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Monte Carlo simulation of particle tracking in matter is the reference simulation method in
the field of medical physics. It is heavily used in various applications such as 1) patient dose
distribution estimation in different therapy modalities (radiotherapy, protontherapy or ion
therapy) or for radio-protection investigations of ionizing radiation-based imaging systems
(CT, nuclear imaging), 2) development of numerous imaging detectors, in X-ray imaging
(conventional CT, dual-energy, multi-spectral, phase contrast . . . ), nuclear imaging (PET,
SPECT, Compton Camera) or even advanced specific imaging methods such as proton/
ion imaging, or prompt-gamma emission distribution estimation in hadrontherapy
monitoring. Monte Carlo simulation is a key tool both in academic research labs as
well as industrial research and development services. Because of the very nature of the
Monte Carlo method, involving iterative and stochastic estimation of numerous probability
density functions, the computation time is high. Despite the continuous and significant
progress on computer hardware and the (relative) easiness of using code parallelisms, the
computation time is still an issue for highly demanding and complex simulations. Hence,
since decades, Variance Reduction Techniques have been proposed to accelerate the
processes in a specific configuration. In this article, we review the recent use of Artificial
Intelligence methods for Monte Carlo simulation in medical physics and their main
associated challenges. In the first section, the main principles of some neural networks
architectures such as Convolutional Neural Networks or Generative Adversarial Network
are briefly described together with a literature review of their applications in the domain of
medical physics Monte Carlo simulations. In particular, we will focus on dose estimation
with convolutional neural networks, dose denoising from low statistics Monte Carlo
simulations, detector modelling and event selection with neural networks, generative
networks for source and phase space modelling. The expected interests of those
approaches are discussed. In the second section, we focus on the current challenges
that still arise in this promising field.
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1 INTRODUCTION

Techniques based on Deep Learning have seen huge interest for several years showing, in particular,
significant progress in computer vision. Many medical applications have adopted them (see Shen
et al. [132] for a recent review) and a lot of research is currently underway. These recent
developments around Machine Learning in medical physics have found applications in the field
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of Monte Carlo simulations. In this work, we will review and
discuss the use of artificial intelligence, or more specifically
machine Learning, for Monte Carlo simulation for particle
transport especially in the context of medical physics. Links to
other fields such as particle physics, nuclear physics or solid state
physics also exist, but they would be beyond the scope of
this work.

The article is structured in the following three parts: Sections
1.1 and 1.2 give a brief introduction of the principles of Monte
Carlo simulation as well as deep learning, Section 2 presents a
literature review in the context of medical physics, and Section 3
discusses on current challenges.

1.1 MONTE CARLO MODELLING IN
MEDICAL PHYSICS

Monte Carlo codes in medical physics are similar to those used in
high energy physics community (HEP). Specifically, the
simulation engine simulates the transport of particles, mainly
photons and light charged particles, across a set of geometrical
objects made of well-defined materials, modeling the physical
interactions between particles and matter. The transport is
performed particle by particle in a step-by-step fashion. For all
particles, at each step, stochastic models describing physical
interactions (such as Compton scattering, photo-electric effect,
ionisation, etc) are repeatedly evaluated based on databases of
cross-sections. Thanks to this approach, the quantities
determined via simulation, for example the absorbed dose
distribution or the number of detected particles, are very
accurately estimated even in complex geometries. Depending
on the complexity of the simulated configuration, millions or
even billions of particles should be tracked to reach an acceptable
statistical convergence, making the whole process usually
very long.

The use of Monte Carlo techniques for medical physics started
to become increasingly popular in the late 1970s, in particular for
the modelling of imaging systems in nuclear medicine, for the
characterization of particle beam accelerators in radiotherapy,
and for calculating the absorbed dose in patients for planning
treatment [5, 14, 115, 130]. Since then, Monte Carlo simulations
have become a widespread tool in research and development
(R&D) for the design of nuclear imaging systems and dose
calculation engines in treatment planning systems (TPS) [19,
41, 129, 139, 148].

An example of system development where Monte Carlo
simulations are involved in the design, the control and test of
the devices, and the tuning of reconstruction algorithms is the
new generation of whole-body PET scanners. Prototypes
currently under development include the EXPLORER [10] at
UC Davis (United States), the PennPET [64] in Philadelphia
(United States), the PET20.0 [146] in Ghent (Belgium) and J-PET
[72] in Krakow (Poland). With regard to TPS, Monte Carlo
simulations are often necessary to characterize the beam lines and
the resulting particle phase spaces (photons or charged particles),
to determine the dose point-kernels in analytical dose engines, or
to directly calculate the absorbed dose in patients [129, 148]. The

great accuracy of Monte Carlo calculations is particularly crucial
for new radiotherapy protocols, such as hypo-fractionation [95],
“flash” radiotherapy [74], and hadrontherapy (proton or ions [13,
50]) which involve very high dose rates and a high spatial
conformation.

