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Understanding the temporal characteristics of sea surface chlorophyll (SSC) is helpful for
marine environmental management. This study chose 10 time series of remote daily sea
surface chlorophyll products from the European Space Agency during the period from July
29, 1998 to December 31, 2020. A generalized Cauchy model was employed to capture
the local and global behaviors of sea surface chlorophyll from a fractal perspective; the
fractal dimensionDmeasures the local similarity while the Hurst parameter Hmeasures the
global long-range dependence. The generalized Cauchy model was fitted to the empirical
autocorrelation function values of each SSC series. The results showed that the sea
surface chlorophyll was multi-fractal in both space and time with the D values ranging from
1.0000 to 1.7964 and H values ranging from 0.6757 to 0.8431. Specifically, regarding the
local behavior, 9 of the 10 series had low D values (<1.5), representing weak self-similarity;
on the other hand, regarding the global behavior, high H values represent strong long-
range dependence that may be a general phenomenon of daily sea surface chlorophyll.

Keywords: long-range dependence, local self-similarity, generalized cauchy model, remote sensing, sea surface
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INTRODUCTION

Sea surface chlorophyll (SSC) is an important bio-indicator, representing the biomass of the
phytoplankton in the surface layer of the ocean [1–3]. On one hand, phytoplankton have made
significant contributions to capture greenhouse gas from the atmosphere and balance the carbon
cycle globally [4,5]; on the other hand, under a suitable living environment condition (such as
temperature, nutrients, etc.), the phytoplankton will grow rapidly and cause blooms, leading to the
degradation of the water environment and ecosystem corruption [6–8]. Therefore, understanding
the evolution and pattern of SSC is of great significance to ocean environmental management.

With the development of remote sensing technology, the sensors equipped on satellites can
provide long-term SSC products at a global scale, which is conducive to the studies of SSC. For
example, the pattern of global ocean primary production can be investigated at a large scale [9–12].
Likewise, the regional SSC variations were studied using remote sensing data. Yamada et al. [13]
employed the Ocean Color and Temperature Scanner (OCTS) and the Sea-Viewing Wide Field of
View Sensor (SeaWiFS) remote sensing data to study the SSC variation in the East China Sea and the
Sea of Japan and found the interannual variability of the spring bloom and the weak temporal
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transition of the fall bloom. In the Bohai Sea and the North
Yellow Sea of China, Zhai et al. [14] found the SSC exhibited a
spatially coherent increasing trend over 2003–2011 and a
decreasing trend over 2012–2018 by using Moderate
Resolution Imaging Spectroradiometer (MODIS) data;
specifically, the decreasing trend was more obvious than the
increasing trend. Further, the Ocean Colour Climate Change
Initiative (OC-CCI) standard products with locally modified SSC
was also used to detect four types of SSC annual cycle in the East
China Sea, i.e., the summer bloom, spring and autumn bloom,
early spring bloom, and low SSC [15]. In summary, the studies
mentioned above only focused on the trends and made simple
statistics for exploring the space-time SSC patterns.

Recently, specific SSC variation modeling has been
implemented in several studies. He et al. [16] chose the
optimal theoretical model (such as Exponential model,
Spherical model, Gaussian model, and their combinations) to
fit the spatial covariance of the SSC distribution in the Gulf of St.
Lawrence, and found that the highest SSC variability occurred in
November while it changed a lot during the period from August
to November. Despite this, few studies have modeled the
temporal variance or pattern of SSC. The long-range
correlation (or dependence) of SSC was detected in the South
China Sea with time scales ranging from a few weeks to 2 years
[17]. However, the long-termmathematical modeling of the long-
range dependence (LRD) and self-similarity of SSC is still lacking.

