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The ternary cathode material LiNi1/3Co1/3Mn1/3O2 has been extensively focused on as the
power sources for new electro-optical conversion devices and lithium-ion batteries. To
improve the electrochemical performance, Al doping is one of the effective strategies.
Based on the density functional theory of first-principles, the band gap, volume, partial
density of states, lithiation formation energy, electron density difference, and electrons’
potential energy of Li1.0-xAlxNi1/3Co1/3Mn1/3O2 were simulated and analyzed with Materials
Studio, Nanodcal and Matlab. Results show that Li0.9Al0.1Ni1/3Co1/3Mn1/3O2 has a better
conductivity and cycling capability. The potential energy maps of Li1.0-xAlxNi1/3Co1/3Mn1/3O2

simulated in Matlab indicate that the rate capability of LiNi1/3Co1/3Mn1/3O2 is promoted after Al
doping. Our theoretical advice could be an important choice for the power application of new
optoelectronic devices. In addition, our methods could provide some theoretical guidance for
the subsequent electrochemical performance investigations on doping of optoelectronic
devices or lithium-ion battery materials.
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INTRODUCTION

In recent years, rechargeable lithium-ion batteries (LIBs) are the leading power sources for new
electro-optical conversion devices, portable electronic devices, electric vehicles and hybrid electric
vehicles for their less pollution, good cycle property, no memory effect, high energy density, and high
specific capacity at high voltage (4.5 V) [1]. In fact, the specific capacity of commercial cathode
materials of LIBs is far lower than that of the anode. With the growing demand for the increasing
energy and power densities, conventional cathode materials such as LiCO2 and spinel LiMn2O4 are
not satisfied with the new generation power sources. Moreover, the cathode’s cost is much higher
than that of the anode. Therefore, it is a major challenge to pursuit the appropriate cathode material
for the power module of electro-optical conversion devices or LIBs.

Nowadays, the layered ternary lithium nickel-cobalt-manganese oxide has been well studied and
widely applied into LIBs and the power module of optoelectronic devices for their lower price, good
cycle performance and high thermal stability [2]. Among various ternary cathode materials, LiNi1/3-
Co1/3Mn1/3O2, whose structure likes LiCoO2 with α-NaFeO2-type, is extensively investigated owing

Edited by:
Qiang Xu,

Nanyang Technological University,
Singapore

Reviewed by:
Hongdong Liang,

Guangzhou University, China
Qiming Zhu,

Guangxi University for Nationalities,
China

*Correspondence:
Yumei Gao

yumeigao5697@163.com

Specialty section:
This article was submitted to

Optics and Photonics,
a section of the journal

Frontiers in Physics

Received: 28 June 2021
Accepted: 27 July 2021

Published: 13 August 2021

Citation:
Gao Y, Yuan W and Dou X (2021)

Improvement of the High-Performance
Al-Doped LiNi1/3Co1/3Mn1/3O2

Cathode Material for New Electro-
Optical Conversion Devices.

Front. Phys. 9:731851.
doi: 10.3389/fphy.2021.731851

Frontiers in Physics | www.frontiersin.org August 2021 | Volume 9 | Article 7318511

ORIGINAL RESEARCH
published: 13 August 2021

doi: 10.3389/fphy.2021.731851

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.731851&domain=pdf&date_stamp=2021-08-13
https://www.frontiersin.org/articles/10.3389/fphy.2021.731851/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.731851/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.731851/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.731851/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.731851/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.731851/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.731851/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.731851/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.731851/full
http://creativecommons.org/licenses/by/4.0/
mailto:yumeigao5697@163.com
https://doi.org/10.3389/fphy.2021.731851
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.731851


to high reversible capacity, low cost and enhanced thermal
stability [3], and it is considered as an attractive candidate of
cathode material for LIBs. Its precursors are synthesized by solid
state, co-precipitation, sol-gel, hydrothermal synthesis,
combustion, and chemical solution [4]. However, its
drawbacks, such as low electronic conductivity, poor cycling
performance at the high rate, and phase deterioration during
the charging/discharging process, have hindered seriously its
practical application [5].