R&D activities in the field of Monte Carlo simulations have
resulted in the development of generic computer codes, i.e. which
allow the user to simulate a wide range of particles, energies,
geometrical elements and physical interactions (EGSnrc [65],
MCNPX [55], Penelope [120], Fluka [18], Geant4 [1, 4], Gate [57,
123, 124], etc.). The accuracy of the underlying physical models
and cross-section databases has continuously been improved, also
thanks to new experimental data. To counter the low efficiency of
Monte Carlo simulation techniques, variance reduction
techniques (VRT) [129, 139] have been developed and
continue to be proposed to speed up computation times at a
given precision.

The development of increasingly sophisticated acquisition
systems and finer representations of patient data requires a
complex modelling, costly in computer resources. Monte Carlo
codes dedicated to a specific application also exist and usually
offer a better computational performance than generic codes, but
they are in general very restricted to the targeted applications.
Most research teams rely on the latter for their work.

Monte Carlo simulation is inherently parallel because particle
histories are treated as independent from each other. This is a
major advantage for accelerating computations [148]. Powerful
computing infrastructures (clusters) can thus be used by
researchers to obtain Monte Carlo simulation results in an
acceptable time. The recent enthusiasm for scientific
computing on graphics cards (GPU) has also concerned
several Monte Carlo developments [16, 45, 89, 118], but the
codes ported to GPUs tend to be difficult to maintain and partly
lose in generality by limiting themselves to well-defined
applications.

1.2 Deep Learning Principles
Deep learning [17, 47, 76, 128] is a machine learning method
performing supervised, non-supervised or semi-supervised
learning tasks, in which the learning takes place across many
different stages, as for example defined in [128]. It is most
commonly accomplished using neural networks. A neural
network is composed of connected neurons typically (but not
necessarily) organized in layers. Connections between neurons
have associated weights and a neuron is associated with an
activation function which generates the neuron’s output, e.g. a
non-linear function mapping from an open into a closed real
domain (e.g., values bounded between zero and one). The input to
a neuron’s activation function is the weighted sum over the
outputs of all the connected neurons (belonging to the
previous layer in a fully connected feedforward net),
generating a complex mapping between the network’s inputs
and outputs. In Eq. 1, x(i),W(i) and b(i) represent respectively the
output, the weights matrix and the bias for the layer i, whereas f
stands for the activation function which is applied element-
wisely. The number of neurons, the way they are connected
(layers), the choice of activation functions and other parameters
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are referred to as the “network architecture”. The weights’ values
of the connections are parameters that will be determined during
the training phase.

x(i+1) � f W(i)x(i) + b(i)( ) (1)

Indeed, training the model means optimizing a value for every
weight in order to adapt the network to handle a task. This
learning process uses a training dataset as input which, for
supervised learning, groups pairs of input-output samples.
Optimizing the network is typically performed by stochastic
gradient descent where weights are updated using
backpropagation (in a feedforward network) that computes the
gradient of a loss function with respect to the weights of the
network. The loss function is chosen depending on the problem at
hand, for example to quantify how well the current model
prediction matches the training dataset or, indirectly, to
measure a distance between current and expected distribution.

Convolutional neural networks [73, 77, 156] is a famous
approach to deal with high dimension input data such as
images. They are regularized versions of (fully connected)
networks based on convolution kernels that slide along input
features and provide activation when some specific type of feature
is detected at some spatial position in the input image. Hence,
shared weights and local connections allow reducing the number
of parameters and can thereby simplify the training process,
improve generalisation, and reduce overfitting. A CNN
architecture is composed of several building blocks
(convolution layer, pooling layer, fuller connected layer,
activation function, loss function, etc) that must be selected
and put together into a network for each task.

Generative Adversarial Networks (GANs) are special deep neural
network architectures recently reported [48] that, once trained, can be
used to generate data with similar statistics as the training set. A GAN
consists of two models that are simultaneously trained: a generative
model G that aims to generate a targeted data distribution, and a
discriminative model D that estimates the probability that a sample
came from the training data rather than from the generative model.
The discriminator D is trained tomaximize the probability of correctly
identifying samples from the training data as real and those generated
by G as fake. The generator G is trained to produce data samples

distributed similarly to the data distribution. Once trained, the
resulting G model is able produce set of samples that are supposed
to belong to the underlying probability distribution of the targeted data
represented by the training dataset. A review can, for example, be
found in [31]. This type of architecture is frequently used in multiple
applications, in particular in the synthesis of photorealistic images or,
for example in themedical physics field, to generate synthetic CT from
MR images [80]. In the field of Monte Carlo particle tracking
simulations in medical physics, several works have been proposed
and will be discussed in the next sections.

