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We thoroughly investigate the performance of the Dynamic Memdiode Model (DMM) when
used for simulating the synaptic weights in large RRAM-based cross-point arrays (CPA)
intended for neuromorphic computing. The DMM is in line with Prof. Chua’s memristive
devices theory, in which the hysteresis phenomenon in electroformed metal-insulator-
metal structures is represented by means of two coupled equations: one equation for the
current-voltage characteristic of the device based on an extension of the quantum point-
contact (QPC) model for dielectric breakdown and a second equation for the memory
state, responsible for keeping track of the previous history of the device. By considering ex-
situ training of the CPA aimed at classifying the handwritten characters of the MNIST
database, we evaluate the performance of a Write-Verify iterative scheme for setting the
crosspoint conductances to their target values. The total programming time, the
programming error, and the inference accuracy obtained with such writing scheme are
investigated in depth. The role played by parasitic components such as the line resistance
as well as some CPA’s particular features like the dynamical range of the memdiodes are
discussed. The interrelationship between the frequency and amplitude values of the write
pulses is explored in detail. In addition, the effect of the resistance shift for the case of a
CPA programmed with no errors is studied for a variety of input signals, providing a design
guideline for selecting the appropriate pulse’s amplitude and frequency.

Keywords: RRAM, resistive switching, cross-point, memristor, neuromorphic, pattern recognition, write-verify,
frequency

INTRODUCTION

TheMatrix-Vector Multiplication (MVM)method is a key piece for computation in Artificial Neural
Networks (ANNs), which have demonstrated outstanding results in the field of pattern recognition
and classification, among others [1]. When performed in Von Neumann conventional computing
systems, the MVM implies a time complexity of ∼O(n2), n being the number of components, which
severely compromises the ANN power consumption and latency. Although highly parallelized
CMOS-based implementations enable fast operation (low latency) they fall short in cutting off power
consumption, not to mention the silicon area requirements. As no drastic performance
improvements can be expected from further technology scaling [2], alternative approaches
involving novel architectures and materials are being extensively researched worldwide. Among
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them, Resistive Random Access Memory (RRAM) or memristor-
based Cross-Point Arrays [3–6] (CPAs, see Figure 1A) have
proven to be able to manage both high speed and low power
MVM [7]. Moreover, CPAs can be scaled down to 4F2, F being the
feature size of the technology node [8], and placed at the Back-
End of Line (BEOL), then exploiting the concept of 3D stacking.
Memristor-based CPAs for pattern classification have been the
focus of previous works [5,9–15] considering not only different
architectures but also a variety of device models. Hu et al.[5]
reported a simulation-based case study of character recognition
using two CPAs with 256 × 26 synapsis (i.e., 256 rows by 26
columns, totaling ∼13 k devices) to represent both the positive
and negative weights using a Verilog-A nonlinear memristor
model [16]. Aiming to reduce both the area and power
consumption which arises from having two CPAs, an
alternative architecture was considered by Truong et al.[12]
(64 × 26, ∼1.6 k devices) using the same memristive device
model. This model was also successfully tested in voice
recognition using a set of CPAs summing up to ∼2.5 k
memristors [13].

Regardless of the training approach (on-line or off-line,
equivalently in-situ or ex-situ) followed, during the “forward
propagation” of a pattern presented to the CPA-based ANN
(inference phase) each memristive synapsis located at the CPA
intersections drives a current Ii,j proportional to the synaptic
strength (weight) stored as a conductance value gi,j

(Ii,j � gi,jpVi). Thereby, setting each memristor in the CPA to
the correct conductance value is a crucial and non-trivial task to
accomplish. The conductance of the RRAM devices can be
changed by applying voltage or current pulses following one of
the following approaches: the Write-Verify (or Close Loop
Tunning, CLT) [17–19] or the Write-without-Verify (or Open
Loop Tunning, OLT) [20–23]. When the CPA’s conductance
values require a frequent update, the OLT method is the most
appropriate because it preserves the high-speed operation and
keeps the hardware overhead to a minimum, at the cost of
incurring in a higher writing error. On the contrary, if better
controllability of the conductance values is preferred over high-
speed operation or if a frequent conductance update is not a
major requirement, CLT has been pointed out as the best option.
However, in a realistic environment, CPAs have practical

limitations such as the line resistances between adjacent cells
(RL), the resistance window of the devices (RON and ROFF), the
sensitivity to the amplitude and frequency of the write pulses, and
the device-to-device (D2D) variability as well as the inherent
conducting features of the CPAs like the so-called sneak path
problem (see Figure 1A).

Accordingly, SPICE simulation (or any alternative circuital
language) appears as the most suitable approach to realistically
investigate and scrutinize the complete system (CPA and control
electronics with parasitics) [5,9–13,24]. However, this kind of
approach is also constrained to the limitations of the memristor
model considered as well as to the size of the CPAmainly because
of the high computational requirements [25]. In this regard, great
attention has been put in the last years on achieving a simulation
tool capable of modelling the wide spectrum of memristive
devices found in the literature [26]. This resulted in a variety
of models, including simple behavioral models [16,27], device-
specific physical-phenomenological models [28] and general
phenomenological models (Yakopcic [29], TEAM [30],
VTEAM [31], and Eshraghian [32]). Nevertheless, all these
models often rely on complex internal equations or on the
introduction of artificial window functions that occasionally
cause convergence problems [33]. A promising memristor
compact model providing high simulation accuracy at reduced
computational cost was presented by Miranda et al. in
Refs.[34,35]. Its closed-form expression for the current-voltage
(I–V) curve (continuous and differentiable) and the recursive
nature of the state variable computation based on the
Krasnosel’skii-Pokrovskii hysteresis operator [34], makes it
suitable for dealing with arbitrary input signals (continuous
and discontinuous, differentiable and non-differentiable). Its
applicability to the realistic circuital modelling of CPA-based
Single (SLP) and Multi Layer Perceptrons (MLP) involving
thousands of devices intended for the classification of large
pattern datasets was recently demonstrated [14,15]. Although
a much simpler approach than the more complex RRAM-based
ANNs explored in the literature (MLP [15,19,36,37],
Convolutional Neural Networks [38] -CNN-, Spike Neural
Networks[39] -SNN-, etc.), the SLP still allows studying and
clarifying the ANN limitations caused by parasitic effects and
non-idealities occurring in the synaptic layers implemented with

FIGURE 1 | (A) Sketch of the CPA structure. Red and blue arrows exemplify the electron flow through the memdiodes connecting the top (Word lines -WL-) and
bottom lines (Bit lines -BL-). Different resistance states are schematically represented (High Resistance State -HRS- to Low Resistance State -LRS-). The dashed blue
line represents the so-called sneak-path problem. The parasitic wire resistance is indicated for WLi and BLi. (B) Schematic representation of the MIM structure where the
RS mechanism takes place, before the forming step and during the LRS to HRS alternate transition. Blue and red balls indicate metallic ions and/or oxygen
vacancies (VOs).
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CPAs. Nonetheless, the referred model is in essence a Quasi-
Static Model (QMM) because the memory state of the device does
not change unless a threshold condition is met. This is a serious
limitation for the realistic programming of the CPA.