In general, several important parameters are used to
characterize the complex behavior and dynamics of a time
series, such as the Hurst parameter and the fractal dimension/
index. Further, some methodologies have been developed to
estimate these two parameters separately. Traditionally, the
fractal dimension or index can be estimated by counting the
number of level crossings, using increments, or the relationship
between power variations and the fractal dimension [18–20];
besides this, some other fractal dimensions, such as number-
based fragmentation fractal dimension and mass fractal
dimension for soil properties can be calculated as shown in
other studies [21–23]. Regarding the Hurst parameter, the
variance-plot with various block sizes were fitted to obtain the
slope β and the Hurst parameter can be calculated subsequently
by β � 2H − 1; Kettani and Gubner [24] developed a variogram-
based method to calculate the Hurst parameter and found the
new method was superior to the wavelet method; Li [25] used the
generalized fractional Gaussian noise to fit the autocorrelation
function (ACF) of the traffic and further obtain the Hurst
parameter; moreover, modified multifractal Gaussian noise
theory was also developed to calculate the Hurst parameter of
the sea level across the study period [26]. Given that the two
parameters denote various fractal characteristics of the time
series, it is important to seek ways to simultaneously obtain
the fractal dimension and Hurst parameter. Luckily, the
generalized Cauchy model provides a potential way to achieve
this goal. It can be used to model the ACF of the studied time
series, and it proves that the two parameters were independent of
each other [27]. In the past few decades, the generalized Cauchy
process has been successfully applied to model the sea-level
fluctuations, teletraffic, and network traffic [27,28].

Given the above considerations, the objective of this work is to
use the generalized Cauchy process to model the ACF of remote
SSC data and explore the fractal characteristics of SSC, which will
benefit local SSC monitoring, controlling, and policy-making.

METHODS AND MATERIALS

Data Collection
The long-term daily SSC data was collected from the European
Space Agency (ESA). It merged remote sensing reflectance (Rrs)
from several satellites, including SeaWiFS, MERIS (Medium
Resolution Imaging Spectrometer), Aqua-MODIS, VIIRS
(Visible and Infrared Imager/Radiometer Suite), and OLCI
(Ocean and Land Color Instrument) [29]. Then, the SSC
products are generated using Algorithm Theoretical Baseline
Document (Optical Classification and Algorithm Blending)
[30]. In the present study, the daily SSC products with spatial
resolution 1° × 1° were integrated during the period from July 29,
1998 to December 31, 2020 (8,192 days in total), and 10 locations
were selected for further analysis, see Figure 1. Of the 10
locations, 7 are located in the Gulf of California (Figure 1B),
with 2 and 1 located in the western coastal regions of Madagascar
and South Africa, respectively.

Basic Theories
Long-Range Dependence
Let x(t) and r(τ) denote the time series of the studied natural
attribute and its ACF, i.e., r(τ) � E[x(t)x(t + τ)], where E
represents the expectation operator. Thus, LRD or long
memory is used to depict the situation that the ACF decays
slowly with the characteristic as ∫+∞

−∞ r(τ)dτ � ∞ [31–33], i.e., the
values of the studied natural attribute with large temporal lag
show a strong correlation. Further, the asymptotic form of ACF
with LRD can be expressed as Eq. 1 with the help of the Hurst
parameter [34].

{ r(τ) ∼ cτβ (τ→∞)
β � 2H − 2

(1a-1b)

Where the Hurst parameter H ranges from 0.5 to 1 under the
LRD condition, representing the global property of the time series
x(t), a larger value of H implies that the LRD is stronger.

Self-Similarity
TheACF is self-similar when it remains the same through aggregating
the sub-series of x(t) with nonoverlapping blocks [35], i.e., part of the
time series is locally approximately similar to the entire time series.
According to the literature [36,37], the fractal index (α) was employed
to measure the local self-similarity, as follows:⎧⎪⎨⎪⎩ r(0) − r(τ) ∼ c|τ|α

D � 2 − 1
2
α

(2a-2b)

where c> 0 and 0< α≤ 2. The fractal dimension, D, belongs to
[1, 2). A larger value ofDmeans that the local self-similarity of the
studied time series is stronger [27].