2 LITERATURE REVIEW

Within the High Energy Physics (HEP) community, a lot of effort
has already been made to improve and accelerate Monte Carlo
simulation with the help of Machine Learning (including Deep
learning) for various applications, in particular around the
Geant4 code [44]. Among various examples: simulation of
particle showers [108], modelling the response of detectors
[144], pairs of jet simulation at LHC [39], nuclear interaction
modelling [30], condensed matter physics [25, 133], etc.
Interested readers may, for example, refer to several reviews
[2, 3, 22, 51, 114] or to https://iml-wg.github.io/HEPML-
LivingReview.

To our knowledge, no review has been proposed for the
medical physics field. In the following sections, we thus review
works which combine machine learning with Monte Carlo
simulations in the medical physics field. Of course, particle
transport simulation via Monte Carlo in HEP and medical
physics share many similarities. Exchange among researchers
working in these different fields would be desirable in order to
share new knowledge and discoveries. Some of the works
reviewed in the following deal with input data that are not an
image, but are related to sets of particle properties. Table 1
summarizes the type of input that is considered for each
application. The motivation behind many of the presented
works is to speed up the computation, e.g. dose calculations or
image reconstructions, to the order of minutes rather than hours
or days. Other motivation is to improve detector quality by better
event selection or reconstruction.

TABLE 1 | AI-based applications related to Monte Carlo simulations and their corresponding input data type. The word “particles” as input type refers to a vector of particle
properties such as energy, position, direction, weight, etc. CNN stands for convolutional neural networks and MLP stands for multi-layer perceptron.

Application Input type Refs (among others) Main ML types

Dose computation image [49, 63, 79, 85, 90, 104, 116, 117, 147] CNN, U-net
Dose denoising image [43, 59, 71, 101, 103, 111, 131, 153]1 CNN, U-net
SPECT scan-time reduction image [82, 119, 121] CNN, U-net
CBCT scatter modelling image [27, 58, 60, 75, 79, 84, 87, 88, 140, 145, 152, 155] CNN, U-net
PET attenuation/scatter correction image [6, 97] CNN, U-net
Detector response modelling particles [126, 144] GAN, MLP
Source + phase space modelling particles [108, 125, 127] GAN
Event selection particles [8, 12, 40, 46, 93, 98, 100, 102, 107, 157]2 MLP, CNN
Interaction position in scintillators various [23, 33, 37, 99, 109, 110, 122, 150, 154] MLP, CNN

1http://hdl.handle.net/11603/19255
2http://hdl.handle.net/2078.1/thesis:14550
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2.1 AI-Based Dose Computation
Different studies have used Monte Carlo simulations and CNNs
to estimate the dose distribution in imaging and radiotherapy.
The general idea is to develop a fast neural network as an
alternative to computationally intensive simulations. Typically,
dose distributions computed with Monte Carlo simulations are
used to generate large training and validation sets from CT
images and treatment plans. For example, Lee et al. [79]
proposed deep learning-based methods to estimate the
absorbed dose distribution for internal radiation therapy
treatments, i.e., where the radiation source is a radionuclide
injected into the patient. A CNN was trained from PET and
CT image patches associated with their corresponding dose
distributions computed by GATE simulation [124] and
considered as ground truth. The training database was
composed of 10 patients with eight PET/CT timepoints after
intravenous injection of 68Ga-NOTA-RGD, from 1 to 62 min
post-injection. The network architecture was based on a U-net
structure [116]. The first part of the network performed image
downsampling operations (contracting path) and the second part,
image upsampling (expansive path). The U-net considers both
PET and CT as input data to predict the dose. It was operated on
image patches rather than on full images because, in the studied
scenario, the dose is mainly deposited locally (millimeters)
around the source voxels, allowing memory and computation
time gain. Note that local dose deposit would not be a valid
assumption in case of radiation with larger range (high energy
photons for example). The voxel dose rate errors between CNN-
estimated and Monte Carlo-estimated dose were found to be less
than 3% and was obtained within a few minutes compared to
hours with Monte Carlo. Similarly, Götz [49] presented a hybrid
method combining a U-net with empirical mode decomposition
technique. The method takes as input CT images and
corresponding absorbed dose maps estimated with the MIRD
protocol (organ S-value [21]) from SPECT images for 177Lu
internal radiation therapy treatment. Again, results seem very
good, better than the fast Dose-Volume-Kernel (DVK) method
[20] and faster than Monte Carlo.

Principles relatively similar to those developed in the previous
examples related to internal radiation therapy have also been
applied to external radiation therapy, i.e., where the radiation
source is an external particle beam generated by an accelerator.
Kalantzis et al. [63] performed a feasibility study of a multi-layer
perceptron (MLP) to convert a 2D fluence map obtained from an
electronic portal imaging device (EPID) to a dose map for IMRT,
replicating conventional convolution kernel in TPS. Nguyen et al.
[104] proposed to perform 3D radiotherapy dose prediction for
head and neck cancer patients with a hierarchical densely connected
U-net deep learning architecture, with prediction error lower than
10%. Liu et al. [85] developed a deep learningmethod for prediction
of 3D dose distribution of helical tomotherapy for nasopharyngeal
cancer leading to less than 5% prediction error.