In this paper, we demonstrate that a novel approach,
compatible with the previous one but fully time-dependent,
can be used for the SPICE simulation of large-scale
memristor-based CPAs intended for pattern recognition tasks
without significantly increasing the associated computational
cost. The I-V characteristic is modelled using an extension of
the Quantum Point-Contact (QPC) model for dielectric
breakdown [40]. This alternative proposal eliminates the so-
called hysteron structure for the memory state as presented in
previous works [34,35]. Instead, the DMM generates the
hysteretic memory map using a balance differential equation
related to the reversible ionic movement. By considering ex-situ
training of a SLP as a case study and the classification of the
handwritten images from the MNIST dataset, we investigate in
detail the programming method of the synaptic weights in the
CPA (in terms of time and precision). This is a major difference
with the works mentioned above, in which the focus was
exclusively placed on the results of the inference phase. Here,
we pay special attention to the inference accuracy as a function of
i) the RON/ROFF ratio, ii) RL, iii) the mapping strategy, iv) the write
voltage and v) the frequency of the input signal, and last, vi) the
particular features of the memristor I-V loop, especially the
abruptness of the SET transition. To the best of the authors’
knowledge, such a detailed and comprehensive study within a
unified framework and considering a realistic memristor model
has not been published before. The rest of this work is organized
as follows: Section Dynamic Memdiode Model describes the
fundamentals of the DMM: the I-V characteristic and the
memory equation. Section Materials and Methods explains the
SLP training, the synaptic weights transfer to the CPA-based
implementation, and the electrical simulation procedures. Section
Simulation Results discusses the obtained simulation results in
terms of the aforementioned features, providing useful design
considerations and trade-offs. Finally, in Section Conclusion, the
general conclusions of this paper are presented.

DYNAMIC MEMDIODE MODEL

RRAM devices are based on the Resistive Switching (RS)
mechanism, which in the case of CBRAMs and OxRAMs
relies on the displacement of metal ions and oxygen vacancies,
respectively. The process takes place inside the dielectric film of a
metal-insulator-metal (MIM) structure and it is caused by
the application of an external electrical stimulus [41–44]. The
alternate application of opposite fields originates the completion
and destruction (see Figure 1B) of a conductive filament (CF)
spanning across the insulator, with the consequent change of
resistance [45,46] between a high (HRS) and a low (LRS)
resistance state. From the electrical viewpoint, the behavior of
a memristive device has some major fingerprints [47,48]: i) a
pinched hysteresis loop in the I-V characteristic, ii) the decrease
of the hysteresis lobe area as the input signal frequency increases,

and iii) the shrinking of the pinched hysteresis loop to a
single-valued function when the frequency tends to infinite. It
is also quite common to observe iv) a different I-V relationship for
HRS and LRS, being linear-exponential in the first case and linear
in the second case [46,49], and v) the existence of intermediate
conducting states between these two extremes cases (HRS and
LRS), which are determined by voltage-controlled redox-
reactions. These fingerprints indicate that both the amplitude
and frequency effects are interrelated, i.e., the ion/vacancy
displacement rates within the insulating layer and the
formation and rupture of the CF [50–52]. A model capable of
satisfying these constraints was recently proposed by Miranda
[53], considering an extension of the conventional memristive
approach suggested by Prof. Chua. This proposal again involves a
system of two coupled equations, one for the electron transport
(transport equation, TE) and a second equation for the memory
state of the device (memory equation, ME). For the sake of
completeness, the Dynamic Memdiode Model (DDM) is
succinctly reviewed in this Section.

Transport Equation
Filamentary conduction models for RRAMs rely on the idea that
the current magnitude is somehow related to the presence of a
potential barrier or alternatively to a gap along the CF. For
example, the QPC model [40,54–56] considers that the current
flow through a single nanosized filamentary structure is
controlled by the narrowest section along the filament. In
terms of the physics of mesoscopic devices, this section has
associated a transmission probability like any other barrier or
scatterer. Following this idea, Miranda [34] and Patterson et al.
[35] proposed a TE based on the similarity of the QPC model
expression for the I-V curve with two identical opposite-biased
diodes in series with a resistor, as shown in the inset of Figure 2A.
Such a TE allows a progressive transition between an exponential
(HRS) and a linear (LRS) curve by simply changing a single
parameter of the model 0<λ < 1 called the memory state of the
device [34].

According to the QPC model, the equation for the I-V
characteristic of a memdiode M is given by Eq. 1:

I � I0(λ)[eβα(λ)(V−IRS(λ)) − e−(1−β)α(λ)(V−IRS(λ))] (1)

where I0(λ) � Imin(1 − λ) + λImax is the current amplitude
factor, α a parameter related to the particular features of the
conduction mechanism, and RS a series resistance. Eq. 1 is the
result of considering an inverted parabolic potential barrier with
height Φ as the tunneling scatterer. Both α and RS can have the
same dependence on λ as I0. Imin and Imax are the minimum and
maximum values of the current amplitude, respectively, and 0<β
< 1 expresses the asymmetry in the potential at the two ends of the
CF (in this work β � 1/2 is assumed). For a monomode ballistic
conductor, I0 � G0/α · exp(−αΦ/e) where G0 � 2e2/h is
the quantum conductance unit (e the electron charge and h
the Planck’s constant). As I0 increases in Eq. 1 because of the
reduction of Φ (widening of the cross-section area of the CF), the
I-V curve changes its shape from exponential (HRS) to linear
(LRS) as experimentally observed for this kind of devices. This
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occurs because of the voltage drop across RS and the reduction of
the effective applied voltage to the constriction. Notice that Eq. 1
is equivalent to two opposite-biased ideal diodes (adding a + 1
and a − 1 in the right-hand side of the equation) for which the
model was named memdiode. Throughout this work,
“memristor” and “memdiode” are used interchangeably to
refer to the same device.

Memory Equation
From the modelling viewpoint, the ME is normally a voltage or a
current driven differential equation [47] that usually relies on
some non-linear dependencies as well as on the so-called window
function. Although the introduction of a window function in the
ME acting as a boundary condition for λ [32] represented a
breakthrough in the modelling of the SET/RESET transitions, the
approach was demonstrated not to be exempted from serious

mathematical drawbacks [33,57]. The equation discussed here
complies with a number of requirements such as dimensional
homogeneity, dynamic balance and levelling-off behavior for
large opposite biases, with end values 0 and 1 for HRS and
LRS, respectively. Physically, the ME expresses the ion/vacancy
movement caused by the external applied field. Among the
possible candidates, the simplest first order differential
equation is given by Eq. 2, where τS,R are characteristic times
linked to the SET and RESET transients (for V> 0 and V< 0,
respectively).

dλ
dt

� 1 − λ
τS(V) −

λ
τR(V) (2)

τS,R(V) � τ0S,0Re
−

V

V0S,0R
(3)

FIGURE 2 | (A) The inset in the left shows the equivalent circuit model for the current Eq. 1 including the series resistance. The diodes are driven by the memory
equation with one diode activated at a time. The figure also shows typical simulated I-V characteristics for a memdiode. The current evolution is indicated by the blue
arrows. The inset in the right side shows the exponential (HRS) to lineal (LRS) transition by varying λ. The red shaded region indicates the possible voltages applied to the
device. IHRS and ILRS currents are pinpointed at the voltage used to fit the linear model with the grey and white circle markers, respectively. Overestimation of IHRS
may occur when considering a linear model for the HRS regime and low applied voltages as indicated by the cyan, blue and black ball markers. (B) Schematic model for
the SET (red) and RESET (blue) characteristic switching times given by Eq. 3. (C) Equivalent circuit model for the balance differential equation Eq. 2. λ is the memory state
(voltage) and λ0 its initial value. Time required to reach a target current of 3 µA at 0.3 V, when using pulses of constant amplitude, studied as a function of (D) pulses
amplitude (constant DC and varying frequency), (E) pulses frequency (constant DC and varying amplitude), (F) pulses amplitude (varying DC with constant frequency)
and (G) pulses frequency (constant amplitude and varying DC).
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In this work, we assume an exponential dependence of τS,R on
the applied voltage, as expressed by Eq. 3 and Figure 2B. V0S,0R

and τ0S,0R are fitting constants (V0S > 0 for SET and V0R < 0 for
RESET). Although Eq. 2 has already been used in connection
with physical parameters of the CF [58–61], it was first employed
as a behavioral memory equation in [62]. A central feature of Eq.
2 is that it can be represented as an RC circuit with voltage-
dependent resistors as illustrated in Figure 2C. In this
representation, λ corresponds to the voltage drop across the
capacitor CH, whose initial value is λ0. This representation
substitutes the voltage-controlled memory subcircuit
considered in many previous memristor models [33].

