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In this perspective, we discuss the current and future impact of artificial intelligence and
machine learning for the purposes of better understanding phase transitions, particularly in
correlated electron materials. We take as amodel system the rare-earth nickelates, famous
for their thermally-driven metal-insulator transition, and describe various complementary
approaches in which machine learning can contribute to the scientific process. In
particular, we focus on electron microscopy as a bottom-up approach and metascale
statistical analyses of classes of metal-insulator transition materials as a bottom-down
approach. Finally, we outline how this improved understanding will lead to better control of
phase transitions and present as an example the implementation of rare-earth nickelates in
resistive switching devices. These devices could see a future as part of a neuromorphic
computing architecture, providing a more efficient platform for neural network analyses – a
key area of machine learning.
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INTRODUCTION

Around the last decade, artificial intelligence (AI) has become the staple for teasing out insights from
large sets of data in both a scientific context and from our everyday lives. AI defines a wide class of
computer-based approaches to solve problems that normally require human intelligence [1]. AI, and
especially the subfield of machine learning (ML), where the model is able to self-improve based on
previous outputs, can reveal patterns in multidimensional data sets that would not have been
appreciated otherwise. This can be used in many ways, from relatively benign recommendation
systems [2] to potentially more insidious implementations in mass surveillance [3]. One thing that
has become clear in this age of AI is that a model can only be as good as the input data. In physics,
machine learning has proven itself particularly useful in the context of high-energy physics, and
astrophysics, where large, centralized datasets exist. All this leads to the question of why ML is not
more ubiquitous in condensed matter physics, the largest subfield of contemporary physics by
activity [4].

The nature of the field is no doubt partially to blame for this: the average condensed matter
physicist generates relatively little data when compared to their counterparts from other areas of
physics. Physical conclusions tend to be drawn from multiple complementary measurements on a
small set of samples or devices rather than one large dataset. Compounding this is that data is seldom
centralised. Even within a close collaboration between different groups: synthesis parameters are
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rarely shared with the theoretical scientist, while details of the
electronic structure calculation are not shared with the
experimentalist. Computational results in the field of
correlated materials are performed with a variety of codes and
techniques, that do not always give the same results, making the
consistent application of machine learning techniques to data
generated by multiple groups more difficult.

Here we will discuss two AI-based approaches in condensed
matter physics, one nanoscale and one metascale. By metascale
we mean that – rather than looking at an individual material at a
particular physical scale, new insight is brought into the field from
AI or other forms of statistical analysis of multiple materials, at a
variety of different possible scales. We attempt to address one of
the most fundamental concepts in the subject: the metal-insulator
phase transition (MIT). We discuss how ML can contribute to
both a bottom-up and top-down understanding of phase
transitions through electron microscopy techniques, and
metascale analyses of MIT materials respectively. These two
approaches, enhanced by ML, will improve understanding and
control of the MIT. Then, we will show how the cycle of
development can be completed by future implementation of
phase transition systems into neuromorphic hardware that
could significantly enhance the efficiency of artificial neural
networks, used to model a wide variety of nonlinear processes
from object recognition [5] to translation [6].

Metal-Insulator Transitions in Rare-Earth
Nickelates
Most MIT materials are transition metal oxides [7] and, as a
model system in which to study MITs, the rare earth nickelates
are a shining example for multiple reasons. These include - when
synthesised as epitaxial thin films - their high quality and
adaptability in terms of multilayer and superlattice structures
as well as their intrinsic physics [8].

The family of perovskite rare earth nickelates, RNiO3, where R
can be most of the rare earths, has been widely studied for many
decades already [8, 9]. At high temperature, the RNiO3

compounds are paramagnetic metals with a strong
hybridisation between the Ni cation and the six oxygens in
immediate coordination [10, 11]. Upon reducing temperature,
the RNiO3 compounds enter an insulating state with an energy
gap characterised by the O-Ni charge transfer energy, i.e., the
material is in the charge-transfer regime. [12, 13]. Locally, the
material undergoes a structural and electronic disproportionation
while entering the insulating phase [14–16] stabilised by the
electron-lattice coupling [17].

