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The active control to the local resonant mode of metasurface is a promising route for
improving the operation bandwidth limitation of metasurface. Here, we propose and
experimentally demonstrated the active tunabilities in a frequency-agile Fano-resonant
metasurface. The metasurface with a pair of asymmetric split ring resonators is integrated
with double varactor diodes for active control of the sharp Fano resonance. It is found that
the sharp Fano-type spectrum appears due to the near-field interferences between the
collective electric and magnetic dipole modes. The physical insight is revealed through
local field analysis, multipole decomposition and temporal coupled-mode theory. It is also
found that the metasurface can be employed as a broadband and unity modulator.
Hopefully, our results could inspire sophisticated electrically controlled photonic devices
with novel functions.
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INTRODUCTION

Metamaterials are artificial engineered subwavelength structures with tailorable properties superior
to the natural materials, which have shown unprecedented capability in exterior light manipulations
[1–5]. Since three-dimensional metamaterials are difficult to design and fabricate, their two-
dimensional (2D) counterpart, metasurfaces [6–10], constructed by subwavelength metallic or
dielectric particles in a planar platform, have attracted considerable attention in recent years for the
arbitrary control of electromagnetic waves [11–13]. Metasurfaces have inspired extraordinary light
manipulations such as invisibility cloak [14], broadband achromatic metalens [15], arbitrary orbital
angular momentum generation [16], enhanced nonlinear photonics [17], and meta-hologram [18].
Compared with 3D complex metamaterials, planar metasurfaces with subwavelength-thickness
monolayer or few functional layers [19, 20] are easier to fabricate by utilizing sophisticated
processing techniques. Besides, the subwavelength thickness of metasurfaces along the
propagating direction is beneficial for miniaturizing optical systems and improving working
efficiency [21, 22].

Fano resonance appears when a discrete localized state interferences with a continuum band of
states [23]. In general, Fano resonance is always accompanied by a high-Q factor and significant local
field enhancement, showing a sharp transmission or reflection curves [24, 25]. Recently,
metasurfaces with so-called bright and dark modes are designed to resemble the original
physical mechanism of Fano resonance [26–28], i.e., interference between a narrow discrete
resonance with a broadband spectral line in a quantum system. The bright and dark modes
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have different scattering pathways for the incident waves. The
bright mode can be directly excited by incident waves in free
space, while the dark mode is weakly coupled to incident waves
and can be excited through near field coupling with the bright
mode by breaking the geometric symmetry [29–31]. Fano
resonances with high quality factors can be generated through
the interference between the new-emergent narrow dark mode
and the original continuum mode [32–34]. The Fano
metasurfaces are generally accompanied with extremely sharp
reflection or transmission curves and are widely studied due to
the attractive feature of high-Q response [35–38].

Fano metasurfaces have been proven and considered as a very
promising platform for the high-Q response with enhanced light-
matter interactions, but the intrinsic narrow operation bandwidth
may significantly hinder them towards practical applications due to
their resonant natures. Although it can be optimized by incorporating
changeable materials [39–42] or employing reconfigurable structures
[43, 44] to extend the bandwidth, this greatly complicates the
manufacturing process and also makes it more expensive/difficult
to embed into increasingly integrated photonic systems. Here in this
paper, we experimentally demonstrated an electrically tunable
frequency-agile Fano-resonant metasurface with a pair of
asymmetric split ring resonators (ASRRs) configuration. The
ASRRs metasurface is integrated with double varactor diodes for
active control of the sharp Fano resonance. Remarkable blue shift on
the Fano resonance frequency was demonstrated by increasing the
bias voltage from 0 to 8 V to electrically tune the capacitances of the
varactor diodes. The sharp Fano-type spectrum appears due to the
near-field couplings between the collective electric and magnetic
dipole modes, and its physical insight is revealed through local field
analysis, multipole decomposition and temporal coupled-mode
theory (TCMT). Moreover, we also found that the metasurface
can be employed as a broadband and unity modulator. The
proposed strategy provides an alternative way to overcome the
limited bandwidth of conventional meta-devices, which may
facilitate the development of low-cost and high-performance active
photonic applications.