To improve the electrochemical properties of LiNi1/3Co1/3Mn1/3O2,
many useful strategies, for instance, novel synthesis method
[6, 7], morphology control [8, 9], composite cathode [10, 11],
surface modification [12, 13], and doping [14–16], had
been carried out experimentally. Shao Z C et al [14] reported
LiNi1/3Co1/3-xMn1/3O2 doped with Al2O3 has the enhanced
electrochemical properties when x was 5%. Also, Mg-doped
(Zhu JP et al [15]) and Na-doped (Li YH et al [16]) cathode
materials can keep the crystal structure stable with least capacity
loss, their cycling stability and conductivity can be improved
much comparison with their pristines. Al3+ has the similar outer
shell and ionic radius as Mg2+and Na+, hence, Al doping has
aroused more attention to improve the electrochemical
performance of LiNi1/3Co1/3Mn1/3O2. Kim S et al [17] found
that residual Al in Li [Ni1/3Mn1/3Co1/3]AlxO2 has an adverse
effect on capacity and cycle ability when x > 0.05%. Zhang ZH
et al [18] claimed that Al doping in the Ni site can inhibit the
mixing of cations, LiNi1/3-0.04Co1/3Mn1/3Al0.04O2 has an
excellent reversible discharge capacity. Li ZY [19] synthesized
LiNi1/3Co1/3-xAlxMn1/3O2 and the experimental results showed
that the new Al-doped LiNi1/3Co1/3Mn1/3O2 has a better
rate performance and cycling stability; Zhu JP et al [20]
prepared the LiNi1/3Co1/3-xAlxMn1/3O2 and employed
hollow 3D-birdnest-shaped MnO2 to provide a large amount
of free space, measurements revealed this Al-doped cathode
material has an outstanding cyclic performance and
capacity. Accordingly, the right doping amount of Al3+ in
LiNi1/3Co1/3Mn1/3O2 can effectively ameliorate the stability of
materials during charging/discharging and enhance the
electrochemical performance.

To investigate the physical diffusion mechanics of electrons and
Li-ions in the crystal lattice, the density functional theory (DFT)
based on first-principles is widely employed [21–23]. In this work,
Al3+ as the doping ion has substituted for Li in LiNi1/3Co1/3Mn1/3O2,
and Li1-xAlxNi1/3Co1/3Mn1/3O2 had been theoretically simulated and
calculated based on DFT byMaterials Studio, Nanodcal andMatlab.
Themore details about the first-principles andDFTwere introduced
in my previous work [24, 25]. The simulations and calculations
indicate that Al-doped LiNi1/3Co1/3Mn1/3O2 has a better
electrochemical performance. Our findings can give some
theoretical advice about studies of the power module for new
electro-optical conversion devices and investigations on LIBs;
methods we presented can shorten greatly the whole period of
experiments or investigations and reduce the experimental cost [26].

METHODS AND MODEL

Using the exchange-correlation potentials with the generalized
gradient approximation [27] of the Perdew-Burke-Ernzerhof
[28], calculations about the electronic conductivity of Al-doped
LiNi1/3Co1/3Mn1/3O2 were carried out by CAmbridge Serial Total
Energy Package (CASTEP) ofMaterials Studio 8.0, which the plane
wave pseudopotential method is used. The interaction between
electrons and ions is described by the projector-augmented-wave
method [29]. The ultrasoft pseudopotential is used to depict the
Coulombic attraction potential between the inner layer electrons
around the nucleus and those of the outer layer. All parameters
involved in the calculations, including a plane wave cutoff, k-points
in the Monkhorst-Pack scheme, the self-consistency energy
tolerance, the maximum stress tolerance, the maximum
displacement tolerance, and the average force on every atom,
were set as same as those in our previous work [24, 25]. The
structure geometry should be optimized firstly before calculations.