The transition induces a change of resistivity of several orders
of magnitude and varies from occurring at cryogenic
temperatures to occurring at hundreds of Kelvin. The large
range of MIT temperatures is brought about through the
substitution of the various rare earth cations, representing a
largely steric effect on the electronic bandwidth, along with an
associated change in the lattice stiffness to structural
disproportionation [17–19].

The MIT can be controlled in bulk by parameters, such as
pressure [20]. Due to the relative unavailability of large single

crystals, much of the work on rare earth nickelates has taken place
in the context of thin film heterostructures. The film geometry
facilitates the control of the MIT by electric field [21] and light
[22] and introduces new tuning parameters such as strain,
substrate symmetry, and confinement and interfacial effects
[19, 23–28].

Atomic Scale Probes of Condensed Matter
Systems
In recent years, development of aberration-corrected scanning
transmission electron microscopy (STEM) has allowed,
sometimes subtle and often pico-scale, effects at
heterointerfaces to be accessed.

STEM is a powerful technique that can image crystals and
non-periodic structures directly in real space with sub-atomic
resolution. Through monitoring unit cell by unit cell, this analysis
is critical to understand the physical properties of materials and
particularly those that emerge in epitaxial heterostructures.
However, as a scanning technique, the acquired datasets are
typically large (up to a few terabytes), noisy (especially from
scanning distortions), redundant (most pixels contain similar
information) and sometimes require complex interpretation.
Therefore, in some cases it might be difficult to identify the
most relevant information from a given dataset and to efficiently
extract it, particularly when studying an unknown compound. In
this respect, ML has unlocked the ability to rapidly and
automatically extract physically relevant features from STEM
images [29], for example defects and dopants in graphene
lattices [30–36], allowing access to a treasure-trove of
information on the atomic scale physics and chemistry of
materials.

Furthermore, the possibility of coupling imaging detectors
with spectrometers, such as energy dispersive x-ray (EDS) or
electron energy loss (EELS), makes STEM even more complete.
When combined, these detectors generate 3D datasets where each
individual real space image pixel contains a spectrum of chemical
and electronic information from the corresponding lattice
position. However, in contrast to other spectroscopic
techniques such as x-ray absorption spectroscopy, the output
signal in EELS or EDS is significantly lower due the smaller
volume of sample that is probed, which ultimately limits the
energy resolution. In this aspect, ML algorithms have become an
indispensable tool for boosting the signal-to-noise ratio of the
acquired spectra and/or for isolating mixed spectral
contributions. Among all the different approaches, principal
component analysis (PCA) is one of the most routinely used
methods for spectral noise reduction. This method consists of
decomposing the initial dataset into a new set of orthogonal
components which are then re-ordered as a function of their
statistical variance. By discarding the low-variance components
associated to the spectral noise, one can recover the original data
containing only the most relevant information [37–40]. This
method has recently enabled the spatial mapping of the
electronic phases in rare-earth nickelate superlattices to almost
atomic resolution, revealing how structural and electronic
properties are coupled at the interfaces of these novel,
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artificially engineered materials [41]. Understanding the coupling
length scales has been crucial for harnessing the phase transition
in such devices [42]. However, the use of PCA is less convenient
to effectively unmix overlapped spectral features since the
resulting orthogonal components do not have a physical
meaning. To this end, alternative methods have also been
developed [43–53].

As a technique, STEM can be expected to become even more
popular in laboratories across the globe thanks to the continuing
advancement of the hardware. Among these advancements, the
powerful functionalities of STEM can be further combined with
high-stability TEM stages that enable measurement at fixed
temperatures from approximately −200°C to 1,000°C and allow
in-situ electrical biasing of the TEM specimen while preserving
the atomic resolution [54, 55]. In addition, significant
improvements in data collection are being made through the
development of new generation cameras. In the case of EELS for
instance, the signal-to-noise ratio of the acquired spectra has been
remarkably enhanced thanks to the advent of direct electron
detection cameras which, compared to conventional charge
coupled device cameras, offer much better detector quantum
efficiency and point-spread function [56, 57]. This will allow, for
instance, the scanning dose rate to be significantly reduced, which
is critical for beam sensitive materials, and even more subtle fine
structure modulations associated to complex lattice, charge or
spin orderings to be studied.

