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The cell cortex is a highly dynamic network of cytoskeletal filaments in which motor
proteins induce active cortical stresses which in turn drive dynamic cellular processes such
as cell motility, furrow formation or cytokinesis during cell division. Here, we develop a
three-dimensional computational model of a cell cortex in the viscous limit including active
cortical flows. Combining active gel and thin shell theory, we base our computational tool
directly on the force balance equations for the velocity field on a discretized and arbitrarily
deforming cortex. Since our method is based on the general force balance equations, it
can easily be extended to more complex biological dependencies in terms of the
constitutive laws or a dynamic coupling to a suspending fluid. We validate our
algorithm by investigating the formation of a cleavage furrow on a biological cell
immersed in a passive outer fluid, where we successfully compare our results to axi-
symmetric simulations. We then apply our fully three-dimensional algorithm to fold
formation and to study furrow formation under the influence of non-axisymmetric
disturbances such as external shear. We report a reorientation mechanism by which
the cell autonomously realigns its axis perpendicular to the furrow plane thus contributing
to the robustness of cell division under realistic environmental conditions.

Keywords: active membranes, viscus membranes, cell cortex, cell mechanics, computational fluid dynamics,
biological physics

1 INTRODUCTION

Motor proteins in living cells are capable of converting chemically stored energy into movement and
mechanical work [1] and therefore drive biophysical systems out of thermodynamic equilibrium [2].
Such motor proteins actively induce stresses [2–5], which lead to the formation of patterns [6–9] or
spontaneous flows [10–18]. In the cell cortex, which is a network of cytoskeletal actin filaments and
myosin proteins [1] enclosing the cell interior, such an active material is confined to a thin layer.
Together with the plasmamembrane the cell cortex can strongly deform and therefore plays a crucial
role in the regulation of the cell shape [19–23] and movement [24–29]. A prominent example is the
cytokinesis in cell division, where a ring of cortical actomyosin leads to furrow constriction and in
turn to the separation of the two daughter cells [30–34].

Materials containing cytoskeletal filaments and motor proteins are successfully described by
active gel theory [2, 35–37]. Its key ingredient is the actively induced force by the motor proteins,
which leads to an active stress in the material [38, 39]. In addition, polymerization and
depolymerization lead to transient changes within the active gel [20, 35]. Focusing on the cell
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cortex of actomyosin or on epithelial tissue, active gel theory has
recently been formulated in the framework of thin shell theory
[40]. The generic active gel theory [35] incorporates the
viscoelastic nature of the cytoskeletal assemblies, where the
presence of an active stress triggers both elastic deformations
and viscous flows. Starting from the viscoelastic theory two limits
of the cortex behavior can be considered, the elastic limit [40–43]
and the viscous limit [21, 28, 30, 33, 40, 44, 45]. In the latter,
viscous flows arise which are responsible for a large number of
cellular processes. In cell morphogenesis transitions from a
spherical initial shape to pear-like [20, 21] or oblate [8] shapes
have been reported. Cell division has successfully been modeled
[30, 31, 33, 34, 44, 46] including a threshold active stress needed
to complete cytokinesis [33]. Further examples include cell
movement [24, 47] and embryogenesis [19, 48, 49].

Such investigations involving the cell cortex are based on
either analytical calculations [21, 30, 41, 44] or numerical
simulations [9, 33, 42, 45, 47, 50, 51]. Farutin et al. [47]
investigated cell crawling by coupling cortical mechanics to
the boundary integral equation in an axisymmetric treatment.
Turlier et al. [33] used a numerical, axisymmetric formulation of
cell cytokinesis advecting tracer points to track the position of the
membrane. Mietke et al. [9] developed another axisymmetric
simulation method by discretizing the arc length of the cellular
membrane. Including myosin activity in terms of a preferred
curvature in the framework of an elastic shell, Heer et al. [50]
determined the equilibrium of a tissue shell in three dimensions.
Torres-Sánchez et al. [45] developed a fully three-dimensional
computational model of a viscous active cell cortex in the absence
of an external fluid. Being based on Onsager’s variational
principle [52] their method utilizes a subdivision finite
element scheme for discretization. A generalization of the
latter to arbitrary topology using local Monge parametrization
method has been provided [51]. Recently, two of us have
developed a dynamic three-dimensional simulation model of
an active cell cortex in the elastic limit based on a parabolic
fitting procedure [42]. This approach provides the advantage that
it is dynamically coupled to the surrounding fluid flow using the
lattice-Boltzmann/immersed boundary method and thus allows
one to study cortical dynamics in realistic environments such as,
e.g., blood flow [43].

In the present manuscript we develop a new method,
transferring the ideas of ref. [42] to the viscous limit in order
to numerically obtain the velocity profile in a three-dimensional,
thin, and arbitrarily deformed active cell cortex. We use the thin
shell formulation combined with active gel theory [40] to obtain
the force balance equations for the cortex involving active and
viscous stresses. In contrast to the variational approach of Refs.
[45, 51] we directly start with the force balance equations of the
cortex, which are discretized using a parabolic fitting procedure.
We furthermore base our approach on the velocity vector
expressed in three-dimensional Cartesian coordinates. Using
an analytical inversion of the parabolic expansion and fitting
of the cortical velocity field, we evaluate the force balance
equation on the discrete nodes of the cortex. Solving the
resulting system of coupled equations globally on the cortex
by means of a minimization ansatz, we finally solve for the

cortical velocity field. Considering the normal component of
the velocity, which characterizes the flow of the cortical
material leading to changes of the cortex shape, the cortex
shape can be evolved in time in order to obtain the deforming
cell shape. In turn, the velocity field is obtained on the
continuously evolving cortex. We provide an in-depth
validation using analytical results on an undeformed, spherical
cortex and axisymmetric simulations for the evolving shape and
cortical flow field. As an application, we consider an initial shear
deformation of the cortex and investigate its dynamic evolution.
We find that the cell realigns its axis perpendicular to the furrow
plane thus autonomously rectifying non-axisymmetric external
perturbations. Due to its simplicity, our proposed algorithm can
be the basis for a dynamic coupling of a viscous active cortex or a
tissue to a suspending fluid using, e.g., a coupled immersed
boundary and lattice-Boltzmann method.