Other developments for imaging dose and brachytherapy have
been proposed. For example, Roser et al. [117] use a U-Net fed with
first order fluence maps computed by fast ray-casting in order to
estimate the total dose exposure including scattered radiation during
image-guided x-ray procedures. The CNN was trained using

smoothed results of MC simulations as output and ray-casting
simulations of identical imaging settings and patient models as
inputs. As a result, the proposed CNN estimated the skin dose
with an error of below 10% for the majority of test cases. The authors
conclude by stating that the combination of CNNandMC simulation
has the potential to decrease the computational complexity of
accurate skin dose estimation. As an example in brachytherapy,
Mao et al. [90] investigated a CNN-based dose prediction models,
using structure contours, prescription and delivered doses as training
data, for prostate patients and cervical patients. Predictions were
found to be very close to those from MC, with less than few percent
differences for various dosimetry indexes (CTV).

At the current stage, it is unlikely that dose distributions
predicted via DL will be used as the main dose computation
method in clinical practice because the dose is expected to be
estimated from physically plausible effects and modeling and not
really by learning processes. Nevertheless, it may be useful for
plan checking consistency, fast plan comparison or to guide plan
optimization.

2.2 Deep Learning Based Monte Carlo
Denoising
Instead of mapping from some kind of image data (e.g., patient
CT, SPECT image) to a dose distribution, deep learning methods
have also been developed as a post-processing step toMonte Carlo
dose computations to reduce the noise in dose maps due to
inherent statistical fluctuations in the deposited dose per voxel.
Indeed, Monte Carlo denoising methods have been studied for a
long time and have shown to be able to reduce computation time
by smoothing statistical fluctuations [101]. The noise of theMonte
Carlo computed dose is related to the variance on the deposited
energy and decreases as the number of simulated particles, N,
increases, specifically at a 1/

��
N

√
rate. Hence, a large number of

iterations is required to reach low fluctuation dose estimation, in
particular in low dose regions where N is small. For simulation of
detectors such as CT or PET/SPECT images, noise is generally
considered as Poisson noise. Lowering the number of simulated
particles translates into a net gain in computation speed. Several
filtering methods [35, 36, 42, 66, 92] (among others) have been
employed in denoising, such as 3D wavelet-based, advanced
mean-median filtering, anisotropic diffusion and so on. In
general, the methods manage to reduce dose fluctuations while
preserving mean dose, but the effective acceleration depends
significantly on the characteristics of the dose distribution [101].

The principle of CNN-based denoising is to feed a network
with pairs of high-noise/low-noise dose distributions obtained
from low and high statistics Monte Carlo simulations with the
goal to generate low-noise dose maps from noisy ones. In many
cases, the CNN architecture is derived from U-Net, but other
architectures such as Dense-Net [54] or Conveying-Path
Convolutional Encoder-decoder (CPCE [131]) were studied as
well. CNN-based denoising has been applied to photon [43, 71,
103, 111] and proton dose [59]1 for various indications including

1http://hdl.handle.net/11603/19255
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brain, head and neck, liver, lung, prostate, and to dose
delocalization due to charged particles within MRI (in
magnetic resonance-guided radiation therapy [29]).
Evaluations were performed based on peak signal-to-noise
ratio (PSNR), Dose Volume Histogram (DVH [53]) or gamma
index ([81, 86]) as comparison metrics. Results were generally
very encouraging. The CNN produced noise equivalent dose
maps with approximately 10–100 times fewer particles than
originally needed [11, 153]. Some difficulties remain: results
depend on the size and complexity of the training datasets
and it is to be seen how the method can be generalised to
other datasets, e.g., how well does a network which was
mainly trained on head and neck patients perform on prostate
patients. Furthermore, denoised dose maps must preserve dose
gradients and it is not yet fully clear how to guarantee this.

In SPECT and PET imaging, the image noise is (partly) related
to the scan-time duration. Reducing the scan-time directly
improves the clinical workflow and decreases involuntary
motion during scanning on the one hand, but on the other
hand increases image noise. Different denoising approaches
based on DL have been proposed such as [32, 82, 121]. In
particular, Ryden et al. [119] proposed an approach based on
sparse projection data sampling where intermediate projections
were interpolated using a deep CNN to avoid image degradation.
DL-based denoising methods were also investigated for low dose
CT imaging [111, 131, 151, 153]. More generally, deep learning
image denoising methods may be a source of inspiration in this
field [142].