Switching Dynamics
For a periodic ramped input signal, the combination of Eqs 1-3
results in I-V loops such as those illustrated in Figure 2A, which
starts with HRS (λ � 0) and evolves as indicated by the blue
arrows printed on top. The SET and RESET processes triggered at
the transition voltages VTS and VTR point out the switching from
HRS to LRS and vice versa, respectively. The ratio between the
LRS and HRS currents measured at a fixed low bias is referred to
as the resistive window of the device and when properly
normalized to unity represents the memory state window.
Note that as the signal frequency increases, VTS and VTR shift
toward higher absolute values, as indicated by Eq. 4 [63]:

VTS � V0S ln(RR) + V0S ln( τ0S
V0S

) (4)

where RR is the input signal’s ramp rate [V(t) � RR·t]. A similar
expression holds for VTR. These SET and RESET voltage shifts
lead in turn to the mutual approximation of the LRS and HRS
curves and thus to the reduction of the hysteresis lobe area. This is
in agreement with previously reported experimental
measurements of the I-V loops as function of frequency, as
shown in Figure 3A. The evolution of the SET and RESET

voltages is plotted separately in Figure 3B and fit with Eq. 4.
The separation between the lines is a consequence of the series
resistance effect [63]. In physical terms, the collapse of the
memory window is attributed to the incapability of ions/
vacancies to follow the input signal [64,65]. From the electrical
viewpoint this effect can be directly related to the shift of the
switching thresholds [66–68].

For a given RR, the HRS (exponential) to LRS (linear)
transition as λ is swept from 0 to 1 is detailed in the inset of
Figure 2A (solid blue lines), altogether with some intermediate
states (dashed blue lines). For comparison purposes, a linear
model [41,69] (faded-thick grey lines) is also plotted. sinh()-based
models are omitted here as they require the simultaneous fit of
multiple parameters to mimic the smooth linear-exponential to
linear transition or even separate expressions for the HRS and
LRS regimes [70,71]. Although the two models coincide at low
voltages and exhibit a clear linear dependence, significant
discrepancies arise as the voltage increases. As can be seen, the
linear model cannot capture the departure of the HRS curves at
intermediate voltages. As such, if used to fit ILRS and IHRS (the
currents in LRS and HRS, respectively) at a nominal read voltage
(Vread), the linear model leads to an overestimation of the device
current when lower voltages are applied. On the contrary, the
DMM can accurately describe both the HRS and LRS curves by
solely changing a single parameter (λ) in the TE.

Concerning the switching dynamics for discontinuous signals,
Figures 2D–G illustrate the effects of a sequence of equal
amplitude voltage pulses (Vwrite � 0.6–1.3 V) and period
(indicated as a combination of frequency ranging from 100 to
100 kHz and Duty Cycle—0.2 to 0.8 –) on the time required to
reach a given current level. The parameter values for the ME are
V0S,0R � 6.77 × 10−2 V and τ0S,0R � 8.48 × 103 sec. Of course,
these values depend on the switching material under
consideration. Such input stimuli replicate those employed in
OLT or CLT approaches as proposed in previous works [23]. For

FIGURE 3 | (A) I-V loops measured on TiN/Ti//(10-nm) HfO2/W samples [63] for different RR (measured in V/sec.). Note that as the RR increases, the I-V lobes
shrink and the SET and RESET voltages shift to higher absolute values. (B) The shifts of VSET and VRESET are plotted as function of RR and fitted with Eq. 4.
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each pulse, the current increases as a function of the voltage and
time due to the so-called potentiation effect in memristors [72].
Knowing the memory state value increase as a function of the
number of pulses N with amplitude V applied during a time Δt,

λN � (λ0 − 1)e−(NΔt/τS) + 1 (5)

the time required to reach a target current level can be estimated
from Eq. 6 as

Twrite � −τ0Se
−
V

V0S

DC
ln( ILRS − IT

ILRS − IHRS
) (6)

where ILRS e IHRS are the maximum and minimum currents
measured at the pulse’s amplitude V, respectively. DC is the duty
cycle. It should be noted that Eq. 6 is only valid in the linear
region of the HRS regime, i.e. for a voltageV lower thanVTS. Also,
it is assumed that the hysteresis lobe does not collapse in the
region of interest. Otherwise the formula is not valid unless the
variation of IHRS and ILRS are considered. In this region, the write
time increases exponentially as the pulses’ amplitude decreases,

but remains insensitive to their frequency as shown in Figures
2D,E. In addition, notice that as VTS shifts to higher values due to
the increase of the input signal frequency (RR), so it does the
range in which Eq. 6 holds valid: it goes from 0-∼0.8 to 0-∼1.2 V
when the frequency increases from 100 to 100 kHz (see
Figure 2D). Similarly, when sweeping the frequency of the
pulses, Eq. 6 holds valid for frequencies above 100 Hz at Vwrite �
0.8 V (the amplitude of the pulses is below VTS for any
frequency in the range considered) and for frequencies
above 100 kHz at Vwrite � 1.2 V. Rather than the signal
frequency, the write time is slightly sensitive to the pulse’s
width, which is expressed in Eq. 6. as a dependence on the
signals’ DC as shown in Figures 2F,G. As it can be seen, when
increasing DC, the write time down-shifts as each signal period
causes a larger conductance variation.

Experimental Validation of the Dynamic
Memdiode Model
The model discussed in the previous Sub-Sections was put under
test by fitting experimental data extracted from different

FIGURE 4 | Experimental I-V loopsof differentmemristor structures reported in the literature fittedwith theDMMmodel: (A)Ta/HfO2/Pt [73], (B)Pd/Ta2O5/TaOX/Pd [74] and
(C) TaOX [75]. TheDMM fitting parameters are shown for each case. As reference, theHRSand LRScurves are indicated in (C). Note that in (C) a current compliance of 1 mAwas
imposed to prevent permanent dielectric breakdown,which canbe also represented by theDMMandSPICE. (D)Pulse-enabled LTP andLTDdata from [73]was also used to test
the suitability of the DMM to replicate the potentiation and depression behavior of memristor with multiple intermediate states. (E) LTP dependence on the pulses amplitude
[76] can also be captured with the DMM. (F) The versatility of the DMM also allow fitting the current measured during the LTP of a Ag/ZnO/Pt nanowire memristive device [77].
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published works. In particular, Figures 4A–C show the results
obtained for different RRAM structures including HfO2 [73],
Ta2O5/TaOX [74] and TaOX [75] structures, respectively. In all
the cases the I-Vs were measured at room temperature and under
voltage sweeps. The experimental data were fitted using the
SPICE model depicted in Table 1 based on Eqs 1–3 and
applying driving signals as described in the corresponding
references. The fitting parameters are listed in each of the
panels of Figure 4 as reference, as well as the details of the
stack structure. It should be mentioned that the proposed DMM
does not only provide a simple SPICE-compatible
implementation for the resistive memory devices but also a
versatile one, as it can accurately fit the I-V loops
experimentally measured in different RRAM devices.