Frontiers in Physics | www.frontiersin.org September 2021 | Volume 9 | Article 7503472

He LRD of Sea Surface Chlorophyll

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FIGURE 1 | 10 sea surface chlorophyll data locations. (A) shows the distribution of the 10 data locations at a global scale, while the zoom-in views of the two
rectangles are shown in (B) and (C). The number represents the identity of each data location.
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Generalized Cauchy Process
The generalized Cauchy process is applied when the time series
x(t) and its ACF are of the form of the following equation, subject
to 1< α≤ 2 and β≥ 0 [28,38]:

C(τ) � ψ2(1 + |τ|α)−β
α (3)

where ψ2 is the intensity of x(t). The following comments discuss
features of the two parameters in Eq. 3. Regarding the parameter
β, it defines the dependence of x(t) by setting τ→∞: (a) if
0≤ β< 1, ∫+∞

−∞ [ lim
τ→∞

C(τ)]dτ�∫+∞
−∞

ψ2
∣∣∣∣τ∣∣∣∣−βdτ�∞, i.e., it represents the

LRD with respect to β; (b) if β> 1,∫+∞
−∞ (1 + |τ|α)−β

αdτ � 2
αB(1

α,
β−α
α )<∞, where B is the beta function,

i.e., it represents short-range dependence (SRD). Regarding the
parameter α, it defines the self-similarity of x(t) by setting τ→ 0,
thus lim

τ→0
C(τ) � ψ2

∣∣∣∣τ∣∣∣∣α with respect to α. In short, the LRD and

self-similarity of x(t) only rely on the parameters β and α,
respectively. In this case, with the definition of Eq. 1b and Eq.
2b, the generalized Cauchy process can be written as

C(τ) � ψ2(1 + ∣∣∣∣τ∣∣∣∣4−2D)−1−H
2−D (4)

For modeling purpose, the intensity ψ2 can be set to 1, and Eq.
4 becomes

C(τ) � (1 + ∣∣∣∣τ∣∣∣∣4−2D)−1−H
2−D. (5)

In this case, the generalized Cauchy process can simultaneously
depict the LRD (global property) and self-similarity (local property)
of x(t) by using the two parametersH andD, respectively. Regarding
the Hurst parameter H, if 0≤ β< 1, i.e., 0.5<H< 1, it represents
LRD, and the values of ACF remain high even over large temporal

lag; whereas if β> 1, i.e., 0<H< 0.5, it represents SRD, and the value
of ACF usually decays quickly, e.g., the value of ACF may decline to
zero over a lag of several days. With various values of H and D, the
ACFs were plotted in Figure 2. It was found that the ACF value of
the generalized Cauchy process decreases as the temporal lag τ
increases. Moreover, the ACF value increases when the value of H
increases and the value ofD is fixed, while the ACF value decreases a
little when the value of D increases and the value of H is fixed.
Among the six lines shown in the sub-figures, the three blue
represent the LRD cases, and three red lines represent the SRD
cases. Specifically, when the temporal lag, H value, and D value are
equal to 7.2 days, 0.05, and 1.7 respectively, the value of ACF declines
to 0.01, representing SRD characteristics; see the dark red line of the
bottom right sub-figure in Figure 2. On the other hand, when the
temporal lag,H value, andD value are equal to 31 days, 0.75, and 1.1
respectively, the value of ACF is still greater than 0.179, representing
LRD characteristics; see themiddle blue line of the top left sub-figure
in Figure 2.

Autocorrelation Function Fitting Process
The original time series of SSC at each location was divided
equally into 16 sub-series with no overlapping cases, each
containing 512 data points. Considering that the value of the
autocorrelation function may decay to zero with a 1-month
temporal lag in some parts of the world [39,40], the
theoretical autocorrelation function values for temporal lags
between 0 and 32 was calculated by averaging the 16
autocorrelation functions of each sub-series. Then, the
generalized Cauchy model (Eq. 5) was employed to fit each of
the theoretical autocorrelation function values using the
“lsqnonlin” function embedded in MATLAB software. Then,
the fractal dimension D and the Hurst parameter H were
estimated. The fitting performance of the generalized Cauchy
model was evaluated by R2, MAE, and RMSE, as follows:

R2 � 1 − SSres
SStot

� 1 − ∑ ​ [Y(τ) − Ŷ(τ)]2∑​ [Y(τ) − Y]2 (6)

MAE � 1
n
∑n

τ�1
∣∣∣∣Y(τ) − Ŷ(τ)∣∣∣∣ (7)

RMSE �
����������������
Σn
τ�1[Y(τ) − Ŷ(τ)]2

n

√
(8)

where Y(τ) and Ŷ(τ) represent the empirical ACF value and
fitted ACF value at temporal lag τ respectively, Y represents the
mean value of the ACF series, n represents the length of the
series, and SSres and SStot represents the sum of squared
residuals and the sum of squares of deviation from mean
respectively.