We first introduce the force balance equations of the cell
cortex treated as a viscous thin shell in section 2. Afterwards, we
present the discretization of the cortex based on a parabolic fitting
procedure and the numerical solution procedure in section 3. In
section 4, we validate our method to analytical calculations and
axisymmetric simulations in a detailed manner and apply our
algorithm to dynamic fold and furrow formation in response to a
non-axisymmetric shear deformation. Finally, we conclude in
section 5.

2 THIN SHELL FORMULATION OF A
VISCOUS ACTIVE CORTEX

In the following we consider a cell cortex in the viscous limit
subject to internal active stresses, which lead to effective flows
within the actomyosin network [37, 40]. Since the cortex is
typically very small compared to the cell diameter [1], it is
considered as a thin shell [40, 53], i.e., as a two dimensional
manifold in three-dimensional space. The framework for the
mathematical description of a thin shell is differential geometry
[54, 55] which we introduce in section 2.1. In section 2.2 we
provide the analytical formulation of the force balance for the
viscous active cortex, which we express in terms of the velocity
and its derivatives in section 2.3.

2.1 Differential Geometry
In general, the two dimensional thin shell representing the cell
cortex is parametrized by the three-dimensional vector X (s1, s2)
which depends on the two surface coordinates s1, s2. The latter
determine the in-plane position on the thin shell. From the
parametrization X two in-plane coordinate vectors pointing
locally along the thin shell are derived

e1 � zX
zs1

, e2 � zX
zs2

, (1)

and using those a unit normal vector on the thin shell that points
outwards can be defined

n � e1 × e2
|e1 × e2|. (2)
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The metric tensor of the thin shell is defined by

gαβ � eα · eβ, (3)

and its curvature tensor by

Cαβ � − zαzβX( ) · n, (4)

with Greek indices α, β, c � 1, 2 referring to the in-plane
coordinates s1, s2. In the following, we use the Einstein
convention where a double occurrence of an upper
(contravariant) and lower (covariant) index implies a sum. A
lower (covariant) index can be raised with the metric tensor, e.g.,
for a general vector component aβ � aαg

αβ or a general tensor tα
β �

tαcg
cβ. Correspondingly, an upper (contravariant) index can be

lowered by aβ � gβαa
α or tαβ � tα

cgcβ. For a symmetric tensor tαβ �
tβα the order of upper and lower indices becomes obsolete in
mixed notation, i.e., it can be written as tβα.

We denote the partial derivative along the in-plane
coordinates of a general function f by zα f and the covariant
derivative by ∇α f. The covariant derivative is defined for a scalar
by ∇α f � zα f, for a vector component by ∇αaβ � zαaβ + Γβαcac,
and for a general tensor by ∇αtβc � zαtβc + Γβδαtδc + Γcαδtβδ , where
Γcαβ denotes the Christoffel symbols of the second kind [54]. Later,
we denote the contraction of the covariant derivative with the
metric tensor in contravariant components as ∇β � gβc∇c. The
covariant derivative of the in-plane and normal coordinate vector
is given by the equations of Gauss and Weingarten

∇αeβ � −Cαβn, ∇αn � Cβ
αeβ, (5)

respectively.
The key quantity of interest for the viscous active cortex is the

cortical velocity field v. It is defined on the cortex, thus depending
on (s1, s2), but is a three-dimensional vector. Compared to Ref.
[45] we do not use a Hodge decomposition of the velocity field,
but treat it as a vector field expressed in Cartesian coordinates.
Therefore, it can be decomposed in the local coordinate system on
the thin shell by projection onto the in-plane and normal
coordinate vector

vα � v · eα and vn � v · n, (6)

with its in-plane components vα and its normal component vn

such that

v � vαeα + vnn. (7)

The total in-plane vectorial component of the velocity field can
further be determined by

vt � (1 − n⊗ n) · v, (8)

with the projector n ⊗ n onto the normal vector, which is the
outer product of the normal vector with itself, and with 1 the unit
matrix. The velocity gradient on the thin shell is defined as [40].

vαβ � 1
2

∇αvβ + ∇βvα[ ] + Cαβv
n, (9)

which is equivalent to the definition in vector notation

vαβ � 1
2

zαv( ) · eβ + zβv( ) · eα[ ] � 1
2

∇αv( ) · eβ + ∇βv( ) · eα[ ].
(10)

2.2 Force Balance for a Viscous Active
Cortex
Forces in the cortex, e.g., arising due to gradients in the velocity,
are described by a stress tensor, in analogy to three-dimensional
hydrodynamics [53, 56]. Here, the stress tensor is defined on the
thin shell and therefore denoted as surface stress tα [42, 53]
consisting of two vectors (α � 1, 2) and having dimensions 3 × 2.
The surface stress in turn can be further decomposed into the in-
plane surface stress tαβ, a 2 × 2-tensor, and the normal surface
stress tαn [42] as

tα � tαβeβ + tαnn. (11)

For vanishing normal surface stress tαn � 0, which is typically
the case for an infinitely thin surface which does not sustain
internal bending moments [40], the force balance for a thin shell
in the presence of a pressure difference P between the cell’s
interior, the cytoplasm, and its external environment, but in
absence of other external forces, becomes.

∇αt
αβ � 0, (12)

−Cαβt
αβ � −P. (13)

The pressure difference P accounts for the incompressibility of
the cytoplasm, which enters as an additional constraint as
detailed in section 3.2.