Figure 1 shows a 2 × 2 × 2 supercell model of Li1.0-xAlxNi1/3-
Co1/3Mn1/3O2 built by virtual mixed atom method. Li and Al
occupy 3a, Ni1/3Co1/3Mn1/3 occupies 3b, O occupies 6c. In
Li1.0-xAlxNi1/3Co1/3Mn1/3O2, Li and Al are assumed as 1.0 mol.
If Al is x mol, and then Li is 1.0-x mol. The simulations and
analyses of Li1.0-xAlxNi1/3Co1/3Mn1/3O2 (x � 0.01, 0.02, 0.03,
......, 0.13) are studied as followed.

RESULTS AND DISCUSSION

Band Gap and Partial Density of States
The conductivity is determined by the band gap of materials, the
wider band gap means the worst conductivity. The band gaps of
Li1.0-xAlxNi1/3Co1/3Mn1/3O2 were calculated when Al doping
amount x � 0.01, 0.02, 0.03, ......, 0.13 mol. All band gap values
at every x mol are plotted in Figure 2. After Al doping, the band
structure of Al-doped LiNi1/3Co1/3Mn1/3O2 can keep stable. The
substitution of bigger Al atoms can widen Li-O layers which
provides many tunnels to help electrons to immigrate more
easily, thus, band gap values have decreased obviously, which
means band gaps are narrower. According to Figure 2, between
x � 0.04mol and x � 0.05 mol, the decreasing tendency pauses, and

FIGURE 1 | The 2 × 2 × 2 supercell of Li1.0-xAlxNi1/3Co1/3Mn1/3O2.
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the error bars are conspicuous, which may be caused by the slight
disorder of Ni2+/Li+ cation mixing. From x � 0.06 mol, the curve
goes down continually. At x � 0.11mol, there is a minimum, and
then the curve begins to go up. If only considering the band gap, the
conductivity of Li1.0-xAlxNi1/3Co1/3Mn1/3O2 is best at x � 0.11mol.
Factually, from x � 0.10mol to x � 0.12 mol, the band gap remains
lowly, and the conductivity keeps excellent.

The peak of the partial density of state (PDOS) reflects
electrons at this level, which directly demonstrates the
conductivity. Herein, PDOS of Li1.0-xAlxNi1/3Co1/3Mn1/3O2 was
implemented. Figure 3 shows its PDOSwhen x � 0, 0.05, 0.10 and
0.13 mol, respectively. The colored lines in Figure 3 represent the
density of different orbital states. In Figure 3A, the peak of PDOS
is about 168 eV, clearly describing the bonding and density of
states near the Fermi level. When 0 < x < 0.05 mol, the peak of
PDOS increases continually, and the conductivity has been
enhanced substantially. In Figure 3B, at x � 0.05 mol, the
peak goes up to 519 eV which is several times higher than that
of the pristine, and the conductivity has been enhanced
dramatically. When x � 0.06–0.09 mol, the peak of PDOS
increases slightly, the conductivity has been enhanced further
with the increasing x. When x � 0.10 mol (shown in Figure 3C),
the peak of PDOS is a maximum around 644 eV, which shows the
best conductivity. When x > 0.10 mol, the peak goes down
quickly. At x � 0.13 mol (shown in Figure 3D), the peak goes
closely that of the pristine, which indicates too much Al-doping
amount will not be useful to the high-performance of
conductivity. Considering the results of PDOS, the right Al-
doping amount should be controlled within x � 0.06–0.10 mol.

Cell Volume and Lithiation Formation
Energy
For rechargeable power sources, good cycling and stable
structure are very important. At different x mol, volumes of
Li1.0-xAlxNi1/3Co1/3Mn1/3O2 were achieved by Material Studio.

FIGURE 2 | The band gap of Li1.0-xAlxNi1/3Co1/3Mn1/3O2 with error bars.
The curve goes down generally, which indicates its conductivity is enhanced
effectively after Al doping.