Moreover, we have tested the capability of the DMM to
replicate the Long-Term Potentiation (LTP) and Depression
(LTD) of memristive synapses used in neuromorphic
hardware. This kind of evolutionary behavior is required to
achieve gradual conductance changes upon pulse applications.
Figure 4D shows the LTP and LTD measurements reported in
[75] for TiN/(25 nm)TaOX/Pt -based devices (the experimentally
measured I-V loop is plotted in Figure 4C altogether with the
corresponding fit with the DMM) by the application of 300
identical pulses of 1 V (LTP) followed by 300 identical pulses
of -1.1 V (LTD). All pulses have the same width (100 ns, tON) and
they are applied every 20 msec During the time in between pulses,
a low voltage (0.1 V) pulse is applied to read the conductance
(memory) state of the device. These measurement conditions
were replicated in the SPICE simulations shown in Figure 4C.
The simulated LTP and LTD trends are superimposed to
the measurements shown in Figure 4D, showing a good fit of
the experimental trends. There is also a voltage acceleration of the
LTP/LTD trends, as reported for instance for the TiN/(3-nm)
HfO2/Pt -based devices measured in [76], and which can be
reproduced by the DMM as shown in Figure 4E. Finally, the

versatility and capability of the DMM to reproduce the
evolutionary behavior of memristive devices is shown (see
Figure 4F) by also fitting the gradual current increase during
LTP of Ag/ZnO/Pt based nanowire memristors [77], by
considering the same stimuli (pulses with an amplitude of
2.5 V and a duration of roughly 2 msec.). Thereby, the DMM
is suitable to model the response of RRAM devices with a large
number of incrementally accessible conductance states.

MATERIALS AND METHODS

The basic procedure originally proposed in Ref. [14] for creating
and simulating a SLP used as a case study is extended here. The
workflow is summarized in the chart depicted in Figure 5A. The
tasks can be split into two parts: first, the SLP creation, training
and circuit-representation using SPICE code generation
(MATLAB), and second, the simulation (HSPICE).

Cross-Point Array Based Single Layer
Perceptron Creation
First, a software-based SLP of size n2 ×m (therefore with n2·m
synapses) is created and trained using a given dataset formed
by n × n px. images (as those represented in Figure 5B)
distributed into m classes. For the sake of simplicity, ex-situ
supervised learning is assumed here with the Scaled Conjugate
Gradient [78] (SCG) training algorithm. This algorithm
provides a good trade-off between accuracy and learning
time for the different datasets considered. The possible
impact of the learning method was discussed elsewhere
[14] where it was demonstrated that no significant
statistical differences in terms of the inference accuracy
occur. The training procedure generates a n2 × m weight
matrix WM ∈ R, which can be further decomposed as WM �

TABLE 1 | Dynamic memdiode model SPICE code.

.subckt memdiode p n
.param H0 � 0 beta � 0.5
*Transition parameters
.param T0s � 8.5e + 3 V0s � 6.8e−2 T0r � 1e + 4 V0r � 1e−1
*I-V parameters
.param imin � 5e−7 imax � 9.5e−5 alphamin � 1e + 0 alphamax � 1 rsmin � 3.8e + 1
+ rsmax � 3.8e + 1
*Auxiliary functions
.param I0(x) � ’imax*x + imin*(1−x)’
.param A(x) � ’alphamax*x + alphamin*(1−x)’
.param Rss(x) � ’rsmax*x + rsmin*(1−x)’
*********H-V*********
EV A gnd! vol � 1
RH H A R � ’T0s*exp (-V (p,n)/V0s)’
RD H gnd! R � ’T0r*exp (V (p,n)/V0r)’
CH H gnd! C � 1 IC � ’H0′
*********I-V*********
RS p D R � ’Rss (V(H))’
GD D n cur � ’I0(V(H))*(exp (beta*A (V(H))*V (D,n))-exp (-(1-beta)*A (V(H))*V (D,n)))’

.ends memdiode

Memdiode script for H-SPICE. p and n are the device terminals. The code is organized in sections: parameter values (sub-divided in transition and I-V parameters), auxiliary functions,
memory equation (H-V) and finally I-V characteristic.
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W+
M −W−

M based on Eq. 7 and Eq. 8, as proposed in the
literature [79]:

w+
Mi,j

� {wMi,j, wMi,j > 0
0 , wMi,j ≤ 0

(7)

w−
Mi,j

� { 0 , wMi,j > 0
−wMi,j, wMi,j ≤ 0

(8)

with both W+
M and W−

M comprising only positive elements. This
allows rendering both positive and negative synaptic weights in
WM as well as doubling the dynamic range and reducing the noise
and variability susceptibility [80].

In the next step, the conductance matrices G+
M and G−

M (each
sized n2 × m, thus totaling 2·n2·m synapses in the SLP) to be
mapped into the CPAs are calculated by the linear transformation
[22,81]:

FIGURE 5 | (A) Flowchart diagram for the simulation procedure. Starting with the image size specification, RL, Vread, and connection scheme, the routine creates
the database, trains the SLP, maps the information into the CPA, adds the peripheral control circuit, performs the simulations and processes the results. MATLAB tasks
are grouped by the red box and SPICE operations by the green box. The details of the programming phase simulated in SPICE are shown in the right side. (B) Sample
images from theMNIST database. On the right side the effect of the rescaling is presented. Simplified equivalent circuit schematic for a partitioned CPA-based SLP,
for the inference (C) and programming (D) phases. Each CPA in the synaptic layer is subdivided into N identically sized partitions to minimize parasitic voltage drops.
Partial output current vectors are indicated in the output of each partition. The peripheral circuitry connected to control the programming phase (write) is disconnected
upon completion.
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G+(−)
M � (Gmax − Gmin)W+(−)

MNorm
+ Gmin (9)

where [Gmin, Gmax] is a selected conductance range for a linear
computation in matrix-vector calculations. For simplicity, we
consider Gmax � GLRS � 1/RON and Gmin � GHRS � 1/ROFF, with
RON and ROFF defined by the I-V characteristic of the memdiode
model play evaluated at a given Vread. ThenW

+(−)
MNorm

is the positive
(negative) weight matrix normalized within the range [0,1] by one
of the following normalization methods NM1-NM2, indicated by
Eq. 10 and Eq. 11:

MN1: W+(−)
MNorm

� W+(−)
M

max{abs{WM}}
(10)

MN2: wMi,j �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 , wMi,j > μWM
+ nσWM

wMi,j

μWM
− nσWM

, μWM
− nσWM <wMi,j < 0

wMi,j

μWM
+ nσWM

, 0<wMi,j < μWM
+ nσWM

−1 , wMi,j < μWM
− nσWM

(11)

max{WM} and min{WM} are the maximum and minimum
synaptic weight values in WM and μWM

, σWM are the mean and
standard deviation of the synaptic weights in WM, respectively. In
this way, the W+

M and W−
M matrices are converted to conductance

values within the range [GHRS, GLRS].
The subsequent sub-routines write down the circuit netlist for

the dual-n2 × m memdiode CPA-based SLP, adding the parasitic
line resistance (RL), connection scheme, and control logic
necessary for both the CLT and inference phase. Two
approaches were followed in order to improve the voltage
effectively delivered to the RRAM cells as shown in the
simplified equivalent circuit depicted in Figure 5C: i) A Dual
Side Connection (DSC) scheme and ii) the partitioning of the G+

M
and G−

M matrices into NP (number of partitions) smaller arrays
[14,69,80]. Despite the increased peripheral circuitry complexity,
DSC improves the voltage delivery to each synapse [13] by
connecting both wordline terminals to the input stimuli.
Similarly, the small size of each partition helps reducing the
parasitic voltage drop along the line interconnections. Exploding
the integrability of the CPA with CMOS circuitry, the vertical
interconnects linking the outputs of each partition may be placed
under the CPAs, as well as the analogue sensing electronics, thus
minimizing the area overhead of the partitioned architecture [80].

