is unknown. In addition, we find that the deblurring is
set by a combination of the probe radius R and the indentation
depth §, which together determine the length scale over which
the probe deforms the material. Based on these findings, we then
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describe two methods to approximate the real modulus profile E
from the apparent moduli E, measured for different values of R
and 6.

2 MATERIALS AND METHODS

2.1 Finite Element Method Simulations
Finite Element simulations were performed using COMSOL
Multiphysics 5.4. The 3D stationary structural mechanics
module was used to model the indentation of a rigid sphere
on a linear elastic substrate. The linear elastic substrate was
meshed with small hexahedra swept underneath the
spherical probe and coarsely meshed far away from the
probe, as shown in Figure 2A, and was solved for 43k
degrees of freedom. Three probe radii were simulated;
400, 500 and 750 pm. The maximum indentation depth
was set at 0. = 0.4-R and the step size was 4 um. The
linear elastic substrate was modeled with a fixed constraint at
the bottom. Contact between the rigid sphere and the elastic
substrate was implemented by the penalty method. Further
model details are provided in the Supplementary Material
(SM). With F obtained from the bottom of the PDMS
substrate in the simulations, the apparent modulus E, was
calculated using Hertzian contact theory [8],

3 123
E, :ZR’za’zF (1a)

Y
e (1b)
where Y is the apparent Young’s modulus, and v is Poisson’s ratio,
which was here taken as 0.45 [21].

FEM simulations were performed on a total of four profiles:
i) a 1-dimensional (1D) stepwise modulus profile ii) 1D
sigmoidal profiles with varying widths w iii) 1D wells with
various widths w, and iv) 2-dimensional (2D) wells with
various widths w?. The modulus profiles were incorporated
with a piecewise function in COMSOL’s material section using
the following relations:

E(x) =E +(E,-E)-H(x) (2a)
(E; - E1)
l+e w
E(x) = By ;EZ) + (B, ;EZ) cos<2nf—v + 71) (2¢)
E(x,y) =E —|E - E1|e<’ w ) (2d)

with E; > E,, x the position, x, the position of the interface and
H the Heaviside function defined as:

0forx—x,<0
1forx—x,>0

H(x)={
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FIGURE 2 | (A) Meshing used in the finite element simulations for 1D modulus profiles, where the finely meshed region at the destination moves along with the
indentation position. Symmetry in the y-axis is assumed to reduce computation time. (B) Elastic strain energy density, u, distribution for indentations at various positions
across the interface for a sigmoidal profile (Eq. 2b) with width w = 10.0 mm, shown with the bottom center plot. The inset of the u profile at the interface, x = 0 mm, shows
the heterogeneous u profile across the interface, leading to blurring of the recorded stress response in indentation measurements.

3 RESULTS AND DISCUSSION

3.1 Heterogeneity Leads to Asymmetric

Stress Profile

FEM simulations are performed on materials with various elastic
modulus profiles. Figure 2B shows, for the 1D sigmoidal profile
with width w = 10.0 mm, the elastic strain energy density profile
u=Y= J;f o00e. For mechanically heterogeneous materials, the
strain energy profile is asymmetric, leading to a convolution in
the locally recorded force, which becomes a weighted average of
the stress profile. Hence, this calls for a method that converts the
convolved profile in a deconvolved profile that approximates the
actual material profile, such that mechanically heterogeneous
materials can be mapped accurately.

3.2 The Mechanical Point Spread Function
To find the mechanical point spread function that sets the degree
of mechanical blurring, a stepwise profile (Eq. 2a) is simulated
with FEM. Results in Figures 3A,B show that the mechanical

blurring is dependent on R and §. Likely, this is because R and §
set the contact radius a = VRS between the probe and the
substrate. The larger a, the larger the area probed by the
sphere and the larger the mechanical blurring. At this point,
we assume that E, is a convolution of E and the mechanical
blurring function g (r —t'), with the real modulus at position r’
contributing to the modulus probed at position r, analogous to
the point spread function:

[ee]

E0=| gr-rEwar 3)

Next, we assume that the mechanical blurring function g
(r -r') is a Gaussian function, independent of E:

1 Pty
VY) = ——e 12 4
g(xy) N (4)
where L is a characteristic length that determines the degree of
blurring. Eq. 3 can be solved analytically for the stepwise profile,
by inserting Eq. 2a and Eq. 4 in Eq. 3, resulting in:
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FIGURE 3 | FEM simulation data for a step modulus profile for all three probe radii. (A) £, at all simulated depths & (color coded) plotted versus the probe position
from the interface (x — xo) for a step profile obtained by Eq. 2a (black), with (B) a zoom-in of panel (A) showing the data around the interface. (C) £, from panels (A) and
(B) plotted versus the probe position from the interface (x — xo) rescaled with L, where the black line represents £, from Eq. 5, with (D) a zoom-in of panel (C) showing
the data around the interface.