RESULTS AND DISCUSSION

The schematic of our designed metasurface is shown in
Figure 1A. It consists of a pair of asymmetric split ring

resonators (ASRRs) with different side lengths. To realize the
electrically tunable frequency-agile Fano resonance, double
varactor diodes (BBY52-02W, Infineon) are soldered at the
middle gap of the ASRRs pair and are biased through four
copper wires. The varactor diodes have a series resistance of
0.9Ω and inductance of 0.6 nH, respectively. Four inductors are
located between the bias wires and ASRRs to effectively avoid the
cross talk. By applying external bias voltage on the varactor
diodes, their capacitance can be significantly changed and the
Fano resonance can be dynamically modulated accordingly. The
photograph of a fabricated sample is shown in Figure 1B. The
metallic pattern is 0.035 mm thick copper on a 1 mm thick Teflon
base and is fabricated through standard printed circuit board
(PCB) technology. The Teflon substrate was cut to a dimension of
72.14 × 34.04 mm2 corresponding to the cross-section of a
standard waveguide WR284, and simultaneously ensuring the
metallic patterns at the center of the substrate. In our
experiments, the scattering parameters of the metasurface are
measured inside a standard waveguide of WR284, where the TE10
mode with an electric field polarizing along the y direction is
normally incident on the metasurface, and are recorded through a
vector network analyzer (AV3629D).

To understand the design strategy of the Fano-resonant
metasurface, we would like to firstly consider the spectral
response of the coupled metasurface design (see Figure 2A).
The calculations were carried out within a perfect electric
conductor (PEC) around an air box to simulate a standard
waveguide of WR284. In the simulations, PEC boundaries are
set along x and y directions, and open boundaries are set along
z direction. An excitation source is applied at the boundary of z
direction. For a metasurface with only left split ring resonator
(SRR), a typical symmetric Lorentz-type resonance dip
appears at f1 (2.99 GHz), while for a metasurface with only
right SRR, another typical symmetric Lorentz-type resonance
dip occurs at frequency f2 (2.77 GHz). These resonators show
electric dipolar resonances arising from the current induced by
the incident electric field in the asymmetric metallic sides of
SRR, which are further confirmed by the electric field and
surface current distributions shown in Figures 2C,D. Since
their resonant frequencies are close to each other, we may
expect some interesting phenomena when we set the
asymmetric SRRs in a close proximity, resulting from the
near-field interference.

FIGURE 1 | Front view of the frequency-agile Fano-resonant metasurface. Schematic diagram (A) and photograph (B) of the fabricated sample. Themetasurface is
composed of a pair of asymmetric split ring resonators (ASRRs) on a Teflon substrate. Double varactor diodes are soldered in the middle gap of the asymmetric rings.
Four inductors and four bias copper wires are integrated into the metasurface. The geometric parameters are: a � 13 mm, b � 14 mm, w � 2 mm, g � 1.3 mm, and
δ � 8 mm.
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The red curve in Figure 2A shows the calculated transmission
spectrum of the ASRRs metasurface. The near field coupling
between the ASRRs leads to an asymmetric Fano-shaped profile
with a sharp change between the dip and peak. The destructive
interference between the ASRRs also results in a sharp
transparency window around frequency f3 (2.89 GHz), which
is similar to the analogy of the electromagnetically induced
transparency [28]. Note that the transparency peak of the
metasurface is quite sharp with a full width at half-maximum
(FWHM) of 0.0558 GHz, reaching a high quality factor of 52. The
calculated transmission group delay and phase are shown in
Figure 2B, from which we can see that around the transparency
peak, the transmission phase experiences an abrupt variation,
leading to strong dispersion of the effective parameters and a
large group delay of 5.4 ns. To explore the underlying mechanism
of the Fano-type resonance and the sharp transmission window,
we calculated the surface current and electric field distribution at
the transmission peak f3 (see Figure 2E). The induced surface
currents on the ASRRs are oscillating in-phase, forming a
collective magnetic mode Mz. This new emergent mode Mz, as
a non-radiative dark state (sharp discrete mode), is weakly
coupling with the incident electromagnetic field, and
destructively interfering with the background electric dipole
mode Py (broadband continuum mode), resulting in the sharp
transparency window.

To further understand the near-field coupling mechanism of
the metasurface, we calculated the contributions of various
multipole moments induced in the metasurface. The electric
and magnetic dipole moments of the metasurface can be
quantitatively evaluated with the following formula [45].

P � 1
iω

∫ jd3r (1)

M � 1
2c

∫(r × j)d3r (2)

where j is the current density, ω is the angular frequency, and c is
the speed of light in vacuum. The multipole moments can be
calculated by integrating spatially distributed current density
extracted from the simulation. The calculated normalized
magnitude and the corresponding phase of the electric dipole
moment Py and the magnetic dipole momentMz are presented in
Figures 3A,B, respectively.