We consider a viscous cortex with planar shear ηs and bulk
viscosity ηb, which is subject to active forces described by the
active surface stress tensor ζαβ. Accordingly, the constitutive
equation reads [40].

tαβ � tαβv + ζαβ, (14)

with the viscous surface stress tensor determined by

tαβv � 2ηs~v
αβ + ηbv

c
cg

αβ, (15)

where ~vαβ � vαβ − 1
2v

c
cgαβ. The expression in Eq. 15 is equivalent

to the viscous stress tensor in three dimensions [56]. The active
surface stress ζαβ describes internal forces in the cortex which
stem from active processes, such as motor proteins walking along
cytoskeletal filaments by conversion of chemically stored energy
[35, 37, 40]. The active surface stress ranges around 10−4N/m
[57–61]. A typical value of the shear viscosity of the cell cortex is
ηs � 27 × 10−4 Pa s m [62]. For the plasma membrane of a red
blood cell a shear viscosity of about ηs ≈ 3 × 10−7 Pa s m has been
reported [63, 64], which is about four orders of magnitude smaller
than a typical cortex viscosity and therefore the cortical viscosity
dominates. We expect in general the two viscosities to be of
similar order of magnitude, if the cortex can be seen as a thin layer
of homogeneous material.
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In the following, we assume that the distribution of active
surface stress ζαβ in the cortex is known, but our method allows
for a potential coupling of active surface stress to a
concentration field, e.g., of myosin. We consider a coupling
to a passive immersing fluid, where the pressure difference P
balances the average active in-plane surface stress. Despite
these contributions we consider the cortex to be free of other
external forces or external torques. Inserting the constitutive
law for in-plane surface stress tensor (14) into the force
balance Eqs 12, 13 we obtain for the cortex in absence of
any other external forces.

2ηs∇αv
αβ + ηb − ηs( )∇αv

c
cg

αβ � −∇αζ
αβ, (16)

−2ηsCαβv
αβ − ηb − ηs( )vccCαβg

αβ + P � Cαβζ
αβ, (17)

where the Eq. 16 are the tangential force balance equations and
Eq. 17 is the normal one. Our goal is to solve the force balance
Eqs 16, 17 for the velocity field and pressure difference due to a
given active surface stress distribution ζαβ.

2.3 The Force Balance in Terms of Cartesian
Vectors
The aim of this section is a formulation of the force balance
Eqs 16, 17 in terms of the velocity and its derivatives expressed
in Cartesian vectors. This is the direct basis of our numerical
algorithm, which will be detailed in section 3, and we obtain
this by combining section 2.1 and section 2.2. Motivated by
the parabolic fitting procedure to determine curvature and
derivatives on a discrete thin shell [42, 65], we start with a
parabolic expansion of the velocity vector in in-plane
coordinates (s1, s2) in the surrounding of a given position r]
on the thin shell

v s1, s2( ) � v] + ∇1v( )︸		︷︷		︸
Av

s1 + ∇2v( )︸		︷︷		︸
Bv

s2 + 1
2

∇1∇1v( )︸			︷︷			︸
Cv

s1s1

+ 1
2

∇2∇2v( )︸			︷︷			︸
Dv

s2s2 + ∇1∇2v( )︸			︷︷			︸
Ev

s1s2, (18)

with v] � v(r]) � v(s1 � 0, s2 � 0) and Av, Bv, . . ., Ev being the
first and second derivative of the velocity field vwith respect to in-
plane coordinates at position r � rν. Using the parabolic
expansion of the velocity field in Eq. 18, we can first directly
express the velocity gradient (10) evaluated at r � rν in terms of
the velocity derivatives Av, Bv, . . ., Ev

v11 � Av · e1, v22 � Bv · e2, (19)

v12 � v21 � 1
2

Av · e2 + Bv · e1( ). (20)

The trace of the velocity gradient is

vcc � vαβg
αβ � g11v11 + 2g12v12 + g22v22

� g11Av · e1 + g12 Av · e2 + Bv · e1[ ] + g22Bv · e2. (21)

Next, we can calculate the derivative of the velocity gradient
tensor in Eq. 10 which, using the equations of Weingarten and
Gauss (5), becomes

∇αvβc � 1
2

∇α∇βv( ) · ec − 1
2
Cαc ∇βv( ) · n + 1

2
∇α∇cv( ) · eβ

− 1
2
Cαβ ∇cv( ) · n. (22)

Using that ∇α g
βc � 0, we can calculate the derivative of the

contravariant components of the velocity gradient by

∇αv
βc � gβϵgδc∇αvϵδ . (23)

Furthermore, we calculate the derivative of the velocity
gradient’s trace via

∇αv
c
c � ∇α gcβvβc( ) � gcβ∇αvβc

� g11∇αv11 + g12∇αv12 + g21∇αv21 + g22∇αv22

using the formula for the gradient in Eq. 22. Writing down these
equations for fixed indices α, β, c � 1, 2, they can be explicitly
written in terms of Av, Bv, . . ., Ev.

In the final step, we aim for a formulation of the force balance
equations Eq. 16, Eq. 17 in terms of the velocity derivatives in
Cartesian coordinates. Rearranging equations Eq. 16, Eq. 17
using vαβ � vβcgcα and gαβgβc � δcα leads to

2ηsg
cα∇αvβc + ηb − ηs( ) ∇αv

c
c( )δαβ � −∇αζ

α
β (24)

−2ηsCαβvαβ − ηb − ηs( )vccCδ
δ + P � Cα

βζ
β

α . (25)

The components of the force balance equation in this form can
be explicitly expanded using the expressions derived above.
Writing down each component on its own and collecting
terms with respect to Av, Bv, . . ., Ev we end up with the first
tangential force balance equation in the form