To account for both the inference and write phases, the present
implementation follows a reconfigurable approach, in which
the partitioned CPA-based SLP is alternatively connected to
the input/output signals (inference phase, Figure 5C) or to the
writing stimuli (write phase, Figure 5D). The analogue
electronics required for the inference phase has been described
elsewhere in the literature [14,15]. However, the circuitry needed
for the write phase requires a more complex circuital
implementation, as the input stimuli are not passed
simultaneously to all the CPA inputs, but sequentially.
Thereby, as shown in Figure 5D, this circuital arrangement

involves a CPA address block, the Row/Column address
decoders, the Row/Column selectors, and the Write
Acknowledge block. All of them have been designed assuming
a 130 nm CMOS process from GlobalFoundries.

The CPA address block is basically an asynchronous counter
that produces n2/NP m output pulses (the number of memdiodes
in each partition), which propagate to both the Row and Column
decoders. Both decoders consist of another ascending
asynchronous counter that counts up to n2/NP (Row decoder)
and m (column decoder) pulses, and outputs a binary code
indicating the row and column being addressed, respectively.
Then, these binary codes are simultaneously propagated to all the
Row/Column selectors. The latter are an array of analogue
switches that connect the input node of each CPA Row to
Vwrite or Vread (for addressing that particular Row during the
write procedure), VDD/2 (if another row is being addressed) or to
Vinput (when the ANN is operating in the inference phase). The
column selector is a similar array that connects the columns
output nodes to a sensing amplifier (SA, a transimpedance
amplifier coupled to a comparator) if that particular column is
being addressed, or VDD/2 (if other column is being addressed).
Finally, the target current level to be detected by the SA to
determine the completion of the write process of a given
element gi,j in the G+

M and G−
M matrices is calculated based on

the nominal Vread and conductance gi,j. Once the circuit netlist is
written, it is passed to a SPICE simulator which evaluates the
voltage and current distributions in the CPA circuit while it is
being programmed, and then, as the input images are processed
and classified. Finally, the resulting waveforms are passed back to
the MATLAB routine for evaluation and metrics extraction.

Write Procedure
During the write operation each memdiode in the CPAs (Mi,j) is
individually addressed and supplied with a train of alternating
read and write pulses of amplitude Vread and Vwrite, respectively.
This causes a gradual increment of the memdiode conductance
until a target value is reached. Such addressing procedure is

FIGURE 6 | Sensed output current for a SLP partition (one small CPA)
during the programming phase following a CLT scheme. The greater the peak,
the higher the conductance level being programmed. For this scenario, NM-1
and 8 partitions per CPA were considered. The inset in the centre shows
a schematic representation of the current measured during the verify and write
pulses as well as the current target. The inset in the right shows a schematic of
the equivalent circuit used during the verify phase.
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performed following the VDD/2 approach as it minimizes the line
disturbance [41]. Within this writing method, the non-addressed
rows are set to a constant voltage value VDD/2. Similarly, the
output node of the column of the addressed memdiode is
grounded through the SA, which measures the current flowing
out from this column (the other columns are at VDD/2). The
measured current is proportional to the applied voltage pulses
and the memdiode conductance (gi,j) plus the parasitic wire
resistance corresponding to the addressed device (Mi,j). This
allows to estimate the conductance of the addressed
memdiode. This process is represented by the simplified
equivalent circuit shown in the inset of Figure 6.

The write procedure for the addressed memdiode Mi,j begins
by sensing the output current during the read pulse of magnitude
Vread. In case this current is lower than a target value, a write pulse
of voltage Vwrite is applied (Vwrite > Vread), causing an increment
of theMi,j conductance (gi,j). Then a new read pulse is applied and
the current sensed again. This process continues iteratively until
the sensed current during the read pulse meets the target value.
Once reached, the SA outputs a pulse that indicates the
completion of the writing procedure for the addressed
memdiode (Mi,j), stopping the train of read/write pulses and
preparing the following devices for the programming step.

It is worth noting that the partitioned architecture allows the
simultaneous programming of theMi,jmemdiode in all partitions
using a simpler control circuit. Let us assume that the devices to
be programmed are theMi,jmemdiodes of a 2 × (n2 ×m) RRAM-
based SLP implemented with NP partitions (thus totalling 2·NP
CPAs), such as the one presented in Figure 5D. In this case, the ith

output of the row decoder (n2/NP outputs) will be the only active
output, as well as the jth output (m outputs) of the column
decoder. Then these output vectors are passed to every Row/
Column selector, which therefore simultaneously select the Mi,j

memdiode in every CPA. This causes all the ith rows to be
connected to a train of alternating read and write pulses and
all the jth columns to be connected to the partition’s SA (each
CPA partition has its own SA). All other rows and columns are
connected to VDD/2. The current flowing through each of theMi,j

memdiodes (and therefore out from the jth columns) is sensed by
its associated SA until the target conductance value for that Mi,j

memdiode is achieved. Then the associated SA propagates an
acknowledge pulse (ACK) to the Write Acknowledge block. This
block waits for the ACK pulses coming from the SAs of every
partition. Once all ACK pulses are received, the ith,jth position of
all CPAs is considered to be successfully written, and by the time
the Write Acknowledge block receives the following system clock
pulse, it instructs the CPA address block to address the Mi,j+1

memdiode and the write sequence starts again. This process
continues until the CPA address block has addressed all the
memdiode positions in the CPA partitions (n2/NP ×m positions).

ModifiedNational Institute of Standards and
Technology Dataset and Input Stimuli
The MNIST (Modified National Institute of Standards and
Technology) dataset of handwritten digits was selected for the
training and inference phases considered in this work. This

dataset comprises a series of k input feature vectors [x(k) for
sample k] and a target output vector [t(k), with 10 dimensions,
each corresponding to one digit]. For the classification problem,
tc(k) �1 if sample k belongs to class c, otherwise tc(k) � 0. The
input feature vectors (n2 × 1) are the unrolled grayscale pixel
values of thetwo-dimensionalimages (n × npx.). Pixel’s brightness
is codified in 256 gray levels between 0 (fully OFF, black) and 1
(fully ON, white). The MNIST dataset contains 60,000 training
images and 10,000 testing images, both in grayscale and with a
28 × 28 px. resolution [82]. A few examples of these images can be
seen in the left panel of Figure 5B. The MNIST images were
further down sampled using bicubic interpolation to 8 × 8 px. to
allow smaller SLPs. This modification reduces the inference
accuracy degradation due to the line resistance effect and
speeds up the simulations (also reduces the image readability
as shown in the right side of Figure 5B). Finally, the input stimuli
are obtained by scaling the input feature vector by a voltage Vread.
Vread is chosen such as to prevent altering the memdiode state
during the inference phase simulation. In this way, during the
inference process each of the test images is presented to the CPA
as a vector of analog voltages in the range [0, Vread].