We can find that the electric dipole Py, as a bright mode
resonance, shows strong scattering over the entire interesting
frequency band, indicating that the ASRRs metasurface strongly
couples to the y-polarized electric field component in the
waveguide. The collective oscillations of the electric dipoles
can be considered as a broadband continuum mode. Around
the transparency peak frequency f3, the Py is significantly

FIGURE 2 | (A) Calculated transmission spectra of the left SRR only (blue curve), right SRR only (green curve), and the asymmetric SRR pair (red curve). (B)
Calculated transmission group delay (red curve) and phase (blue curve) of the metasurface. (C–E) Instantaneous distributions of the out-of-plane electric field and the
induced surface current corresponding to the resonant frequencies at f1, f2, and f3 in section (A). Arrows indicate the instantaneous directions of the current flow. All these
results are obtained when the capacitance of varactor diodes is 2.63 pF.
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suppressed, while the Mz is excited and enhanced to a similar
magnitude as Py, and the phase difference between the Py andMz

is about 180°, which further confirms the fact that these two
modes interference destructively, and their scattering cancellation
results in the non-radiating configuration and the sharp
transparency window. We notice that the collective magnetic
dipole mode cannot be directly excited by the incident wave, as
the metasurface is placed in a standard rectangular waveguide
where only the fundamental TE10 mode can propagate in the
frequency band of interest. However, the collective magnetic
dipole mode can be excited through near-field coupling,
leading to the collective oscillation of the ASRRs and the
suppression of electric dipolar mode, and forming the dark
mode resonance.

To quantitatively evaluate the interaction between the incident
wave and the metasurface, we also employed TCMT to analyze
the mode coupling between the collective electric and magnetic
dipoles. The transmission spectrum of the metasurface excited by
a monochromatic wave can be expressed as below [46, 47].

t � (jω − jω1 + Γi1)(jω − jω2 + Γi2) + k2

(jω − jω1 + Γi1 + Γe1)(jω − jω2 + Γi2)k2. (3)

where ω1, Γe1, and Γi1 (or ω2, Γe2, and Γi2) are the resonant
frequency, radiative decay rate, and non-radiative decay rate of
the bright (or dark) resonator, respectively, and κ is the coupling
coefficient. We can obtain the characteristic parameters of the
resonator system through fitting the expression of |t| to the
simulated transmission spectrum of the metasurface (red curve
in Figure 2A), as follows:

ω1 � 2π × 2.88 × 109rad/s,

ω12 � 2π × 2.891 × 109rad/s,

Γe1 � 2π × 0.197 × 109rad/s,

Γi1 � 2π × 0.0035 × 109rad/s,

Γi2 � 2π × 0.009 × 109rad/s,

k � 2π × 0.076 × 109rad/s.

It can be found that the ω1 and ω2 correspond to the dip of
electric dipole moment Py (as bright mode) and the peak of
magnetic dipole moment of Mz (as dark mode), respectively,
(Figure 3A), indicating that our metasurface systems are
dominated by these two modes. For the collective electric
dipole mode, the radiative decay rate, Γe1, is about 56 times
larger than the non-radiative decay rate, Γi1. Both the radiative
and non-radiative decay rate of collective magnetic dipole mode,
Γe2 and Γi2 are much less than Γe1 and Γi1, so they are negligible.
The frequency interval between the two transmission dips of our
metasurface is only 0.15 GHz, since the coupling coefficient κ is
much less than the resonant frequencies, ω1 and ω2, and even the
radiative decay rate, Γe1. The TCMT accurately predicts the
transmission spectrum of the metasurface, as shown in Figure 4.

FIGURE 3 | Normalized magnitude (A) of multipole moments Py and Mz, and their corresponding phase (B) induced in the ASRRs metasurface with the
capacitance 2.63 pF: the electric dipole (red curve), and magnetic dipole (blue curve).

FIGURE 4 | Transmission spectra of the metasurface predicted by the
TCMT (blue points) and simulated through FDTD (red curve) with the
capacitance 2.63 pF.
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The tunabilities of the metasurface can be understood as a LC
circuit with changeable capacitances. The electric resonance
frequency is determined by ω � (LC)−1/2. So the resonance
frequency of SRR and the Fano-type resonance frequency can
be manipulated significantly by applying voltage to alter the
capacitance of varactor diodes. Next, the transmission
properties of the SRR alone under different bias voltages are
investigated. The measured and calculated transmission spectra
of the single SRR with different voltages (capacitances in

simulations) are shown in Figure 5. As the bias voltage
gradually increases from 0 to 8 V, the capacitance of the
varactor diode decreases from 2.63 to 0.76 pF, and the
corresponding transmission spectrum undergoes a remarkable
blue shift; the experimental resonant frequency of the left SRR
alone undergoes a blue shift of 0.22 GHz from 3.09 to 3.31 GHz
(see Figure 5A), and similarly, the experimental resonant
frequency of the right SRR alone undergoes a blue shift of
0.21 GHz from 2.93 to 3.14 GHz (see Figure 5B). The

FIGURE 5 | Measured (A), (B) and calculated (C), (D) transmission spectra of the SRR alone with different bias voltages (from 0 to 8 V) and corresponding
capacitances (from 2.63 to 0.76 pF): the left SRR alone (A), (C), and right SRR alone (B), (D).