−2ηsg11C11n − 3ηsg
21C12n − ηsg

22C22n − ηb − ηs( )g11C11n − ηb − ηs( )g12C12n( ) · Av

+ −ηsg21C11n − ηsg
22C21n − ηb − ηs( )g12C11n − ηb − ηs( )g22C12n( ) · Bv

+ +2ηsg11e1 + ηsg
21e2 + ηb − ηs( )g11e1 + ηb − ηs( )g12e2( ) · Cv

+ +ηsg22e1( ) ·Dv

+ +3ηsg21e1 + ηsg
22e2 + ηb − ηs( )g12e1 + ηb − ηs( )g22e2( ) · Ev

� −∇ 1ζ
1
1 − ∇ 2ζ

2
1 , (26)

the second tangential force balance equation

−ηsg11C12n − ηb − ηs( )g12C22n − ηsg
12C22n − ηb − ηs( )g11C21n( ) · Av

+ −ηsg11C11n − 3ηsg
12C21n − 2ηsg

22C22n − ηb − ηs( )g12C21n − ηb − ηs( )g22C22n( ) · Bv

+ +ηsg11e2( ) · Cv

+ +ηsg12e1 + 2ηsg
22e2 + ηb − ηs( )g12e1 + ηb − ηs( )g22e2( ) ·Dv

+ +ηsg11e1 + 3ηsg
12e2 + ηb − ηs( )g11e1 + ηb − ηs( )g12e2( ) · Ev

� −∇1ζ
1
2 − ∇2ζ

2
2 , (27)

and the normal force balance equation

−2ηsC11e1 − 2ηsC
12e2 − C ηb − ηs( )g11e1 − C ηb − ηs( )g12e2( ) · Av

+ −2ηsC12e1 − 2ηsC
22e2 − C ηb − ηs( )g12e1 − C ηb − ηs( )g22e2( ) · Bv

+P � C1
1ζ

1
1 + C2

1ζ
1

2 + C1
2ζ

2
1 + C2

2ζ
2

2 ,
(28)

where we introduced C � Cc
c. On the right hand side of the

tangential force balance the active surface stress appears which we
here consider symmetric and isotropic, i.e.,
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ζβα � ζ(s1, s2)δβα. (29)

We note that the incorporation of anisotropic active stress is
straightforward and illustrated in Ref. [42], which can easily be
followed to include an anisotropic active stress evolving with the
deforming cortex in the present algorithm. The derivatives of the
active stress

∇1ζ
1
1 � ∇1ζ

2
2 � ∇1ζ(s1, s2),

∇2ζ
1
1 � ∇2ζ

2
2 � ∇2ζ(s1, s2),

can be calculated from the given active surface stress distribution
ζ(s1, s2) on the deforming thin shell. From Eq. 29 we can
directly use

∇1ζ
2
1 � 0, ∇1ζ

1
2 � 0

∇2ζ
2
1 � 0, ∇2ζ

1
2 � 0.

3 COMPUTATIONAL METHOD FOR A
VISCOUS ACTIVE CORTEX

As introduced above, our aim is a computational method to
calculate the velocity field corresponding to a given active surface
stress on a deforming cortex. In the following, we illustrate the
steps of this numerical calculation. First, we discretize the thin
shell representing a cell cortex and the velocity field in section 3.1.
This allows us to write down the force balance equations Eq. 26,
Eq. 27, Eq. 28 for each node of the discrete thin shell. We
introduce constraints on the velocity field such as vanishing total
velocity or angular momentum in section 3.2. In order to obtain
the solution of velocity field we use a minimization ansatz as
detailed in section 3.3. For a better numerical stability, we
introduce an addition to the surface stress motivated by a
bending viscosity in section 3.4. In order to perform the
minimization ansatz and in turn to solve the system of
equations we need the derivatives of the velocity field in Eq.
18 as functions of the velocity values at all discrete nodes as

illustrated in section 3.5. The final step consists of building a
matrix for the equation system as detailed in section 3.6.

3.1 Discretization of the Cortex
In our numerical implementation we discretize the thin shell
representing the combination of cortex and membrane by a set of
nodes, which we refer to by their position r] and/or index ] � 0, . . .,
N−1, whereN is the total number of nodes. The nodes are connected to
flat triangles [65–68], as sketched in Figure 1. These triangles serve as a
tool to determine the neighborhood of each node r]. For each node on
the membrane we define a local coordinate system as in Ref. [42] and
sketched on the right hand side of Figure 1. First, by averaging all
normal vectors of the adjacent triangles weighted by angle [69], we
obtain the local normal vector n on the node r]. By connecting the ]-th
node to one of its neighbors and subtracting the normal component of
the resulting vector, we determine the first in-plane coordinate vector
eξ. The choice of the neighboring node is arbitrary as we show in
Supplementary Appendix S3. By a normalized cross-product of n and
eξ the second in-plane coordinate vector eη is obtained. Thus, we have
for each node a local coordinate system

eξ , eη, n( )
]
� eξ , eη, n( ). (30)

The local curvature tensor at the position of the central node
expressed in the local coordinate system (Eq. 30) can be obtained
by a parabolic fitting procedure with respect to node position as
detailed in Ref. [42].

The active surface stress of the cortex is considered to be
known, as detailed above, and its distribution can be described by
an analytically tractable form on the initial shape of the cortex. As
detailed in Ref. [42] the active surface stress distribution is
therefore prescribed on the initial shape of the cortex for each
node and afterwards advected with each node.

The key quantity of interest, the velocity v, is a three-
dimensional vector in the three-dimensional Cartesian space

v � vxex + vyey + vzez, (31)

with ei, i � x, y, z the Cartesian unit coordinate vectors. Because
the velocity field is defined on the thin shell, we can evaluate the

FIGURE 1 | Cortex discretization. Discretization of a thin shell by nodes connected to triangles (left). For each node rν, a local coordinate system with in-plane
coordinate vectors eξ , eη and normal vector n is constructed. The velocity field, its derivatives and the force balance equations can be expressed in this local coordinate
system (eξ ,eη,n) at the position rν.
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velocity at each node ] giving vi] � vi(r]). In total, the velocity field
consists of the velocity of each node

vx � {vx] }]∈{0;...;N−1},
vy � {vy] }]∈{0;...;N−1},
vz � {vz]}]∈{0;...;N−1}.