SIMULATION RESULTS

To quantitatively compare the write performance under different
conditions, three different metrics were considered. They are: i)
the time required to write the complete CPAs, ii) the inference
accuracy achieved after programming the CPAs and, iii) the write
error. To quantify the latter, we have considered in this paper the
so-called Sum Weight Variation (SWV). Let the weight variation

(WV) be equal to
∣∣∣∣∣wreal

i,j − wi,j

∣∣∣∣∣ where wreal
i,j is an element of the

matrix Wreal
MNorm

with effectively programmed synaptic weights,
and wi,j is an element of the matrix WMNorm with ideal synaptic
weights. Then, the metric referred to as SWV [83] can be derived
to quantify the deviation ofWreal

MNorm
matrix from the idealWMNorm

matrix and it is computed as indicated by Eq. 12:

SWV � ∑M
i�1

∑N
j�1

∣∣∣∣∣wreal
i,j − wi,j

∣∣∣∣∣ (12)

where M and N stands for the number of rows and columns in
WMNorm. From Eq. 12, it can be noted that the lower the value of
SWV, the lower the error on the mapped weight matrix.

Write Voltage
All three metrics considered in this study show similar trends
regardless of the normalization method, RON and ROFF resistances
and line resistance (RL). When addressing the CPA write time
presented in Figure 7A, it can be seen that as the voltage of the
write pulses decreases, the CPA write time slightly increases until
reaching roughly 1.1 V where it increases abruptly. The reason
behind this behavior is a consequence of the I-V characteristics of
the memristors themselves, in particular the SET transitions.
Above the 1.1 V threshold voltage, the reduction of the write
pulses amplitude causes the conductance increase produced by
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the application of each pulse to decrease too, thereby requiring
more pulses to program each memdiode in the CPA. However,
when applying a voltage lower than the 1.1 V threshold, the
voltage delivered to a number of cells in the CPA is not enough to
alter its conductance due to a reduced read (or write) margin. RM
(WM) is the fraction of the applied input voltage Vin (which may
be Vread or Vwrite) effectively delivered to the memory cells (Vcell),
i.e. Vcell/Vin.

This interpretation is in close agreement with the results
reported in Figure 7B, where the SWV metric is represented
in terms of the write voltage. Note that as the conductance change
produced by each write pulse reduces with the pulse’s amplitude,
the write procedure has higher control over the programmed
conductance, and thereby the write error reduces to a minimum.
Nonetheless, when crossing the 1.1 V threshold, a subtle rise in
the SWV can be seen, coincident with the abrupt increase of the
write time. This could be explained by considering the sneak-path
effect. In this context, the programming of certain positions in the
CPA is not terminated by the current being driven by the device
located in that position, but by parasitic currents loops caused by
already set devices located close to the input/output ports. A
direct consequence of the write error increase is the degradation
of the inference accuracy as shown in Figure 7C. Note that both
below the 1.1 V threshold and above 1.6 V there is a reduction of
the inference accuracy that almost coincides with the increasing
writing errors during the memristor programming phase.

Normalization Method
The matrix elements in WM are in the range
[min{WM}, max{WM}]. To be mapped to a conductance
magnitude in the range [GHRS, GLRS], they must be first
normalized to the range [−1, 1]. Very often [22,81], such
normalization is achieved dividing WM by the absolute value
of the maximum element inWM (Normalization Method 1, NM-
1, see Eq. 10). As expected, the normalized WM matrices WMN1

preserve the exact same distribution and the
max{WM}/min{WM} ratio. Interestingly, for the case of the

MNIST images resized to 8 × 8 px. used in this work for
benchmarking, ∼95% of the elements from WMN1 falls within
the range [−0.5,0.5]. Thereby, NM-1 does not exploit the entire
dynamic range of the memdiodes as most of the devices will be set
to a conductance value in the range [GHRS, ((GLRS + GHRS)/2)]. To
make a better use of the entire memristor conductance range, an
alternative approach (NM-2, see Eq. 11) is considered. In this
context, an elementwi,j ∈ WM has a probability Pi of being within
the range μWM

± iσWM, where μWM
and σWM are the mean and

standard deviation of the values ofWM. For i ranging from 1 to 4,
∼68.3%, ∼95.5%, ∼99.7 and ∼99.9% of the synaptic weights will be
within such range, respectively [84]. Thus, values exceeding such
limits are set equal to μWM

± iσWM and thenWM is normalized to
obtainWMN2. This normalization method allows not only a better
exploitation of the memristor dynamic range but also minimizes
the impact of stuck-at-ON faults, as explained in Ref. [85].

The impact of both NM-1 and NM-2 were compared in terms
of the proposed metrics in Figure 7, with the CPA write time and
SWV showing a factor 2 of difference between the two
normalization methods. Given that, when considering NM-1,
most of the conductance values are mapped close toGHRS, a lower
number of write pulses are required to meet the target
conductance. This results in shorter writing times, as seen in
Figure 7A. The lower mean conductance of the synaptic weights
resulting from applying NM-1 also results in a lower SWV (See
Figure 7B). As the conductance of the synapses increases, so does
the current flowing from wordlines to bitlines. This not only
causes a larger IR-drop in the interconnection lines, but also
exacerbates the sneak-path effect too, resulting in a similar
scenario to that depicted in section Simulation Results. A: the
current measured by the sensing amplifier that terminates the
writing cycle in a given {i,j} position of the CPA is in fact the result
of multiple conductive paths. As a consequence, the writing cycle
in the {i,j} position is terminated before reaching the target
conductance, giving rise to a significant increase of the SWV
metric. Finally, no significant changes occur in the inference
accuracy of the programmed CPA (see Figure 7C), except for a

FIGURE 7 | Simulation results for the synaptic weights writing process into the partitioned CPA-based SLP. (A) Total Write Time, (B) λ-SWV and (C) Inference
accuracy obtained with the written SLP as a function of the write pulses amplitude. In all cases, the two normalization methods were considered (NM-1 and NM-2) and
the line resistance was varied in the range from 1 to 100 Ω.
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higher sensitivity to the line resistance. This point will be
thoroughly discussed in the next section.

Line Resistance (RL)
Assuming conventional metal wires, the resistance of the
interconnect wires (RL) between two adjacent cells in a 4F2

CPA structure can be estimated to be ∼4.5, 3, and 1.5Ω for
the 16, 22 and 32 nm technology nodes, respectively [86].
Nevertheless, for the novel technology nodes (10 nm and
below) both surface and grain boundary scattering cause a
size-dependent resistivity of the Cu wires [87–89] as the mean
free path of electrons becomes comparable to the wire
dimensions. These two effects are well-known and can be
quantified using the Fuchs-Sondheimer (FS) [90] and the
Mayadas-Shatzkes (MS) [91] models. They reveal that for
highly scaled nodes (∼5 nm), RL can be as large as ∼100 kΩ
[69]. In this work, we have considered RL values varying from 1
to 60Ω.