B(x) =3 (B + B+ (B B ert(7) 5)

with E, the convolved elastic modulus, which should approximate
E,. By fitting Eq. 5 to E, from the FEM simulations, the characteristic
blurring length L can be determined as a function of R and 6. Indeed,
the results presented in Figures 3C,D show a collapse of E, when x is
rescaled with L obtained from these fits, as expected based on Eq. 5.
Furthermore, to verify whether L ~ (R, §), Figure 4 shows that L can
be fitted with L =b- (RS)?. Collapse of L for multiple E—; ratio’s
shows that L is independent of E. These findings show that our
assumption of a Gaussian point spread function works well for
deconvolving the mechanical blurring.

Now that we have obtained the mechanical point spread function
and its characteristic blurring length L from the analysis of the
blurred step profiles, we investigate whether this can be used to
deconvolve apparent moduli measured with indentation to obtain a
good approximation of the actual modulus profile of heterogeneous
materials. We propose two methods to do this.

3.3 Deconvolution of 1-Dimensional Profiles
The first method to deconvolve a blurred profile is through
extrapolation of E, to L = 0, as at zero indentation depth the
material is not deformed and there is no blurring of the
mechanical response and, hence, E, = E in this case. This

extrapolation to obtain E, is shown in Figure 5A for a
sigmoidal profile with width w = 10.0 mm, for several probe
positions x — xo. An advantage of this extrapolation method to
deconvolve E, into E, that approximates E is that the precise
shape of g(r —r') does not have to be known.

The second method to deconvolve a blurred profile is
accomplished with an algebraic deconvolution approach. First,
we write the convolution as a matrix operation:

E.=G-E 6)

with G a matrix describing the mechanical blurring. Every row of
G contains coefficients that indicate how much the modulus at
position r’ contributes to the modulus probed at position r. These
coefficients are determined by g (r —t'), of which L is known from
the simulations on the 1D steplike profile. To obtain the unknown
E from the measured E, we find a least squares solution to Eq. 6
using an iterative method, Simultaneous Iterative Reconstruction
Technique (SIRT) algorithm [22,23]. Further details of this
method are provided in the SM.

With the two methods presented above, E,, is extrapolated and
deconvolved leading to E, and E,, respectively. E, and E; convert
E, into an approximation of E, as shown in Figures 5B,C for a
sigmoidal profile with width w = 10.0 mm and a well profile with
width w = 2.0 mm, respectively. This shows that both presented
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FIGURE 4 | The characteristic length L plotted versus the squared

contact radius a® = Ré for all three probe radii, fitted using L = b - (RS)P with
prefactor b = 0.195 and exponent p = 0.37. The legend shows the symbols for
the probe radius (um). The inset shows p versus the ratio between the
simulated moduli, with the lower modulus, £, = 0.5 MPa and £ > Eo.

methods, extrapolation and deconvolution, deblur the stress
profile of a heterogeneous elastic profile into an
approximation of the actual local elastic modulus.

3.4 Deconvolution of 2-Dimensional Profiles
After demonstrating mechanical deconvolution for 1-
dimensional (1D) modulus profiles, simulations were
performed to showcase the potential of deconvolving a 2-
dimensional (2D) modulus profile. In these simulations, the
same meshing was used as for the 1D profiles. Symmetry was
assumed across x = xy and y = y, and, therefore, a quadrant was
modeled to reduce computation time.

The discrepancy between the apparent modulus E, and the
actual modulus profile E, shown in Figures 6A,B, once again
demonstrates the necessity for the mechanical deconvolution
methodology demonstrated for the 1D profiles. The
convolution kernel g and L obtained from the 1D step profile
are used to extrapolate and deconvolve E,,.