(32)

The velocity components in the local coordinate system Eq. 30
can easily be obtained by projection onto the corresponding local
coordinate vectors according to Eq. 6

vξ � v · eξ , vη � v · eη, vn � v · n. (33)

With the derivatives of the velocity vector as introduced in Eq. 18
being evaluated in local coordinates, i.e.,Av �∇ξv, . . ., Ev �∇ξ∇ηv,
we can write down the velocity gradient Eq. 10 in the local
coordinate system, e.g., the component

vξη � 1
2

Av · eη + Bv · eξ[ ].
For the actual calculation of the derivatives of the velocity

vector we refer to section 3.5. Using the derivatives of the velocity
and the velocity gradient in local coordinates, we are able to write
down the force balance Eqs 16, 17 for each node ] in its local
coordinate system, which corresponds to Eqs 26–28. Considering the
tangential force balance Eqs 26, 27 together with the normal force
balance Eq. 28, we end up with three differential equations. These we
refer to in the following by its left hand side, which depends on the
velocity vectors v], and by the right hand side, which does not depend
on the velocity vectors. Therefore we have three coupled differential
equations which the velocity field has to fulfill

l.h.s.]1 � r.h.s.]1,
l.h.s.]2 � r.h.s.]2,
l.h.s.]n � r.h.s.]n,

(34)

where the index 1,2 labels the two tangential force balance
equations and the index n labels the normal force balance
equation. The superscript ] emphasizes that we refer to the
equation in local coordinates of node ], which is the force
balance evaluated at position r] of node ].

3.2 Constraints
Since only derivatives of the velocity field occur in the force balance
equations, an arbitrary constant velocity can be addedwithout violating
the force balance equations. Furthermore, these derivatives are
directional and under certain circumstances, e.g., axisymmetry, a
velocity in azimuthal direction can be added. Therefore, we need to
specify certain constraints to the velocity field, which correspond to
boundary conditions for the partial differential equations.

First, we use a vanishing total normal velocity vn which
corresponds to an incompressible liquid inside the cell, i.e.,

∫
S

v · n dS � ∑N−1

]�0
v] · nA] � 0, (35)

where the first equality results from the discretization of the
integral into a sum over all nodes ] with A] being the local area of

node ]. The local area is calculated using Meyer’s mixed area [42,
69]. This constraint of incompressibility accompanies the
pressure difference P introduced in the normal force balance
Eq. 17.

Second, we use that the total velocity of the cortex
vanishes, i.e.,

∫
S

v dS � ∑N−1

]�0
v]A] � 0. (36)

This constraint resolves the fact that due to the lack of an
external force acting on the cortex the solution of the force
balance equations is invariant under solid translation. In case
of cell movement, one has to consider an additional coupling to
the environment leading to additional external forces, for
example via a friction coefficient in case of amoeboid motion
[70] and in that case this constraint is lifted.

Third, we use with analogous motivation the fact that the
effective total angular momentum of the cortex vanishes, i.e.,

∫
S

r × v dS � ∑N−1

]�0
r] × v]A] � 0, (37)

in order to tackle the invariance under solid rotation. Again, in
presence of additional external torques this constraint has to be
lifted.

3.3 Minimization Ansatz for the Force
Balance
The overall goal is to solve the force balance equations for the
velocity field. Accompanied by the incompressibility constraint
from the cytoplasm, we also solve for the pressure. Since the
solution fulfills the force balance on the complete thin shell, the
force balance equations must be fulfilled at every node r]. Using
Eq. 34, we define

χ2 � ∑
]

(l.h.s.]1 − r.h.s.]1)2 + (l.h.s.]2 − r.h.s.]2)2 + (l.h.s.]n − r.h.s.]n)2[ ], (38)

taking the two tangential and the normal force balance equation
into account, with the sum ∑

]
over all nodes. The χ2 vanishes for

the exact solution of the force balance equations by construction.
In order to incorporate the constraints detailed in the previous

section 3.2, we use the concept of Lagrange multipliers. The
incompressibility constraint Eq. 35 imposes one condition
whereas the constraints in Eqs 36, 37 each impose three
conditions due to the three components of the velocity vector.
For each of the conditions we introduce a separate Lagrange
multiplier. The constraint times the Lagrange multiplier is added
to the χ2 in Eq. 38, e.g.,

χ2 � ∑
ρ

∑
]

l.h.s.]ρ − r.h.s.]ρ( )2
+ λ1 ∑N−1

]�0
vx]A] − 0⎛⎝ ⎞⎠ + λ2 ∑N−1

]�0
vy]A] − 0⎛⎝ ⎞⎠ + λ3 ∑N−1

]�0
vz]A] − 0⎛⎝ ⎞⎠,

(39)
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for the total velocity constraint Eq. 36 as illustration and with ρ �
1, 2, n.

For the exact solution the χ2 would become zero, numerically
we seek the minimum of χ2. Thus, in simulations we have to solve
for the velocity set vx] , v

y
] , vz] in Eq. 32 together with the pressure

difference P, which minimizes χ2. We therefore have to calculate

arg min
{v]},P

χ2 � arg min
{vx] },{vy] },{vz] },P

χ2. (40)

In order to perform this minimization, we calculate the
derivatives of χ2 with respect to the velocity components of
each node vi] and with respect to P. Due to minimization the
derivatives equal zero and we can separate this equality for terms
linear in vi], P and terms independent of the velocity or pressure,
where we use the parabolic expansion of the velocity field in Eq.
18. In total, this leads to a system of linear equations in matrix
form with dimensions (3N + 1) × (3N + 1). There we have 3N
rows due to the derivatives w.r.t. to the N velocities with 3
components each and we have 3N columns due to the N
velocities with 3 components each in the solution vector. In
addition, we have a row and a column due to the derivative with
respect to and the dependency on the pressure, respectively. In
the minimization procedure in Eq. 40, each Lagrange multiplier
enters as an additional unknown, thus adding one row
(containing derivatives w.r.t. the Lagrange mulitplier zχ2

zλj
) and

one column containing the coefficients of λj.
In order to calculate the corresponding matrix to the system of

linear equations we have to evaluate the left hand side and right
hand side of all three force balance equations on each node in the
local coordinate system Eq. 30. This we do using the velocity
derivatives in local coordinates as detailed in 3.1. For details on
the dependency on the actual velocity values we refer to section
3.6. The system of equations can finally be solved numerically
using LU-Decomposition.