Interestingly, all the three metrics (CPAWrite Time, Inference
Accuracy and SWV) show a much higher sensitivity to RL when
considering the NM-2. This can be attributed to the CPA’s RM.
RM is jointly determined by RL and the memdiode resistance
(Rmemd, which varies in between ROFF and RON) [14,41,69]. From
a very basic analysis, each memdiode is part of a conductive path
between the CPA’s input wordline i and the output bitline j. For a
N×M CPA, the average parasitic resistance associated with such
path is RL[(N +M)/2 + 1] [14,37]. Within this simplified scenario,
the Vcell/Vin ratio can be obtained from the voltage divider
between Rmemd and RL[(N + M)/2 + 1]. This can explain the
greater robustness of the NM-1 against RL variations: the larger
average value of Rmemd minimizes the IR drop and as a
consequence, the impact of RL. On the other hand, for NM-2,
the IR drop across RL significantly limits the minimum write
voltage, as for increasing values of RL the voltage effectively
delivered to the CPA cells reduces causing an exponential
increase in the CPA write time. This effect also worsens the
impact of the sneak-path problem, resulting in larger SWV values
and lower inference accuracy (see Figures 7B,C, respectively).

Frequency and SET Transition Abruptness
As mentioned in Section Dynamic Memdiode Model, the I-V
characteristic of the memdiode is sensible to the frequency of the
input signal [63]. Thereby studying the impact of the write pulses
frequency on the CPA write time, SWV and inference accuracy is
necessary to complement the trends reported in Figure 7. In this
regard, the aforementioned metrics were evaluated for different
combinations of write pulses voltages and frequencies and for
four different I-V loops, in which the abruptness of the SET
transition is progressively increased. For the sake of simplicity, RL

is kept constant and equal to 10Ω, as well as the amplitude of the
verify pulses (0.3 V) and the read frequency and amplitude
(100 kHz and 0.3 V).

In general, the simulation results presented in Figure 8
indicate that the best performance metrics are obtained for
low voltage write pulses of high frequency (upper right
corners of the SWV and accuracy metrics). This is a direct
consequence of the smaller conductance change induced by

each pulse when reducing their amplitude and width. On the
contrary, in all the cases, the lower left corner is associated with
the highest SWV and consequently with the lowest accuracy,
given the lesser controllability of the conductance increase (pulses
of high amplitude are applied during longer periods).
Nevertheless, such a better controllability comes at the cost of
a much higher writing time given that a larger number of pulses is
required. This was already seen in the results reported in Figure 7.

Beyond the overall trends, the abruptness of the SET transition
(see Figure 8A) also has a remarkable impact on the evaluation
metrics. Note that as the SET transition becomes more abrupt, the
SWV increases and consequently, the inference accuracy reduces.
The changes can be regarded as an up-shift in the heat-maps
presented in Figure 8, as no significant variations can be observed
as a function of the frequency. This change in the heat-maps can
be interpreted once again as a consequence of different
conductance modifications caused by the pulses amplitude for
the four different SET transitions considered: for a pulse with a
given amplitude and width, a more progressive SET transition
results in a smaller conductance increment, whereas the
conductance modification produced for the same pulse in a
memdiode with a steeper SET transition is larger.

Interestingly, apart from modifying the write performance of
the conductance values, the frequency and voltage dependences
of the memdiode also play a role during the inference phase,
mainly because of the resistance shift occurring in the CPA
memristors. Depending on the maximum voltage Vread used to
translate the input pattern into a vector of analogue voltages, and
the frequency at which such vectors are presented to the CPA, a
resistance shift for the stored synaptic weights may occur (see
Section Switching Dynamics). Notice that this is ultimately a
consequence of the ionic movement inside the dielectric. This is
presented in Figure 9A in terms of the SWV computed for the
control parameter λ after having presented a series of images (x
axis) and for different combinations of Vread values and input
frequencies. The overall trend is that the SWVmetric increases as
more images are presented to the CPA and this can be minimized
both by increasing the input frequency or reducing the read
voltage. Such an increase in SWV causes inevitably a reduction of
the inference accuracy as illustrated in the heat-maps in Figures
9B–E. Note that four cases with different SET abruptness were
considered, and similarly to the results presented in Figure 8, the
more abrupt the SET transition, the higher the sensitivity to the
read voltage and the input frequency. As a corollary, it can be seen
that Vread could be largely increased to improve, for instance, the
Signal-to-Noise ratio as long as the input frequency is increased
accordingly.

In this regard, it is crucial to consider the stability of the
programmed resistive state of the cells. We have thereby studied
in detail the distribution of synaptic weights and conductance
matrices over time and reported the results in Figures 9F–T. This
has been carried out by stopping the simulation and reading the
value of the state variable λ for each memristor in the CPA (this
value corresponds to the voltage of the node H in the model
script). When the simulation is stopped, all the nodal voltages are
stored and the λ-SWV computed with respect to the original
mapped values. Then, the stored nodal voltages are assigned as
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initial conditions to the corresponding nodes and the SPICE
simulation is resumed starting from the previous processed
image. Note that we have considered accelerated stress
conditions, Vread and Frequency values of 800 mV and 1 kHz.
Under these circumstances the trends can be obtained in reduced
times (the simulated time is 10 s for 10,000 images). Normal
operation voltage (approx. 200 mV) and frequency (above
1 MHz) should ensure that the weights remain stable over a
long period of time, otherwise, re-tuning of the synaptic weight
shall be performed periodically. From Figures 9F–T, the
statistical distribution of the programmed weights shift
towards GLRS as the number of images increases (i.e., over
time). When considering the changes in the conductance
matrices associated with these shifts in the statistical
distribution of the synaptic weights, it can be seen that a
certain pattern emerges, with the upper and lower region of
the CPA arrangement showing no changes. Moreover,
equidistant stripes of devices with no variations in middle of
highly potentiated devices are observed. Such changes can be
explained considering the particular features of the dataset
analyzed in this work (MNIST). In the MNIST data-base,
pixels located at the edges of the images are normally OFF.
When unrolling the n×n images into n2 × 1 column vectors,
the pixels from the left border of the image (normally unactive)
occupies the first n positions of the n2 × 1 column vector, and

those on the right border, the last n positions. Then the firsts and
lasts n rows of the CPA arrangement are never stressed, so that
they are always biased with approx. 0 V. Then, moving forward
with the same reasoning, the upper and lower pixels of the middle
columns of the n × n images are also normally unactive. When
feeding the CPA arrangement with a n2 × 1 column vector, this
results in equally spaced unbiased rows, which thereby suffers no
variations of the weights stored in the corresponding memristors.

Finally, it is worth recalling that even for the case of high
stability of the programmed memristor devices, a possible device-
to-device (D2D) variability and the consequent programming
error need to be considered. The intrinsic stochastic nature of the
switching mechanism can induce a high degree of variability [92].
Such variability in the memristive structures also increases the
possibility of a deviation of the weighted sum from the target
conductance value [93]. The variability of the conductance states
GLRS and GHRS across a matrix is largely influenced by the choice
of the stack’s materials (e.g., single material HfOX vs. bilayer
HfOX + TaOX) [94,95], as well as by the device scaling. Extreme
scaling seems to reduce variability likely because of a reduction of
the area where the switching occurs [96]. Furthermore, the
conductance value set during the CLT procedure also exhibits
variability [19,93].