RESULTS

Descriptive Statistics
The proportion of missing daily SSC data from ESA at the 10
locations ranges from 8.02 to 11.56% over the entire period.
Given that the missing values were discretely distributed in

FIGURE 2 | Simple examples of the generalized Cauchy model with
various values of D and H.
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each SSC time series, they were interpolated by using the
“spline” function in MATLAB software for further analysis.
The SSC time series with full length (including 8192 SSC
data) at the considered 10 locations are plotted in Figure 3
and the corresponding descriptive statistical results are
presented in Table 1. The statistical results indicate that
the SSC has the highest range (i.e., from 0.3129 to
50.6148 mg/m3) in the location with ID 10103 during the
studied period; while the values of SSC at the other six
locations around the Mexico offshore regions range from
0.0753 to 8.8930 mg/m3. On the other hand, similar ranges
(i.e., from 0.0522 to 1.5799 mg/m3) are found in the two
locations around the offshore of Madagascar. The values of

SSC at the last location with ID 25853 range from 0.0536 to
7.2255 mg/m3.

Generalized Cauchy Process Fitting Results
Figure 4 shows the theoretical autocorrelation values and the
corresponding fitted generalized Cauchy model with the
fitting performance at each of the 10 daily SSC series. Our
findings are as follows: 1) The autocorrelation functions of
SSC can be well fitted by the generalized Cauchy model with
R2 ranging from 0.9469 to 0.9875, MAE ranging from 0.0143
to 0.0358, and RMSE ranging from 0.0187 to 0.0434. 2) The
values of the fractal dimension D and the Hurst parameter H
vary at different locations. 3) A high value for the fractal
dimension D (1.7964) with strong self-similarity was only
found at the location with ID � 10,103, while the D values at
other locations are lower than 1.5 and 5 of the 10 locations
have D values approximately equal to 1. This shows that
most of the 10 daily SSC series have weak self-similarity. 4)
The values of the Hurst parameter H of the 10 daily SSC
series range from 0.6757 to 0.8431, indicating that the daily
SSC series at the 10 locations have strong long-range
dependence.

DISCUSSION

The present work employed the generalized Cauchy process to
model the ACF of daily remote SSC data during a 23-year period

FIGURE 3 | Sea surface chlorophyll time series at the 10 chosen locations.

TABLE 1 | Descriptive statistics of the considered 10 time series of SSC.

ID Min Max Mean Standard Deviation Coefficient of
variation

10,103 0.3129 50.6148 2.5001 1.1656 0.4662
10,104 0.1701 8.2633 1.1285 0.6692 0.5931
10,224 0.1979 6.8945 0.8643 0.4989 0.5773
10,341 0.2039 8.6791 1.1917 0.7225 0.6063
10,342 0.1570 8.8930 1.1009 0.5583 0.5072
10,460 0.1311 3.9872 0.6632 0.4025 0.6069
10,576 0.0753 8.4703 0.5909 0.4155 0.7032
25,853 0.0536 7.2255 0.7518 0.4039 0.5372
27,876 0.0522 1.3131 0.1697 0.0720 0.4244
27,877 0.0542 1.5799 0.1665 0.0763 0.4586
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and good performance of the fitting was obtained, indicating that
the SSC in the 10 chosen locations follows a heavy-tailed
distribution [41]. Compared to the generalized Gaussian noise
model, the outstanding ability of the generalized Cauchy model is
that it can simultaneously estimate both independent variables
(Hurst parameter and fractal dimension). This means that it can
describe the global correlation and local self-similarity of the
considered natural attribute [27,42], such as the SSC in the
present work. To the best of my knowledge, the present effort
is one of the earliest studies in obtaining the LRD and self-
similarity of the SSC in view of fractal statistics.