3.4 Improving Numerical Stability by an
Artificial Bending Viscosity
The velocity field in the cell cortex advects the cortex material
and thus determines its reorganization and changes in shape
over time. While tangential flows are parallel to the current
shape, the normal velocity leads to a deformation of the cortex
shape. For reasons of numerical stability, we consider here an
additional damping contribution to the surface stress tensor
which is similar to a bending viscosity [40]. The aim of this
additional bending contribution, which is chosen to be small, is
to include a condition on the second derivative of the normal
velocity, which does not appear in the force balance equations.
Due to its smallness and the limitations of the parabolic
expansion we neglect the contribution of the bending
contribution to the tangential force balance equations. The
normal component of the velocity is obtained from the three-
dimensional velocity by projection onto the normal vector Eq. 6.
Derivatives are again obtained using a parabolic expansion
similar to Eq. 18. We consider the time derivative of the
curvature tensor in the Eulerian frame according to Salbreux
and Jülicher [40].

ztC
β

α � −∇α∇βvn − vnCαcC
βc, (41)

and the derivative of the trace

ztC
c

c � −∇c∇cvn − vnCcδC
cδ � −∇c∇cvn − vnC δ

c C
c
δ . (42)

Using the expressions above, an additional in-plane
surface stress related to a bending �η and bending bulk �ηb
viscosity, which account for dissipation due to curvature
changes [40], is chosen as

t αβ
b � 2�ηgαc zt C β

c − 1
2
Cδ

δδ
β
c( ) − Cδ

δv
nC β

c[ ] + �ηb(ztCc
c)gαβ

� 2�η −∇α∇βvn − vnCα
cC

βc − Cc
cvnC

αβ( )
+ �ηb − �η( ) −∇c∇cvn − vnC δ

c Cc
δ( )gαβ.

In Ref. [40] a contribution due to effective bending viscosities
is introduced for a thin shell with broken up-down-symmetry and
the bending viscosity can be negative. Again, we note that its
addition here, in our three-dimensional framework, with an
additional factor involving the normal velocity is motivated by
reasons of numerical stability. The normal force balance
contribution is calculated by contraction with the curvature
tensor

t αβ
b Cαβ � 2�η −∇α∇βv

n − vnCαcC
c

β − Cc
cvnCαβ( )Cαβ

+ �ηb − �η( ) −∇c∇cvn − vnC δ
c C

c
δ( )gαβCαβ

� 2�η −∇α∇βv
n − vnCαcC

c
β − CvnCαβ( )Cαβ

+ �ηb − �η( ) −∇c∇cvn − vnC δ
c C

c
δ( )C,

with C � gαβCαβ. With the derivatives of the normal velocity
Avn , Bvn , . . . , Evn in analogy to Eq. 18, the trace of the second
derivative can be written as

∇c∇cvn � gαβ∇α∇βv
n � g11Cvn + g22Dvn . (43)

We further use

CαβC
αβ � C11C

11 + 2C12C
12 + C22C

22 � ~C, (44)

and

CαcC
c

β Cαβ � �C,

to obtain in total

t αβ
b Cαβ � −2�ηC11 − �ηb − �η( )Cg11( )Cvn + −2�ηC22(

− �ηb − �η( )Cg22)Dvn − 4�ηC12Evn

+ −2�η�C − 2�ηC~C − �ηb − �η( )C~C( )vn. (45)

This contribution can be added to the normal force balance
equation and can be incorporated into the solution procedure
detailed above in a straightforward manner.

3.5 Velocity Derivatives as a Function of
Neighboring Velocity Vectors
Up to now, we have written the force balance Eqs 26–28 in terms
of derivatives of the velocity vector in local coordinatesAv, Bv, . . .,
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Ev, which themselves are three-dimensional Cartesian vectors.
What remains is to express these derivatives by means of the
actual velocity vectors at all nodes, which allows us to write down
the force balance as system of equations that is directly solvable
for the velocity. To do so, i.e., to discretize the derivatives on the
numerical grid, we use a parabolic expansion. For this, we
consider the neighborhood of a node as sketched in Figure 1.
Considering all N] neighboring nodes a(]) of node ], the
coefficients Av, Bv, . . ., Ev can be expressed by the velocity
vector evaluated at the central node and at the sites of the
neighboring nodes

Av � Av v], {va(])}( ) with a(]) � 1, . . . , N]. (46)

In order to do so we write down the velocity at some distance
around the (central) node ] in the local coordinates of the central
node ξ, η

�v(ξ, η) � v] + Avξ + Bvη + 1
2
Cvξ

2 + 1
2
Dvη

2 + Evξη, (47)

which is theparabolic expansionEq. 18 evaluated in the local coordinate
system Eq. 30. The position vector can be evaluated at the position of
the N] neighboring nodes in the local coordinates of the central node,
i.e., ξa(]), ηa(]), which are obtained by projection of the difference vector
between the two nodes onto the local coordinate vectors. The expanded
velocity at the position of the neighbors thenhas to be equal to the actual
velocity va of the neighbor node a(]). Therefore, the squared difference
of expanded and actual velocity has to be minimal

χ2v � ∑N]

a�1
�v ξa(]), ηa(])( ) − va[ ]2. (48)

The minimization is performed analytically in several steps,
which are outlined here and detailed in the Supplementary

FIGURE 2 | Axisymmetric active surface stress on a static spherical cortex. (A) An axisymmetric active surface stress distribution in terms of Y20 is considered on a
spherical cortex. In (B,C) the full system (case i) is solved whereas (D,E) show the purely tangential system (case ii). (B) The three-dimensional velocity field is shown as
obtained by the numerical solution of the full system. (C)While the tangential velocity is zero, the normal velocity depending on the polar angle θ agrees very well with the
analytical prediction. (D) The three-dimensional velocity field is shown as obtained by the numerical solution for solving the tangential force balance only. (E)While
the normal velocity is zero, the absolute value of the tangential velocity depending on the polar angle θ agrees very well with the analytical prediction. For both the full
system i) in (F) and the purely tangential system ii) in (G), the error of the velocity converges with increasing resolution.
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Appendix S1. Using the differential form of Eq. 48 we calculate
the derivatives with respect to Av, Bv, . . ., Ev that have to equal
zero due to minimization. This results in a system of linear
equations expressed in terms of a 5 × 5 matrix for each of the
three vector components with the velocity derivatives forming the
solution vector. We invert the matrix analytically using
Mathematica. By means of the inverse matrix we are able to
write down the velocity derivatives Av, Bv, . . ., Ev in terms of the
velocity values, as illustrated by Eq. 46.