Another exciting recent advancement that will play a key role
to investigate local structural and electronic modulations in the
years to come is pixelated detectors [39, 58]. This new imaging
mode, commonly referred to as 4D-STEM, provides a 4-
dimensional dataset that is composed by a 2D image where all
of its pixels contain an associated 2D electron diffractogram.
These large and complex datasets reconstruct local electrostatic
fields, charge densities or structural ordering of the imaged
crystal. For instance, it has recently been used to reveal the
presence of complex magnetic textures emerging in
ferroelectric superlattices [59]. This type of technique presents
an unprecedented opportunity to study the kind of structure-
property relationships that underpin many phase transitions, as
has been shown in scanning probe microscopy
measurements [60].

Even though these latest advances will give access to a wealth
of new information that will be key to better understand phase
transitions, new processing tools based on AI or ML methods
absolutely must be employed to truly leverage these ever-evolving
techniques in a reliable and time-efficient way [61].

Combining these powerful new developments in STEM with
the established ability of ML to find patterns in large and complex
datasets will be key to both streamlining analysis and detecting
correlations between datasets that are vital in addressing
fundamental atomic-scale questions about phase transitions in
rare earth nickelates and beyond.

Materials Discovery, Analysis and Synthesis
Complementary to the information on the microscopic
mechanisms of MITs that can be accessed by AI-assisted
STEM-EELS, a global overview of a range of materials and

techniques can yield extraordinary novel insights. This can be
thought of as a secondary metascale analysis of the firsthand
results.

Decades of research across the globe has generated a vast
amount of data on MIT and MIT-adjacent materials using a
variety of probes. However, a human can still only read through a
relatively small number of articles provided by the literature
search and the search itself may be biased. Such biases can
arise via both the user, through the keywords that they choose
to input, and the search system itself, which may prioritise
whatever generates the most clicks or only suggest works that
are very closely related to those of the scientist performing the
search. As a result, direct literature search, while the most
common approach, is a rather inefficient and unidimensional
way for a scientist to improve their understanding of the
relevant field.

To help somewhat, computational databases exist [62–66] that
compile the outputs of first-principles calculations. However,
importantly, and specific to MIT materials in particular, it is
often difficult to know how reliable first-principles calculations
are in predicting whether a material has an MIT or not due to
correlation effects. Also, the fact that DFT is a ground state theory
means that even if DFT correctly predicted the insulating ground
state of a material, whether it becomes metallic at higher
temperatures or not would remain unknown, given current
theory. As a result, experimental validation is still required.
Experimental databases [67–70] also exist but do not include
accurate classifications based on transport for MIT materials: for
example, Ca2RuO4 is listed as a non-metal on Springer
Materials [71].

Natural language processing (NLP), a sub-discipline of ML
that can analyse text data, offers a way to bypass these initial
biases. First, in a very practical way, by scanning through a much
wider part of the literature than humanly possible. Secondly, by
identifying key new properties – or materials – associated with a
particular class of materials from the literature, usually through a
form of similarity score, increasing the range of knowledge
available to the scientist [72]. A database, built with the
assistance of NLP techniques, identifies around
60 experimentally-confirmed thermally-driven MIT
compounds [73]. Expanding this dataset remains difficult:
though NLP can assist in finding published work describing
MIT materials that are relatively less studied [74, 75], the
classification of each material is still done by a human
through a deep analysis of each paper. Secondly, many
materials may be misclassified either due to materials quality
or to limited experimental data, for example the lack of high
temperature transport. Further, this database currently only
contains thermally-driven MIT materials and not those
accessed by e.g., pressure. Even this relatively small dataset is
too large and multidimensional for a conventional scientist to be
able to discern patterns, making this type of analysis problem
ideally suited for ML.

One of the main advantages of machine learning as a tool to
understand datasets of MIT materials is that it can look at a wide
variety of features at once, and may not have the same biases as a
human. For instance, as all theoretical or computational materials
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studies are based on approximations to quantum effects, it is
often tempting to assume that the aspects that are treated most
accurately are the most important in driving the physics. Machine
learning – as a model-agnostic tool –may be used to remove some
of these biases and provide new insight into yet unexplored
directions. This may also help overcome some of the
limitations inherent in current theoretical studies of MIT
materials and may not need the same amount of user input
as, for instance, a first principles calculation [7]. ML approaches,
for example, using classifiers trained on existing literature [7, 76]
can be useful in quickly identifying which materials should be
studied in more detail from large databases such as Materials
Project [63].