Impacts of Environmental Factors on the
Fractal Characteristics of Sea Surface
Chlorophyll
Relatively low self-similarity and high LRD of the SSC series at the 10
locations can be summarized. A rather different case was found in a
lake study, i.e., the chlorophyll-a was autocorrelated over lags of five or
6 days [43], indicating SRD. The nutrients and aquatic environment
(light, temperature, salinity, etc.) impact the algae growth and further
influence the SSC variability [44–48].With the continuous variation of
these factors, the variation of SSC across time is also smooth according
to the algae growth, causing the weak irregularity characteristics with
lowvalues of the fractal dimension and strong LRDwith high values of
the Hurst parameter. This phenomenon leads to the empirical values
of ACF (blue dash line shown in Figure 4) being slightly higher than
the theoretical values of ACF (black line shown in Figure 4) with the
temporal lags between 2 and 10 days at most locations. However, with
the temporal lag increasing from 10 to 25 days, the empirical values
become smaller than the theoretical values, because the SSC may be
influenced by the global climatic dynamics, such as the Southern
Pacific Oscillation Index [49], which is different from algae’s own
growth condition.Moreover, theremay be another situation that algae
blooms with enough nutrient inputs [50], leading to extremely high
SSC values, e.g., the SSC value increases rapidly and peaks for one or
2 days (as some peaks shown in Figure 3); and thatmay be the reason
that the value of the fractal dimension is the highest among the 10
series, i.e., D � 1.7964 with the highest maximum SSC value and
standard deviation across the study period. On the other hand, the
values of the fractal dimension and Hurst parameter varied at various
locations, indicating that the environmental conditions are rather
different from each other.Moreover, various species of algaemay exist
at various locations and their growth response to the environmental
conditions are rather different [51,52]. Compared to the values of the
fractal dimension (varies from 1.7244 to 1.7838) of SSC in the
Chesapeake Bay [45], the values of the fractal dimension obtained
in the current study are rather low; this may due to the fact that the
river discharge and the nutrients it carries are not as large as the rivers
(e.g., Susquehanna River and Potomac River) that run into the
Chesapeake Bay. However, the values of the Hurst parameters in
the current study are greater than that in the Chesapeake Bay study
with LRD characteristics, indicating that a large nutrient load in the
Chesapeake Baymay lead to weak LRD. Therefore, the LRDmay be a
general feature of SSC variations in oceans.

Besides this, the aquatic environment will also influence the
behavior of the zooplankton, e.g., warm waters will favor the
consumption of the zooplankton, causing the reduction of SSC
[53–55]. On the other hand, the upwelling system and surface
currents around the coastal areas play important roles in shaping
the distribution of zooplankton and further influence the variation of
SSC [56]. The upwelling systemon theCalifornia coast shows seasonal
variabilities and can be summarized into four types: “Winter Storms”
season (Dec-Jan-Feb), “Upwelling Transition” period (Mar and Jun),
“Peak Upwelling” season (Apr-May), “Upwelling Relaxation” season
(Jul-Aug-Sep), and “Winter Transition” season (Oct-Nov), so the
impacts of upwelling system on the SSC are also seasonally
continuous. That may be one of the reasons that SSC has LRD
characteristic [57].