3.6 Summary of the Algorithm
Putting everything of the above together, we here summarize our
numerical algorithm. Starting from a prescribed active surface stress

distribution ζ β
α on the initial shape of the cortex, we compute the

velocity in the cortex in Cartesian coordinates v by the following steps.

1) evaluate the active surface stress ζ β
α on the nodes of the

discretized cortex and construct a local coordinate system for
each node.

2) compute derivatives of the active surface stress ζ β
α together

with the metric and curvature tensor at each node using a
parabolic fitting for the active surface stress or the position
vector, respectively, analogous to Eq. 18.

3) use the inverse parabolic fitting detailed in Supplementary
Appendix S1 to obtain the derivatives of the velocity vector
up to second order Av, Bv, . . ., Ev in local coordinates at each

FIGURE 3 |Non-axisymmetric active stress. (A) A non-axisymmetric active surface stress distribution in terms of Y21 is considered. In (B,C) the full system (case i) is
solved whereas (D,E) show the purely tangential system (case ii). (B) The numerically obtained three-dimensional velocity feld is shown for i) the full system. (C)While the
tangential velocity is zero, the normal velocity depending on the polar angle θ shown for ϕ � 0 agrees very well with the analytical prediction. (D) The numerically obtained
three-dimensional velocity field is shown for ii) solving the tangential force balance only. (E) While the normal velocity is zero, the absolute value of the tangential
velocity depending on the polar angle θ shown for ϕ � 0 agrees very well with the analytical prediction. The error (F) of the normal velocity for the full system i) as well as (G)
the error of the tangential velocity for the reduced system of tangential force balance ii) converges with increasing resolution.
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node. These are functions of the (up to now) unknown velocity
values at the node and its neighbors, e.g., Av � Av(v], {va(])}).

4) use these derivatives to express the force balance equations
Eqs 26–28 in terms of the velocity components of all nodes
[including bending contribution Eq. 45 if applicable].

5) construct the χ2 function Eq. 40 and build the corresponding
matrix by taking derivatives w.r.t. the unknowns.

6) solve the corresponding linear system for the velocity field
{v]}, the pressure P and the Lagrange multipliers.

4 VALIDATION AND APPLICATION

In the following, we intensively validate the developed algorithm for
a viscous active cell cortex in three dimensions. First, we consider in
section 4.1 a static spherical cortex subjected to an active surface
stress distribution in terms of spherical harmonics.We compare the
resulting velocity field on the cortex to analytical solutions derived
in Supplementary Appendix S2. Next, we compare our
three-dimensional simulations for a dynamically deforming
cortex to axisymmetric simulations in section 4.2. Finally, we
exploit the capabilities of our fully 3D algorithm to study fold
formation in section 4.3 as well as furrow formation under non-
axisymmetric external perturbations in section 4.4.

4.1 Velocity Profile by Spherical Harmonics
on a Static Spherical Cortex
As a first test setup, we compare three-dimensional numerical
results on a static spherical cortex to corresponding analytical

solutions. We consider an isotropic active surface stress
distribution across the cortex

ζαβ(θ, ϕ) � ζ(θ, ϕ)gαβ (49)

which is analytically expanded in terms of spherical harmonics
Ylm (θ, ϕ)

ζαβ(θ, ϕ) � ζ(θ, ϕ)gαβ � ∑∞
l�0

∑l
m�−l

ζ lmYlm(θ, ϕ)gαβ, (50)

where ζ lm are the expansion coefficients of the active surface stress
distribution. Here, greek indices denote the two angles of
spherical coordinates θ and φ. For the given active surface
stress profile in Eq. 50, we derive an analytical solution for the
velocity field v in Supplementary Appendix S2. We expand the
tangential velocity in terms of vector spherical harmonics vt �∑
l,m

v1lmzαYlm eα with coefficients v1lm (we note here that the

component in direction n × (zαYlm)eα vanishes as discussed in
the Supplementary Appendix S2) and the normal velocity in
terms of spherical harmonics vn � ∑

l,m
vnlmYlm with coefficients vnlm.

The force balance equations Eq. 16, Eq. 17 then lead to analytical
relations for the velocity expansion coefficients v1lm and vnlm depending
on ζ lm. These relations are given in Supplementary Equations
S2.23, S2.25 and determine the velocity field. In the following,
we consider the quantities in units of the inital cortex radius R0

and the planar shear viscosity thus fixing R �R0�1 and ηs � 1. In
the following, we consider the results for l >1. On the one hand,
considering the full system of equations (case i)), the difference

FIGURE 4 | Dynamically deforming viscous active cortex. (A) The active surface stress distributed according to Eq. 59 with exponent p � 8, offset ζ0 � 1, and
amplitude ζ̂ � 1 is shown color coded on the initially spherical, discrete cortex. Towards the equator the isotropic active surface stress increases. (B) Resulting velocity
profile on the initial cortex and (C) velocity after the cortex has reached its final shape where the normal velocity vanishes.
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of the conditions Supplementary Equations (S2.23) and
(S2.25) implies a vanishing in-plane velocity, i.e., the
expansion coefficients of the in-plane velocity vanish

v1,i)lm � 0. (51)

In turn, the normal velocity has to fulfill Supplementary
Equation S2.27 which leads to

vn,i)lm � − R

2ηb
ζ lm. (52)

In summary, the solution for the velocity field for given active
surface stress ζ lm is

vi) � − R

2ηb
ζ lmYlmn, (53)

with vanishing tangential component.
On the other hand, this system can be utilized to test the in-

plane velocity separately (case ii). To do so, we consider vanishing
bulk viscosity ηb � 0 and fix the normal velocity vn to zero. The
latter implies