FIGURE 3 | PDOS curves of Li1.0-xAlxNi1/3Co1/3Mn1/3O2. (A) The PDOS
peak of the pristine near the Fermi level is about 168 eV. (B) When x � 0.05
mol, the PDOS peak raises around 519 eV, which is much higher than that of
the pristine. (C)When x � 0.10 mol, the PDOS peak is high up to 644 eV.
The bigger Al atoms make Li-O layers wider, and abundant tunnels are
provided, which electrons can cross over freely, and then the conductivity is
strengthened strongly. (D) When x � 0.13 mol, the PDOS peak is down to
170 eV, which is close to the PDOS peak of LiNi1/3Co1/3Mn1/3O2.
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When x < 0.12 mol, the volumes can keep stable basically, which
is consistent to the band gap. At x � 0.04 mol, the slight disorder
of Ni2+/Li+ cation mixing perhaps lead to a slight volume
expanding. When x > 0.12 mol, the volume has expanded
distinctly, and the structure is instable which is caused by
structure transition from layer-to-spinel. In other word, when
x < 0.12 mol, Al doping can stabilize the layered crystal structure
and keep good cycling performances.

In general, the difficulty of the lithiation/delithiation process
can be reflected by the formation energy. If the formation energy
of metal oxide is low, atoms can be separated easily from the
crystal lattice. The equation of lithiation formation energy E is the
same as referred in my previous work [25]. Figure 4 plots

the formation energy E of Li1.0-xAlxNi1/3Co1/3Mn1/3O2 varying
with different x. According to Figure 4, E goes down straight
when x < 0.12 mol, and there is minimum at x � 0.11 mol which
the rate capability of material is best; when x > 0.12 mol, the curve
increases gradually, electrons and Li-ions will be apart difficultly
from the lattice crystal. Hence, analyses of Figure 4 states
explicitly that too much Al doping will be harmful to the
lithiation/delithiation process, the proper Al doping amount is
within x < 0.11 mol.

Electron Density Difference
To investigate electrons’ distribution near local atoms, we simulated
the electron density difference of Li1.0-xAlxNi1/3Co1/3Mn1/3O2.
Figure 5 shows the simulations at x � 0, 0.06, 0.10, and 0.11 mol.
Some blocks with heavy colors are reflections of atoms. In
comparison with that of the pristine (shown in Figure 5A),
when 0 < x < 0.06 mol, the coverage and color of the electron
cloud have changed a little, which means electrons near local
atoms have not increased much; when x � 0.06 mol (shown in
Figure 5B), its coverage has distinguished from the before, but its
color has still remained; when x > 0.08 mol, its color has turned
into orange which means electrons have increased enormously,
and its coverage has expanded further; especially, at x � 0.10 mol
(shown in Figure 5C), its color is still orange, and its coverage is
biggest, which exhibits that there are abundant of free electrons
around atoms, and Li0.9Al0.1Ni1/3Co1/3Mn1/3O2 has superior
conductivity; when x � 0.11 mol (shown in Figure 5D), its
coverage has shrunk greatly, free electrons near local atoms
have decreased significantly, and its conductivity has become
poor. Therefore, the appropriate doping amount is x �
0.08–0.10 mol which Al doping can notably boost the
conductivity.

Potential Energy of Electrons
To study the electrons’ transfer and rate capability of LiNi1/3Co1/3-
Mn1/3O2 after Al doping, their electrons’ potential energy had been

FIGURE 4 | Diagram about the relationship between E and x. The curve
decreases until x < 0.12 mol, which demonstrates the lithiation/delithiation
process can benefit from the appropriate Al doping amount. From x � 0.11
mol, E begins to get bigger slightly. The small error bars mean our high-
accuracy calculations.

FIGURE 5 | Electron density difference of Li1.0-xAlxNi1/3Co1/3Mn1/3O2. (A) The electron density difference image of the pristine is shown. (B)When x � 0.06 mol, the
color has not changed, and the coverage of electron cloud has expanded significantly, which suggests the conductivity has been enhanced due to more free electrons
around atoms. (C)When x � 0.10 mol, the color of electron cloud gets orange, and the electron cloud’s coverage is biggest, which indicates its conductivity is promoted
extremely. (D) When x � 0.11 mol, its color has not changed, and its coverage has shrunk much.
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mapped. If electrons in a potential well can obtain some external
energy, they can transport freely from the potential well. Figure 6
shows the 3D potential energy map of Li0.9Al0.1Ni1/3Co1/3Mn1/3O2.
From Figure 6, the potential barrier and well are regularly in turn,
which indicates layered Li0.9Al0.1Ni1/3Co1/3Mn1/3O2 has not occurred
the phase transition during the charging/discharging process.
The right Al-doping amount can remain its layered structure
invariantly.