2.3 AI for Modelling Scatter
DL-based methods have also been applied to cone-beam CT
(CBCT) imaging. The main issues to be addressed in this
modality are the poor image quality and the artefacts due to
scatter. These arise because the imager panel, which is two-
dimensional without anti-scatter grid, not only captures the
attenuated primary photons from the x-ray source, but also
those originating from coherent and incoherent scatter within
the patient. For accurate image reconstruction, the scatter
contribution would need to be known and subtracted from the
raw projection images. In practice, this is impossible because the
imager panel only provides a non-discriminative integrated
intensity signal. A Monte Carlo simulation, on the other hand,
can specifically tag scattered photons so that perfect scatter-free
projections can be obtained via simulation. In fact, some earlier
works on CBCT scatter correction rely on Monte Carlo
simulation to estimate the scatter contribution in raw
projection [58]. However, the direct Monte Carlo simulation
of kV photons is too slow to be integrated into a clinical
image reconstruction software, although heavy use of variance
reduction techniques might improve this [88].

Recent works propose to use deep convolutional networks
which learn from CBCT projections simulated via Monte Carlo.
They generate estimated scatter images (projections) as output
based on raw projections as input [75, 78, 87, 145]. Once trained,
the network can replace the Monte Carlo simulation and be used
as scatter estimator within the image reconstruction workflow.
The technical details of the networks vary, but all report

promising results with significant higher CNR (Contrast to
Noise Ratio) compared to previous heuristic methods. It is
worth mentioning that these methods rely on Monte Carlo
simulations for training where primary photons can be
distinguished from scattered ones and could not be easily
trained on experimentally acquired projections which cannot
directly provide explicit scatter images to learn from.

Other authors have reported CBCT scatter correctionmethods
based on deep learning which operate in the image domain [27,
60, 84, 140, 152, 155]. More specifically, they take a CBCT image
as input and generate a synthetic CT image as output, i.e. they
estimate how a CT image of the patient anatomy described by the
CBCT image would have looked like. These synthetic CT images
seem to contain much fewer artefacts than the original CBCT
images.

Attenuation and scatter correction in the image domain for
PET imaging has also been proposed using deep convolutional
neural networks [6, 97]. Datasets to train the networks consisted
in experimentally acquired images, but in principle, these image-
based scatter correction studies would also work on Monte Carlo
generated data that may help to create large databases.

2.4 AI for Modelling Imaging Detector
Response
The works presented so far rely on the output of Monte Carlo
simulations, but they do not alter the simulation itself. The works
in this section, on the other hand, replace part of a Monte Carlo
simulation in an attempt to accelerate it. More specifically, the
proposed works model the particle transport through part of the
geometrical components implemented in the simulation. In
contrast to the previous methods, the model’s input and
output are not necessarily images, but may be sets of particle
properties (energy, position, etc).

To our knowledge, few works have been published on this
topic in the medical physics field. One example was recently
proposed to speed up simulation by modelling the response of a
detector: instead of explicitly simulating the particle transport in
the detector, this is emulated by the network. For example, one
idea could be to speed-up simulations of SPECT imaging by
modelling the collimator-detector response function (CDRF) that
combines the cumulative effects of all interactions in the imaging
head and may be approximated with Angular Response
Functions (ARF) [38, 119, 126, 135]. In [126], the tabulated
model of the CRDF has been replaced by a deep neural network
trained to learn ARF of a collimator-detector system. The method
has been shown to be efficient and to provide variance reduction
that speeds up the simulation. Speed-up compared to pure
Monte-Carlo was between 10 and 3,000: ARF methods are
more efficient for low count areas (speed-up of 1,000–3,000)
than for high count areas (speedup of 20–300) and more efficient
for high energy radionuclides (such as 131I) that show large
collimator penetration.

2.5 AI for Monte Carlo Source Modelling
Recent works in the medical physics field have explored the use of
generative networks, GANs in particular, to model particle source
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distributions and potentially speed up Monte Carlo simulations
[125, 127]. In the proposed methods, the training data set is a
phase space file generated by an analog MC simulation which
contains properties (energy, position, direction) of all particles
reaching a specific surface. Once the GAN is trained, the resulting
network G acts as a compact and fast phase space generator for
the MC simulations, replacing a large file of several gigabytes by a
NN (G) of several megabytes. G has the ability to quickly generate
a large number of particles which allows the user to speed-up the
simulations significantly (up to a few orders of magnitude
depending on the simulation configuration). In the first case
[127], the GAN method was used to learn the distribution of
particles exiting a the nozzle of a therapeutic linear electron
accelerator (linac), and to model a brachytherapy treatment
where the network learned the source distribution generated
by seeds in the prostate region. Simulations performed with
the GAN as a phase space generator showed a very good
dosimetric accuracy compared to the real phase space. In the
second case [125], the authors proposed to apply this approach to
a more complex particle distribution, namely that of particles
exiting a patient in a SPECT acquisition. Results showed that
images of complex sources with low error compared to the
reference image reconstructed from real phase space data were
feasible.