The normalized device variability can be expressed as σ/µ, where σ
is the standard deviation and µ the mean value of the LRS and HRS

FIGURE 8 | Simulation results for the synaptic weightswriting process into the partitionedCPA-based SLP as a function of both the pulses amplitude and frequency. (A)
Various model plays of the DMM are considered, comprising 4 different SET abruptness. (B), (E), (H) and (K) show the total write time. (C), (F), (I) and (L) show the λ-SWV.
Finally (D), (G), (J) and (M) indicate the inference accuracy obtained with the written SLP. In all cases, the NM-1was considered and RL was set to 10 Ω. Marked regions in
(B–G) indicates the combinations of write frequency-write voltage that renders excessively long programming times and cannot complete the entire CPA programming.
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conductance (GLRS and GHRS) distributions. The DMM is suitable to
study the device variability in terms of the GLRS and GHRS dispersion,
as well as due to errors in the conductance programming, expressed
as a variability of theDMMcontrol parameter λ (see Figure 10A). To

do so, we made a small amendment in the SPICE subcircuit
representation of the DMM (see Table 1), and defined the
parameters λ, Imin and Imax in terms of the gauss() SPICE
function. For instance, for λ, we define H as param H �

FIGURE 9 | (A) Resistance shift measured in terms of the λ-SWV metric. The higher deviations occur for pulses with low frequency and high amplitude. The initial
synaptic weights are free of programming errors. Inference accuracy as a function of the maximum voltage of the input feature vectors (Read Voltage) and the frequency
at which they are presented to the SLP (Read Frequency) for model plays called (B) SET#1, (C) SET#2, (D) SET#3 and (E) SET#4. Note that the inference accuracy
reduces as the SET event becomes more abrupt (high Voltage—low Frequency corner). In all cases, the NM-1 method was considered. Time evolution of the
statistic distribution of the synaptic conductances and conductance map of the positive and negative CPA of the SLP, showing the synaptic weights stability under
accelerated stress (Vread � 800 mV @ 1 kHz): (F–H) 1 image or 1 msec. (I–K) 10 images or 10 msec. (L–N) 100 images or 100 msec. (O–Q) 1,000 images or 1 s. (R–T)
10,000 images or 10 s.
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gauss(H_0,H_var,3), being H_0 and H_var two arguments passed
to the subcircuit representing the nominal value of λ and its
relative variability specified for 3 sigma, respectively. Similar
variability is assumed for Imin and Imax parameters, which
introduces dispersion in the GLRS and GHRS values. Because
of the D2D variability among devices in the CPA, Monte Carlo
(MC) simulations were performed, assuming different levels of
variability for all devices. In each MC run, the characteristic
(stored memory state for the resistive window) of each device
was individually altered following a Gaussian distribution
around the nominal value with increasing dispersion.
Subsequently, the CPA was used to classify the images from
the MNIST dataset. 10 MC runs were considered for each value
of σ/µ.

In Figure 10B, the influence of the control parameter λ
variability (σλ/µλ ranging from 0 to 30%) over the inference
accuracy is studied for two different GLRS/GHRS ratios (10 and
100) achieved by two model plays (namely C1 and C2, shown in
the inset of Figure 10B) and considering RL � 10Ω. The image
size remains 8 × 8 px. and 4 partitions were used (that is, 4 CPAs
of size 16 × 10 for each polarity of synaptic weights). For
simplicity, no variability in the major I-V loop is considered
(σGHRS � σGLRS � 0). Two trends are clearly observed. On one
hand, the model play having a GLRS/GHRS ratio equal to or
greater than 100 (C2) exhibits a very reduced sensitivity to λ
variations (accuracy loss is below 5% for variabilities up to 30%).
On the other hand, there is a sustained accuracy reduction for
model play C1 over the same range of σλ/µλ. Given that the case
of model play C2 is more robust to λ variations it was then
selected to be thoroughly studied by considering the joint
variability of GLRS and GHRS (σGLRS/µGLRS and σGHRS/µGHRS,
respectively). As the variability is normally higher in HRS than
in LRS [38], they were swept independently, resulting in the
accuracy map illustrated in Figure 10C. The trend observed in
Figure 10B is repeated in Figure 10C. Interestingly, σGHRS/
µGHRS has a higher impact on the inference accuracy, likely due
to a higher number of memdiodes mapped close to the
GHRS value.

CONCLUSION

In this work, we have demonstrated the viability of the Dynamic
Memdiode compact Model (DMM) for realistic SPICE simulations
of large RRAM-based Cross-Point Arrays (CPA) intended for
neuromorphic applications. A single layer perceptron (SLP) and
the MNIST database of greyscale, handwritten digits were
considered as case study. Although a simplistic approach when
compared with more sophisticated multi-layer Artificial Neural
Networks (ANN), the SLP allows studying and clarifying the
ANN limitations during both the writing and inference phases
caused by parasitic effects and non-idealities occurring in the
synaptic layers implemented with CPAs.

The DMMmodel considers a Transport Equation (TE) based on
an extension of the QPC model. The extension consists in replacing
the current amplitude factor for an ideal monomode ballistic
conductor with a more general amplitude factor that overcomes
the physical limitation of a single tunnelling barrier. The capability of
the DMM’s Memory Equation (ME) of generating the hysteretic
memory map by itself without ad-hoc definitions, allows the device
to be set to a given conductance level by applying pulses of a constant
amplitude, as experimentally observed for some materials. This
property was exploited to implement a Closed-Loop-Tunning
(CLT) approach for the programming of each RRAM devices in
the simulated CPAs. Thereby, in this paper not only the classification
accuracy was investigated but also the time required to program each
electronic synapsis of the CPA-based SLP. The study also involved
computing the error committed during such process.

It was found that the normalization method (NM) significantly
modifies these metrics, and that a NM targeted to exploit the entire
dynamic range of the RRAM devices will likely produce higher write
times and errors. Similarly, the line resistance reduces the voltage
effectively delivered to the RRAM cells causing an increase of the
write time and eventually causing the write pulses not to meet the
switching conditions. Such conditions change with the frequency of
the writing pulses, adding further complexity both to the write and
inference phases. For the write phase, the increase of the SET
transition voltage for higher frequencies implies that the write

FIGURE 10 | Impact of the device variability on the test accuracy. (A)Different sources of variability considered: RON, ROFF and λ. (B) Impact of the λ variability on the
accuracy. Higher resistance windows improve robustness against variability. The inset depicts two different I-V loops with different resistance windows (10 and 100). (C)
Inference accuracy is studied as function of the combined variability of RON and ROFF for model plays C2 showing a higher dependence on ROFF.
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voltage should be changed accordingly with the frequency to
avoid incurring into excessively long programming times or
intolerable writing errors that at the end affect the classification
performance.

APPENDIX

The SPICE script for the DMM used for all simulations shown
in this paper is reported in Table 1. A(x) and Rss(x) stands for
the α and R memdiode parameters, which are a function of the
memory state. The memory state λ is represented by V(H), with
H0 being the initial state. Parameters modelling the HRS-LRS
transition are T0s, T0r, V0s, and V0r for τ0S, τ0R, V0S, and V0R,
respectively. A Voltage-controlled current source is used to
implement Eq. 1 (GD and resistor RS), while Eq. 3 is
modeled through voltage controlled resistors (RH and RD)
and a voltage source and capacitor of fixed value (EV and
CH). The antiparallel diodes are modelled by the controlled
current source GD in the script. beta defines whether the
conduction is symmetric with positive and negative applied
voltages (beta � 0.5) or not (beta≠0.5). The model is written in
terms of the HSPICE syntax.
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