In meeting these challenges some studies have made progress
in identifying certain key features of MIT materials such as the
rare-earth nickelates [7]. The most important is the transition
metal-transition metal distance, which is essential in setting the
electronic bandwidth, as well as in determining electronic
interaction parameters such as the Hubbard U. The high
importance of its interaction with other features, such as the
Hubbard U, both highlights the ability of machine learning
approaches to gain physical insight and confirms previous
theories about the nature of the MIT in an unbiased way. The
extraction of previously-underappreciated relevant features, such
as Ewald energy, global instability index and average deviation of
the atoms’ covalent radii, may provide new directions to
understand and tune nickelates and other MIT materials.

Finally, machine learning methods may be used to analyse
multiple structures within a particular materials class, and extract
relevant information, as has been done in the case of the RNiO3

materials [77].
Even harnessing the power of ML to scrape together a

comprehensive dataset and detect the patterns within, MIT
materials pose additional challenges. First, the experimental
dataset of MIT materials is quite scarce for ML purposes,
albeit much larger than what most scientists are normally
aware of. Second, this class of materials is very heterogeneous
meaning that the materials can have many transition types
and mechanisms and it is not clear a priori that a ML model
would see them as similar. Furthermore, if each set of
compounds is fundamentally different, the scarcity issue,
as seen by a ML algorithm, increases in severity. This,
however, also presents an opportunity: it may be possible
to see similar underlying causes of the MIT, even for materials
that seem dissimilar.

Machine learning can also be used to streamline functionality
when a particular underlying function and its properties are
completely unknown by minimising the number of sampling
attempts required to find the global minimum of the function,
through Bayesian optimisation (BO) [78]. BO is most useful in
cases in which the evaluation of each data point (for example, the
synthesis or detailed calculation of a material) is sufficiently
expensive, that the computational cost of BO is negligible by
comparison [79]. As such, it should prove to be a particularly
useful tool in the discovery of newmaterials [80]. This method, in
combination with dimensionality reduction techniques can
furthermore be used in the field of MIT materials as well, for

example by focusing on a particular materials family, as has been
done on the lacunar spinel family [81].

Once a promising material has been identified, machine
learning techniques can be used to accelerate its synthesis. BO
techniques have already proven themselves useful in the field of
oxide heterostructure growth, significantly lowering the number
of samples needed for growth optimisation [82], and are clearly
an underused tool in the relatively slow and expensive process of
optimizing newmaterials’ growth via atomic-precision tools such
as molecular beam epitaxy. In the direction of bulk material
synthesis, NLP combined with neural networks may suggest new
synthesizable materials for physical analysis [83]. NLP can then
be used to prescribe techniques for the synthesis of new materials
[84, 85]. BO and other machine learning tools may help optimise
the process [86, 87].

Finally, symbolic regression is an aspect of machine learning
that can be used to obtain the functional form of an underlying
function. This may be useful to obtain physical insight into the
phenomenology of materials of interest, such as in the case of
relevant energy landscapes describing MIT and MIT-related
materials [17, 88].

Machine learning is therefore a valuable ally in every step of the
materials-by-design process, from accessing atomic-scale
information of already-known MIT materials such as rare earth
nickelates, to synthesis conditions and properties of known, and as-
yet unstudiedMITmaterials to finally, discovery of completely new
materials.With this new power, we can understand and control the
MIT, which is essential for implementation in devices. Figure 1
summarises the continual feedback and reinforcement between
fundamental physics and device implementation taking the rare
earth nickelates as example materials where ML assists in the
nanoscale and metascale analysis of materials.

Phase Transitions for Neuromorphic
Computing
One exciting area currently being developed involves building up
MIT material elements to support neural networks, a technique
that mimics aspects of how the brain learns to find patterns and
relationships in data, and which is a key part of the ML landscape
that helped to glean so much insight into the materials in the
first place.