It should be mentioned, although beyond the scope of this
review, that several works in the HEP community have also
shown how generative models may be very useful to model high-
dimensional distributions. Among others, Paganini et al. [108]
proposed a GAN model to simulate computer intensive
electromagnetic showers in a multi-layer calorimeter, and de
Oliveira et al. [34] also exploited GAN to produce jet images (2D
representations of energy depositions from particles interacting
with a calorimeter). Both methods reports large computational
speedups compared to conventional Monte Carlo simulations.

2.6 Deep Learning in Nuclear Imaging
DL has also been explored in the context of nuclear imaging (PET,
SPECT, Compton camera, etc.) - a field where Monte Carlo
simulation plays a vital role in designing and validating imaging
systems and reconstruction algorithms. Many of the proposed DL
methods focus on post processing steps of raw data acquired by
the imaging system which impact image quality.

In PET, for example, NNs have been investigated to identify
random data points arising from annihilation events which lead
to image noise [107] and for the correct sequence identification of
PET events with multiple interactions of an annihilation photon
in several detector elements, in which the first interaction position
must be identified in order to recover the actual line of response
[93, 102]. NNs have also been used to estimate the two-
dimensional interaction position in the monolithic scintillator
crystal in PET imagers, or a three-dimensional position when the
depth of interaction (DoI) is estimated as well. The investigated
NNs have yielded results with better spatial resolution [37, 122],
higher uniformity across the crystal volume [98] or faster
implementation [149] compared to other existing methods
(e.g. maximum likelihood [112] or nearest neighbours [141],
among many others).

In Compton imaging devices, ML has been investigated for
sequence ordering of multiple-interaction events [157]2 and for
signal and background discrimination of Compton camera data
in the context of prompt gamma imaging [100]. It is also worth
mentioning that DL-based methods have been studied for event
selection in data measured by radiation detectors, in particular in
HEP, as shown for example in [51]. Applications include
detectors at the LHC [12], neutrino-dedicated detectors [8, 40]
or measurement of gamma-rays in astrophysics [46]. We refer the
reader to [2, 24, 51] for an overview in HEP field.

3 CURRENT CHALLENGES

Monte Carlo based particle transport codes are a central tool for
many research questions and applications. This is certainly true for
medical physics, the area we concentrate on here, as well as for other
fields. We have shown in the previous sections that deep learning
methods can be useful for various tasks during simulations, in
particular to reduce the computation time (denoising, scatter
modelling), but also to model complex systems (detector, source
modelling) or perform advanced event selection. However, before
those methods can replace conventional methods, especially in
industrial or clinical settings, several challenges must be addressed.

Conventional methods in the context of Monte Carlo particle
transport simulations are usually instructed by knowledge about
the underlying physics processes. This results in specific
mathematical or statistical models, usually containing
parameters to be adjusted, e.g. based on a calibration or
reference measurements. Neural networks, on the other hand,
are effectively physics or model agnostic and simply learn
properties from a given training dataset. Therefore, there is no
a priori guarantee that a trained NN provides a plausible
representation of the physics underlying the learned processes.
At the same time, there are usually quantitative requirements
associated with MC simulation tasks, e.g. accurate estimate of
deposited energy or dose, accurate estimated particle properties,
accurate phase space distributions. All of the following challenges
are linked to the requirement that DLmethods inMC simulations
be reproducibly accurate and that accuracy can be evaluated.

Challenge 1: Quality of Data
One conventional challenge in DL is related to the limited database
size, or its limited variability and adequacy to the learning process.
There are several pitfalls such as: non homogeneous data, difficult data
curation, insufficient representativity, etc. However, when learning
from Monte Carlo data, the size of the training datase could, in
principle, be only limited by the computation time. As the latter can
quickly become prohibitive, data augmentation may be used anyway.
When learning from MC data, the quality of the learnt process
becomes strictly tightened to the quality of the simulation itself. If
the modelled system contains error or bias, it will be present in the
training dataset and learnt by the neural network. Simulation results

2http://hdl.handle.net/11603/19255
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must therefore be properly validated to avoid bias (see next section)
and comparison with experimental data, if feasible, is required.

Challenge 2: Performance Metric and
Uncertainty
Evaluation of a trained neural network is conventionally
performed by splitting the dataset into three separated parts
for training, validation, and test. The model is first trained on
the training dataset in order to optimize weights values according
to the loss function. The validation dataset is successively used to
provide unbiased validation of the final model during the training
in order to tune hyperparameters (e.g., number of layers, number
of epoch) and prevent overfitting (when the loss function still
decreases in the training dataset, but starts to increase in the
validation set). The test dataset provides final unbiased validation.
The validation process in the context of Monte Carlo simulations
may be different from traditional computer vision applications
(photos, cinema, games etc) where visual perception is assessed.
Here, quantitative validation of physical quantities is needed. The
figures of merit to evaluate usually depend on the kind of
application for which the network is developed. For example,
for dose computation, standard criteria such as the “gamma
index” [81, 86] or Dose Volume Histograms [53] could be
used. It is to be explored how (clinically) relevant metrics and
tolerance levels might be incorporated into the training and
validation process. Ideally, final validation of a network should
not only be performed against simulated data, but also against
experimental data. Furthermore, collaborative open datasets [26]
or challenges (such as [113]), yet specific to medical physics
applications, may be useful.