FIGURE 4 | The empirical autocorrelation function values (dash blue line)
and the fitted generalized Cauchy model (black line) for each of the 10 data
points.
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Long-Range Dependence of Sea Surface
Chlorophyll at the Studied Locations
The present study employedACF to describe the fractal characteristics
(especially the long-range dependence) of SSC with temporal lags of
32 days. The empirical values of the ACF at the 10 studied locations
range from 0.1160 to 0.3351, and the mean and standard deviation of
the empirical values are 0.2319 and 0.0764, respectively. These results
show that strong long-range dependence can be detected within a
temporal lag of 1month. Robles-Tamayo et al. [49] detected seasonal,
semi-annual, and annual cycles of SSC in the Gulf of California using
the Level 3 products of MODIS remote sensing data. In other words,
the SSC variation may experience peak and valley values in a season
(3months). Moreover, the SSC values of the four seasons vary a lot
with high values of the standard deviation. Regarding the seasonal
variation, Escalante-Almazán [58] found that the mean values of SSC
in the central gulf were 1.09, 1.20, 0.44, and 0.60mg/m3 for winter,
spring, summer, and autumn, respectively. The large variation
between seasons suggests that the SSC may not have long-range
dependence at an annual or semi-annual scale. On the other hand, in
the warm period the mean ± standard deviation values of SSC in the
south, central midriff islands, and north sub-regions of the Gulf of
California are 0.79±0.89, 0.55±0.37, 1.19±0.83, and0.63±0.39mg/m3

respectively, and in the cold period, the values are 2.05 ± 1.20, 1.84 ±
0.73, 2.80 ± 1.40, and 1.50 ± 0.61 mg/m3 respectively [49]. The large
standard deviations represent large variations of SSC, indicating that
the SSCmay not have large LRD at a semi-annual or annual scale. To
test the LRDof SSC at a seasonal scale, the empirical values of ACF at
the 10 studied locations were calculated with a temporal lag of
128 days. The results show that the value of empirical ACF at the 10
locations first reached 0 at the temporal lags of 49, 75, 89, 59, 47, 85,
89, 69, 70, and 67 days, respectively. Otherwise, with large temporal
lags, the values of ACF will fluctuate around zero. Hence, long-range
dependence at a seasonal scale (i.e., with temporal lag larger than
90 days) is relatively weak compared to the monthly scale.

Comparisons to Previous Works
Comparisons between the current study and previous studies were
conducted as follows. Some ACFs of teletraffic was rather high, above
0.98 with even 128 days lag [27], but the ACF value of SSC in the
current study fall below 0.5 with 31 days lag. This may be the reason
why very high values of the Hurst parameter (larger than 0.99) were
detected with teletraffic rather than SSC. In addition, the values of the
fractal dimension of teletraffic were much larger than that of SSC,
demonstrating that stronger self-similarity was found in teletraffic
series than SSC. This may be due to the fact that values for teletraffic
aremore random in occurrence while the values for SSC aremore like
a continuous series associated with several environmental factors
mentioned above. In another study [28], the generalized Cauchy
process was used to model the ACF of sea level fluctuations with a
temporal resolution of 1 h, and found that the value of the fractal
dimension was approximately equal to 1 at several locations while the
most of themwere larger than 1.8; the values of Hurst parameter were
larger than 0.98. Interestingly, the locations with low fractal dimension
values are located in the Gulf of Mexico, which is similar to the seven
locations studied in the current study, i.e., the weak self-similarity may
occur in a stable environment.

Limitations and Future Work
Certain limitations of the current study should be acknowledged: 1)
Although there may be a relationship between the fractal
characteristics of SSC and the living environment, rigorous proof
and statistical analysis was not conducted in the current study due to
lack of data. Therefore, future work can focus on quantitatively
exploring the impacts of nutrients and temperature on the fractal
dimension or Hurst parameters of SSC. 2) Even SSC products with
high spatiotemporal coverage were used in the current study, there
still exist missing values from other locations. Hence, spatiotemporal
interpolation methods should be employed to obtain a more
complete remote SSC dataset for mapping the global fractal
dimension or Hurst parameter of SSC, such as the Bayesian
maximum entropy approach [59–61], so that the spatial pattern
of the fractal dimension and Hurst parameter can be further studied.
3) Taking into consideration the stochastic differential equations, the
evolution pattern (or law) of SSC can be further explored, such as the
fractional Brownian motion pattern [62,63].

CONCLUSION

The present study applied a novel generalized Cauchy model to
depict the variations of SSC and good performance was obtained.
The fractal characteristics of the SSC vary at different locations in
terms of the fractal dimension and Hurst parameter; weak self-
similarity was found in most locations with low values of the
fractal dimension while strong LRD was detected across all
locations with reactively high value of the Hurst parameter.
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