FIGURE 6 |Measured (A) and calculated (B) transmission spectra of the frequency-agile metasurface with different bias voltages (from 0 to 8 V) and corresponding
capacitances (from 2.63 to 0.76 pF).

Frontiers in Physics | www.frontiersin.org September 2021 | Volume 9 | Article 7394655

Yang et al. Frequency-Agile Fano-Resonant Metasurface

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


calculated trend (Figures 5C,D) agrees well with the measured
results, implying the effective frequency-agile tunability by the
integrated varactor diodes.

To actively control the Fano-type resonance, double varactor
diodes are then integrated into the ASRRs metasurface system.
The dynamic modulation on Fano resonance of the frequency-
agile metasurface is illustrated in Figure 6. When no voltage is
applied, the measured Fano resonance peak occurs at 2.98 GHz (see
Figure 6A). As the bias voltage gradually increases from 0 to 8 V, the
Fano resonance peak gradually shifts from 2.98 to 3.2 GHz, exhibiting
a blue shift of 0.22 GHz. Although there is a small amplitude
variation, the significant sharp transmission feature is preserved.
Meanwhile, the transmission dips of the Fano resonance also exhibit
blue shifts of 0.2 and 0.22 GHz, respectively. The calculated results
(Figure 6B) show good agreement with our measured results. It is
worth mentioning that the lower frequency dip completely exceeds
the upper frequency dip when the applied voltage is changed from 0
to 8 V, thanks to the sharp dispersion characteristic of Fano
resonance. It indicates that our metasurface can be employed not
only for a frequency-agile device, but also for a broadband and unity
amplitude modulator.

To show the amplitude modulation performance of our
metasurface, we here plot the transmission with different bias
voltages, as shown in Figure 7. Remarkable modulation on
transmission can be realized through electric biasing at several
frequency points. For example, the measured transmission curves
at three selected frequencies of 2.89, 3.10 and 3.32 GHz with different
voltages are plotted. As the voltage changes from 0 to 8 V, the
transmittance at 2.89 GHz monotonously increases from −19.31 dB
to −1.63 dB (red curve), while at 3.32 GHz monotonously decreases
from −0.59 dB to −16.29 dB (blue curve), showing a remarkable
modulation performance. In particular, the transmittance at
3.10 GHz (green curve), shows a growing trend from −14.31 dB to
−1.16 dB with the voltage increased from 0 to 4 V, while a downward
trend from−1.16 dB to−19.62 dBwhen further increasing the voltage

to 8 V. Note that although our results were obtained in a waveguide
system, the similar modulation performance can also be achieved
with periodic structures in free space.

CONCLUSION

In conclusion, we have experimentally demonstrated the active
tunabilities in a frequency-agile Fano-resonant metasurface. The
sharp Fano resonance can be dynamically modulated by
integrating a pair of varactor diodes in the metasurface. We
found that the non-radiative collective magnetic dipole mode was
excited in our metasurface and its physical insight is uncovered
through local field analysis, multipole decomposition and TCMT.
We also found significant manipulation on both frequency tuning
and amplitude modulation by applying bias voltage on the
varactor diodes. The demonstrated frequency-agile Fano-
resonant metasurface is promising for realizing sophisticated
electrically controlled microwave devices with novel functions,
which may facilitate the development of high-performance active
photonic applications in, e.g., smart sensing or signal processing.

METHODS

Numerical Simulation: Numerical simulations are carried out
using the finite-element frequency-domain solver. The metallic
pattern with a conductivity of 5.8 × 107 S/m is standing on a
Teflon substrate with a relative permittivity of 2.65 and a tangent
loss of 0.0004. In the simulations, PEC conditions are applied in
both the x and y directions and open boundaries are set along z
direction. An excitation source is applied at the boundary of z
direction. The multipole moments Py andMz can be calculated by
integrating spatially distributed current density extracted from
the simulation utilizing the commonly used formulas (Eqs. 1, 2).

Experiments: The printed circuit board (PCB) technique was used to
fabricate the metallic ASRRs pattern. The Teflon substrate was cut to a
dimension of 72.14× 34.04mm2 corresponding to the cross-section of a
standard waveguide WR284, and simultaneously ensuring the metallic
patterns at the center of the substrate. In the measurements, the sample
was placed inside a WR284 rectrangular waveguide, and was measured
through a vector network analyzer (AV3629D).
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