One of the advantages of Monte Carlo simulations is that they
are able to easily associate an (uncertainty) error with the
simulated data. The MC statistical uncertainty (e.g. [28]) could
hence be used to provide a target tolerance. In the context of
medical physics, the uncertainty of data produced by generative
networks needs to be carefully studied and understood, especially
if those networks are to (partly) replace conventional MC
simulations. In more practical terms, what are the noise
properties of DL-generated images or dose distributions
compared to their MC simulated counterparts? Two forms of
uncertainty have been proposed which are referred to as epistemic
and aleatoric [69, 91], where epistemic is the reducible (related to
the lack of training data in certain areas of the input domain) and
aleatoric the irreducible part of uncertainty (dealing with the
potential intrinsic randomness of the real data generating
process). As an example, approaches based on Bayesian neural
networks [70, 106], by its ability to give an estimation of the
uncertainty, may be an interesting lead.

Challenge 3: Neural Network Architecture
and Hyperparameters
A challenge whenworking with deep neural networks is to select the
appropriate network structure and capacity, i.e., number of neurons,
number of layers, type of activation, etc., for a given problem and
adjust the training process with appropriate hyperparameter values.

Underfitting may occur if the model is too simple (not enough
capacity) or too much regularized, so it tends to have poor
predictive performance. Overfitting can be an issue which occurs
e.g. when a too flexible network (too many parameters) learns
structure in the data which merely derives from noise or other
artefacts rather than true information. Several regularization
methods, such as adding a penalty term on the weights (e.g., L1,
L2) in the loss, or using dropout regularization [138], that randomly
ignores some layer outputs, might help preventing overfitting issues
and improving model generalization (capacity to perform on inputs
not previously seen by the network).

When images are the input, convolution operations can be
added in between network layers. Moreover, several architectures
such as the well known UNet [116] or pix2pix conditional
adversarial networks [56] (among others) have been proposed.
When a network is used to bypass the Monte Carlo simulation
and use as input an image, e.g. a patient CT or a PET image,
conventional convolution filters can be applied. However, when
particle properties are the input, the nature of each entry in the
property vector may be different (position, energy, time, etc.). It
remains to be studied how meaningful convolution operations
can be defined on such an inhomogeneous input space, or if it
may be applied only partly, e.g. on a single dimension such as
energies. Furthermore, some particle properties such as charge or
atomic weight are bound to be integer number rather than reals
and may require specific processes, such as one-hot encoding as
used for example in [126]. Finally, conservation laws or other
physical principles might pose constraints which need to be built
into the network optimisation, either by a specific architecture or
an adapted loss function.

Challenge 4: Generative Models, Generative
Adversarial Network
To simulate particle transport through a medium, a Monte Carlo
code must generate particles according to some probability
distribution. This can be the initial phase space distribution of
the particle source, but also an intermediate step which creates
new particles as a result of interactions with the target, e.g.
inelastic nuclear scattering. In conventional Monte Carlo
methods, this is done by sampling from a cumulative
probability distribution and the accuracy with which the
distribution is modelled and parametrized directly impacts the
accuracy of the simulation results. Source particles can also be
sampled explicitly from tabulated phase space files. In this
context, generative models represent a new way to replace
conventional particle generation methods in a Monte Carlo
simulation. Understanding and mastering the technical aspects
of such methods represents an important challenge.

Our review concentrated on GAN (Section 2.5) which have
been explored for Monte Carlo simulation in medical physics.
Many variants of GAN have been proposed to improve
performance or to adapt to various applications (auxiliary
GAN, bidirectional GAN, conditional GAN, Cycle GAN,
InfoGAN, etc). Despite a large number of successful results,
GAN have been shown to be notoriously difficult to train,
suffering from several pitfalls: mode collapse, vanishing
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gradient, instability. To tackle these issues, various formulations
based on different metrics, such as the Wasserstein distance [7]
and regularization methods [52, 61, 62, 94] have been proposed.
An in-depth study of the most suitable variants for Monte Carlo
simulations remains to be undertaken. For example, is it possible
to obtain a precise and reliable modelling of all spatial
characteristics of the dose distributions [67]? Can a GAN
model a Linac gamma source precisely enough to include
511 keV peak [127]? Alternative generative learning processes,
such as VAE (Variational AutoEncoders, see for example [68])
or, recently, Score-Based diffusion GenerativeModels [105, 136, 137,
143] may have a larger role to play in distribution modelling within
Monte Carlo. In particular, VAE networks are designed to compress
the input information into a constrained multivariate latent
distribution (encoding) to reconstruct it as accurately as possible
(decoding). Although VAEs seem generally less efficient than GAN
in the field of photo-realistic image synthesis, it could be an
interesting alternative to GAN in the medical physics field.
Additionally, transfer learning may also be of interest where a
model already trained on a given dataset may be adapted
through training on another dataset.