To analyze the transfer of electrons in potential well after Al
doping, diffusion paths were implemented in 2D potential energy
image. Figure 7 shows the electrons’ diffusion paths of
Li0.9Al0.1Ni1/3Co1/3Mn1/3O2. Electrons will immigrate freely
along the route marked blue “*”, where is the minimum
potential energy and numerous channels to diffuse are offered.
And the energy barrier of Li-ion insertion/extraction is reduced in
the crystal lattice. Consequently, electrons and Li-ions can be

FIGURE 6 | 3D potential energy profile of Li0.9Al0.1Ni1/3Co1/3Mn1/3O2. The different colors correspond to the different potential energy. When x < 0.11 mol, all 3D
potential energy maps show that the potential barrier is getting lower after Al doping.

FIGURE 7 | 2D potential energy plot of Li0.9Al0.1Ni1/3Co1/3Mn1/3O2. Blue marks “*” represent the paths of electrons, and each marked route is not the same.
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removed and transfer to other places with lower energy barrier. In
Figure 7, the potential energy of Li0.9Al0.1Ni1/3Co1/3Mn1/3O2 is
from around 80 to 0 eV. When x < 0.11 mol, the minimum
potential energy of Li1.0-xAlxNi1/3Co1/3Mn1/3O2 decreases with
rising x, and electrons can be apart from the potential well more
facilely. Thus, this new material has excellent rate capacity and
electrochemical performances when x < 0.11 mol.

CONCLUSION

The physical mechanism of enhanced electrochemical properties
for Al-doped LiNi1/3Co1/3Mn1/3O2 was investigated by DFT.
After Al doping, Li1.0-xAlxNi1/3Co1/3Mn1/3O2 has a layered
structural stability when x < 0.12 mol; the band gap has a
minimum at x � 0.11 mol, and the conductivity is best; the
peak of PDOS remains highly within x � 0.06–0.10 mol, which
electrons are multiplied than the pristine, and its conductivity is
enhanced dramatically; the lithiation formation energy E is lowest
at x � 0.11 mol, and electrons and Li-ions can be separated easily
within x < 0.12 mol; based on the simulations of the electron
density difference, Li1.0-xAlxNi1/3Co1/3Mn1/3O2 has a better
conductivity when x � 0.08 – 0.10 mol; and electrons’
potential barrier is decreasing with rising x, electrons and Li-
ions can be removed and diffused quickly, which means its rate
capability is improved effectively. Considering all above
calculations and analyses, the electrochemical performance
of Li1.0-xAlxNi1/3Co1/3Mn1/3O2 is best at x � 0.10 mol. Up
to now, it is few reported about the experimental
investigations on Li1.0-xAlxNi1/3Co1/3Mn1/3O2. We believe that
samples of Li1.0-xAlxNi1/3Co1/3Mn1/3O2 can be prepared
experimentally by traditional syntheses, and suggest that its superior
electrochemical performances of Li0.9Al0.1Ni1/3Co1/3Mn1/3O2 will be
verified experimentally by physical and chemical tests.Moreover, the
electrochemical performance of Li1.0-xAlxNi1/3Co1/3Mn1/3O2 can
be improved further combining with other modifications.
This study provides an insight to understand the physical
improvement mechanism of Al-doped LiNi1/3Co1/3Mn1/3O2.
Our results and theoretical advice based on DFT could be
important for the investigations of Li1.0-xAlxNi1/3Co1/3Mn1/3O2,
doping materials studies about the power sources of new electro-
optical conversion devices, and applications in LIBs. Our

simulations and calculations have concerned only on the
conductivity, cycling and rate capability. Certainly, Al-doped
LiNi1/3Co1/3Mn1/3O2 can be further improved its energy
density and reversible charge capacity by structural
optimization, coating, and composite etc.
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