The current approach to artificial intelligence is based on
software running on conventional computers, not designed or
optimised for such a task. Corporations such as Intel [89] or IBM
[90] have embarked on ambitious projects that circumvent this
limitation by implementing hardware-based elements that
resemble the electrical characteristics of biological neural
networks, an approach known as neuromorphic computing.
But these efforts are based on traditional CMOS transistor
technology [91], not developed for this purpose. This
necessitates neuronal or synaptic elements to be comprised of
dozens of components, compromising scalability and efficiency.

A solution to this problem is “neuromorphic materials” that
have intrinsic properties that directly mimic neurons and
synapses [92]. Several approaches have been proposed to this
end, based on diverse phenomenology such as spin-torque
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transfer [93] or optically active materials [94]. But arguably the
most advanced approach is based on resistive switching, a
phenomenon in which the resistance of a material can be
modified by applying an electric field [92]. There are two basic
types of resistive switching: non-volatile and volatile. The origins
of the two types are very different.

In non-volatile resistive switching, the material becomes
conducting after a voltage is applied and the resistance after
the voltage is removed does not recover its initial value. The
system keeps a memory of the switching event, behaviour that
resembles that of synapses. Non-volatile resistive switching is
observed in almost every oxide, and in most cases it is caused by
the drift of ions - especially oxygen - under strong electric fields
[95], although an alternative mechanism based on electrostriction
has also been reported for several Mott insulators such as Cr-
doped V2O3 [96] or compounds of the AM4X8 family (A �Ga,Ge;
M � V,Nb,Ta; X � S,Se) [97]. Non-volatile effects are well-
documented in both binary transition metal oxides as well as
rare earth nickelate devices [98–102], making them good
candidates for implementing artificial synapses. Still,
fundamental questions regarding the nature of non-volatile
switching in the RNiO3 compounds, such as its bulk/interfacial
character or the use of other mobile ion species, remain open.

Volatile resistive switching, on the other hand, has been far
less studied. It is observed in many materials that have an MIT
such as VO2, V2O3, and NbO2 [92] and the rare-earth
nickelates NdNiO3 [103], SmNiO3 [104] and
Sm0.6Nd0.4NiO3 [105]. Upon the application of a voltage, the
system is driven from the insulating into the metallic state,
returning to its insulating phase when the voltage goes back to
zero, mimicking the behaviour of neurons [106]. The origin
and mechanism of this electrically-induced transition are still
under study [107, 108]. Most literature regarding the
electrically-triggered MIT has been done in vanadium or
niobium oxides, with very few works on the rare earth
nickelates. Topics such as the triggering mechanism,
filament formation or the emulation of neuronal spiking
patterns [109–111], which are well documented for oxides
such as VO2, have not been explored at all for RNiO3,
offering a broad field of research opportunities.

Rare earth nickelates - as well as other oxides with anMIT - are
thus a rather unique class of materials. They feature both non-
volatile and volatile resistive switching, meaning that both
synaptic and neuronal behaviour could be implemented in a
single platform, opening the possibility of fully oxide-based
scalable neural networks.

FIGURE 1 | Summary of the influence ofmachine learning on atomic scale andmetascale analysis ofMITmaterials. The EEL spectra and STEM image are adapted from
reference 40. The clustering sketch shows that with a good choice of features (here called Metric A and Metric B) and enough data points extracted from firsthand results,
correlations can be uncovered providing new understanding or guiding newmaterials discovery. Together, the MIT can be better-controlled and these materials can provide
new neuromorphic computing architectures using resistive switching. These architectures are in turn expected to significantly contribute to deep-learning applications.
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CONCLUSION

Much more needs to be learned about resistive switching in
MIT materials such as rare earth nickelates before all-oxide
neural networks can be achieved, from a fundamental
perspective but also from a device development
standpoint. Aiding in this endeavour is the knowledge-
base currently being constructed from the picoscale
upwards via advances in probes of condensed matter
systems such as STEM and from the metascale downwards
through compilations and analyses of databases. In both of
these approaches machine learning is already playing a key
role and will be even more invaluable as datasets expand and
measurements push the cutting edge. Machine learning can,
and should, play a role in the continued discovery, study and
synthesis of new materials.

These big prospects and challenges are sure to maintain an
active and exciting research panorama for many years to come.
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