The results from these simulations show that both the
extrapolation and deconvolution methods presented in this
work are able to deconvolve both 1D and 2D mechanical
profiles, approximating a blurred E, into profiles close to the
actual profile E. Results in Figures 3, 4 confirm that mechanical
blurring is at least three times L, as observed by [7]. In addition,
simulations on two g—; ratio’s for 2D wells show that the
differences between E,, E, and E,; scale approximately with the
% ratio, albeit that larger deviations are found for smaller w, see
Supplementary Figure S5. Furthermore, like the 1D profile, a
sharper modulus profile leads to blurring of E,, making
extrapolation and deconvolution into an approximation of E
more challenging. Examples are Supplementary Figure S3A
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FIGURE 5 | (A) £, plotted versus the L for all three radii simulated for a
sigmoidal profile with width w = 10 mm. The data are extrapolated using a
second order polynomial fit to give an extrapolated modulus E at L = 0,
indicated with an asterisk (*), which approximates the local E. The
legend shows the symbols corresponding to R. For visualization purpose,
every eighth data point is plotted. (B) Elastic moduli plotted versus
indentation position around the center of the profile. Insets are zoom-ins.
Note that the data shown in both panel (A) and (B) are from a sigmoidal
profile with w = 10.0 mm. (C) Elastic moduli plotted as a function of
indentation position for the 1D well profiles for w = 2.0 mm, with § color
coded. Insets are zoom-ins.
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FIGURE 6 | Data of two dimensional modulus profiles of a symmetric well, where one quadrant was simulated. (A) All moduli versus probe position plotted as cut
line through the center of the well for £; = 1 MPa and E, = 0.5 MPa. (B) All moduli versus probe position plotted as cut line through the center of the well for £; = 2 MPa
and E, = 0.5 MPa. (C) Surface map of E, — E, (D) E, — E, and (E) E4 — Eforthe E; =1 MPaand E, = 0.5 MPa and w?=0.5 mm? profile. Extrapolation and deconvolution is
achieved with L obtained from the 1D stepwise profile (see Figure 4).

and Supplementary Figure S4A, where a sharp, (almost)
discontinuous transition in E leads to the Gibbs phenomenon
[24] in the deconvolved E, and Ej oscillations of the Fourier
function at sharp transitions which in imaging is known as the
ringing artefact [25]. Nevertheless, the two methods presented
allow deconvolution of E, into an approximate of E.

3.5 Towards Experimental Validation

Our finite element simulations show how indentation
measurements on heterogeneous samples lead to mechanical
blurring, and how knowledge of the mechanical point spread
function can be used to deconvolve the blurred signal to obtain
a more accurate modulus profile, experimental validation is
required to transform this proposed method into a reliable
practical procedure. To experimentally determine the
mechanical point spread function and the associated
characteristic length, and to compare this to simulation results
shown in Figure 4, a material with a precisely known gradient in
modulus is needed, ideally a x-dependent step function in modulus.
Indentation measurements on this reference sample then allows the
determination of the characteristic length in exactly the same way
as described in Section 3.2. Unfortunately, we have not been able to
produce such a material of known modulus gradient with the
capabilities in our lab, without also creating gradients in the depth-

direction or differences in sample height across the modulus step,
which made it impossible for us to provide such validation. Our
attempts are described in detail in the SM. We hope that this work
will inspire others to provide the experimental validation needed to
turn our approach into a robust experimental method. We further
note that in our approach we have assumed the substrate to be a
purely elastic material. While this is justified for elastic solids, such
as crosslinked rubbers, care should be taken for viscoelastic soft
materials that also have viscous (and therefore rate-dependent)
contributions to the mechanical response. Furthermore, since our
method is based on linear elasticity, deviations may occur for large
indentation depths, where strain hardening may become relevant.

4 CONCLUSION AND FUTURE OUTLOOK

The work presented in this paper shows two methods to
transform a blurred and measured E, towards an expected
modulus E in FEM simulations in 1D and 2D. This
transformation is achieved by using a characteristic length L,
which is found to be a function of § and R. The methods
presented to deconvolve a blurred mechanical profile should
work on smaller length as well, for example for mechanical
maps obtained using spatially resolved AFM-based force
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spectroscopy [10,11], provided that the material can still be
considered as a flat elastic continuum. For this it is necessary
to obtain force-distance curves for each position, so that effective
modulus data at the same penetration depth can be compared. To
validate the extrapolation and deconvolution methods proposed
here experimentally, indentation measurements on a material
with a precisely known modulus profile are performed.
Unfortunately, we did not succeed in obtaining these, but we
hope that future work will demonstrate the potential of
mechanical deconvolution. We anticipate that the mechanical
deconvolution technique presented here can be used to
approximate the actual mechanical heterogeneous material
from a blurred stress response, leading to more accurate
knowledge of local mechanical properties in for example
biological systems [12,14], polymeric materials [6,7,15,26] and
meat analogues [27].
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