The problem of reproducing a probability distribution by
generative networks such as GAN arises far beyond the simple
source modelling. In Monte Carlo simulations, certain
interactions between particles, in particular nuclear processes,
are based on very elaborate statistical distributions which require
a lot of computing time, and generative networks would have a
role to play. For instance, Bayesian neural networks have been
proposed to improve mass predictions of nuclear models [106]
and quantify the prediction uncertainty which becomes larger
when the network is extrapolated away from the training region.

Finally, it is interesting to observe some subtle differences between
GAN in computer vision and for tasks such as particle generation in a
Monte Carlo simulation. In a computer vision application where a
GAN generates images, it is mainly of interest that each image be as
realistic as possible. In aMonteCarlo simulation, any generated particle
with reasonable physical properties judged by itself is realistic. What
really counts is whether the distribution of many generated particles is
correct. The corresponding question in the computer vision application
would be e.g., whether the GAN generates the correct proportion of
long-haired brown dogs compared to short-haired black ones, albeit all
of them individually might be realistic. In more technical terms, an
image has a much higher dimension, i.e., number of pixels, than the
vector of physical properties describing a particle. Out of the space of all
images (including images with random noise), only a very small and
sparse subspace contains realistic images, i.e., containing pixels which
depict a desired kind of object. A particle distribution instead densely
fills a relatively large portion of the full phase space. These differences
likely impact the way GANs and other generative models perform in
Monte Carlo simulations as opposed to computer vision tasks and will
deserve more detailed attention.

Challenge 5: Explicability and
Interpretability
Deep neural networks are sometimes criticized as being black boxes,
or in other words for not providing direct insight into the way they

link input and output. As an example: when modelling the response
properties of a detector explicitly via a physics-motivated analytical
model, the mathematical form of the model together with its
parameters inform the user directly which kind of events will be
detected in which fashion. In contrast, a deep neural network trained
onMonte Carlo simulated data does not offer this transparency. The
underlying reason is that a neural network is a highly flexible non-
linear function whose parameters are the neuron weights optimized
to best represent the training data. As the weights have no a priori
meaning attached to them, they are difficult to interpret.

Monte Carlo simulation, on the other hand, is based on
physics models with meaningful parameters and a thereby
described quantitative relationship between input and output.
Clearly, the randomized and iterative evaluation of a multitude of
physics models make the final simulation output complex in
certain cases, but the underlying mechanism remains explicitly
defined. A challenge when using deep neural networks in the
context of Monte Carlo simulations is therefore to gain insight in
and control over the workings of the network. This leads to the
concepts of interpretation and explanation.

Definitions of these terms can be found in [96], namely, an
interpretation is the mapping of an abstract concept into a domain
that the human can make sense of. An explanation is the collection of
features of the interpretable domain that have contributed for a given
example to produce an output. It is important to note that both terms
apply to trained networks. Picking up the example of the detector
response (Section 2.4), an interpretation links a specific detector
response, e.g. the detection window in a SPECT imager, to the particle
properties, i.e. its energy, direction etc. In this same example, the
explanation is the collection of properties which have led a specific
particle to be associated with a certain detector response? In this sense,
explanation and interpretation are expected to aid with the validation
of deep neural networks in terms of physical plausibility.

The difficulty of visualizing and studying explanation and
interpretation of a network grows with the dimension of the
input data. When the input is merely a vector with a particle’s
kinematic properties, i.e. with six or seven entries, the relevance of
each of them for a given network decision can still be interpreted
“manually”. For high dimensional input such as CT images, other
methods must be employed, e.g. activation maximization with an
expert [15, 134]. For interpretation, gradient based methods such as
deep Taylor expansion and backward propagation techniques such
as layer-wise relevance propagation should be mentioned here [9].

A rich literature about machine learning interpretation
methods exists [83], with a large part of the methods
exploiting the gradient information flowing through the layers
of the network in order to highlight their impact. Investigating
and developing interpretation and explanation techniques in the
context of Monte Carlo simulations to make DNN sufficiently
“transparent” will be one of the challenges to address.

4 CONCLUDING REMARK

There may be amethodological change associated with the use of deep
learning methods in medical physics simulation: to some extent,
instead of mathematically mastering the phenomenon under
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investigation, the modelling relies on a large amount of data to learn
from heuristically. However, the Monte Carlo simulation which
generates the training data needs to be skillfully set-up and
evaluated in the first place. For the moment, even if it is envisioned
that deep learning can improve simulations, it does not seem certain
that it can always replace Monte Carlo. As the use of deep learning
methods evolves, physics-driven dataset modelling, i.e., a mix between
modelling based on large datasets and understanding of the underlying
physics, will become increasingly important.
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