FIGURE 5 | Comparison of cortex dynamics. (A) Comparison of the pole to pole and furrow radius between axisymmetric (lines) and three-dimensional (dot)
simulations for the setup shown in Figure 4with p � 8, ζ0 � 1, ζ̂ � 1 (B–G) The tangential (left) and normal (right) velocity profile obtained from axisymmetric simulation
and three-dimensional simulation is compared at different time points. Both simulation methods are in very good agreement.
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vn,ii)lm � 0, (54)

instead of solving the normal force balance. In this case,
the tangential force balance equations lead to the
condition (Supplementary Equation S2.28) for the
tangential velocity coefficients which become

v1,ii)lm � 1
[l(l + 1) − 2] ζ lm. (55)

Thus, for solving the tangential force balance equation only in
case of a vanishing normal velocity, we obtain an analytical
solution for the velocity

vii) � v1,ii)lm zαYlm( )eα � 1
[l(l + 1) − 2] ζ lm zαYlm( )eα, (56)

which is due to a given active surface stress with coefficient ζ lm.
In both cases, the analytical solution in Eq. 53 for 1) the full

system and in Eq. 56 for 2) the pure tangential system allows a direct
comparison between the analytical and numerical solution. Using
the three-dimensional algorithm developed above, we consider a
discrete cortex with 2562 nodes and 5120 triangles without bending
viscosity. After applying an active surface stress distribution in terms
of spherical harmonics according to Eq. 50, we solve numerically for
the three-dimensional velocity field. In case 2) the normal force
balance equation entering the minimization ansatz can be replaced
by the condition of vanishing normal velocity on each node. In the
following, the comparison to the analytical solution is performed by
considering two types of error measures. On the one hand, we
consider the absolute value of the difference between numerical v
and analytical solution van per node and average over all nodes

FIGURE 6 | Varying active surface stress amplitude. (A) The active surface stress distribution according to Eq. 59 with exponent p � 4, offset stress ζ0 � 1, and
amplitude ζ̂ � 1 is shown color coded on the initially spherical, discrete cortex. (B,C) Resulting velocity profile on the (B) initial cortex and on the (C) finally deformed
cortex with arrows illustrating the direction and color coded magnitude. (D,E) Velocity profile for an active surface stress magnitude of ζ̂ � 3. In the finally deformed state
the normal velocity vanishes.
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〈ϵ〉 � 1
N

∑
]
|v − van|. (57)

On the other hand, we calculate the sum of the squared
difference of the velocities relative to the maximum velocity,
average, and take the square root to obtain the relative error

ϵrel �

�����������������������������������
1
N ∑

]
vx − vanx( )2 + vy − vany( )2 + vz − vanz( )2[ ]

||van,max||

√√
. (58)

We first consider an axisymmetric active surface stress
distribution in terms of ζ20Y20 with ζ20 � 1 as shown in
Figure 2A) on the discrete cortex. We further use ηb � 1 and
an active surface stress offset of ζ00 � 0. A variation of the active
surface stress offset leads to a finite pressure difference, but the
velocity field is not altered. Figures 2B–E shows the full, three-
dimensional velocity profile obtained numerically with the velocity
magnitude per node color coded and the velocity direction
indicated by arrows and the velocity depending on the polar
angle θ in comparison to the analytical solution for both
systems. In system 1), the normal velocity is finite and points

FIGURE 7 | Comparison of cortex dynamics for ζ̂ � 1. (A) Comparison of the pole to pole radius and furrow radius at the equator between axisymmetric (lines) and
three-dimensional simulation (dots) for the system shown in Figure 6 (A–C) with p � 4, ζ0 � 1, ζ̂ � 1. (B–G) The velocity profile obtained from axisymmetric simulation
and three-dimensional simulation is compared at different time points. Tangential (and normal right) velocity depending on the position z

R0
are shown at time (B,C) t

ta
� 0.1,

(D,E) t
ta
� 1.5, (F,G) t

ta
� 3. Both simulation methods are in very good agreement.
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outward the cell around the equator and inward at both poles. In
system 2), the tangential velocity is finite and directed from the
equator towards the poles. Each three-dimensional simulation
shows very good agreement with the analytical solution, as
shown by the comparison over the polar angle. As a next
step, we quantify the error 〈ϵ〉 as well as ϵrel given in Eqs 57, 58,
respectively, and vary the resolution of the discrete spherical
cortex. As shown in Figures 2F,G, we obtain a systematic
decrease of both errors with increasing resolution for both
systems. The error shows a scaling inversely proportional to
the number of nodes.

We then proceed in Figure 3 with a non-axisymmetric
distribution of active surface stress in terms of ζ21Y21 with
ζ21 � 1 and ζ00 �

���
4π

√
shown in Figure 3A. Again, we show

the full system i) in Figures 3B,C and the purely tangential
system ii) in Figures 3D,E. As a consequence of the non-
axisymmetric active surface stress distribution, the cortical
velocity profile is no longer axisymmetric. Figure 3B shows
the three-dimensional velocity field for the full system i) and
Figure 3D shows the three-dimensional velocity field for the
purely tangential system ii) with normal velocity restricted to
zero. Figure 3B shows four patches of large normal velocity.

FIGURE 8 | Comparison of cortex dynamics for ζ̂ � 3. (A) Comparison of the pole to pole radius and furrow radius at the equator between axisymmetric (lines) and
three-dimensional simulation (dots) for the system shown in Figure 6 (D,E)with p � 4, ζ0 � 1, ζ̂ � 3. (B–G) The velocity profile obtained from axisymmetric simulation and
three dimensional simulation is compared at different time points. Tangential (left) and normal (right) velocity depending on the position z/R are shown at time (B,C)
t
ta
� 0.1, (D,E) t

ta
� 1.5, (F,G) t

ta
� 3. Both simulation methods are in very good agreement.
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Opposite patches show either an outward or an inward pointing
normal velocity. In-between, the normal velocity becomes zero. At
the sites where in Figure 3B the normal velocity is maximal, the
tangential velocity in Figure 3C vanishes. Similar to Figure 2 the
tangential velocity points from sites with outward pointing
normal velocity towards sites with inward pointing normal
velocity in Figure 3B. In Figures 3C,E we compare the
numerically obtained velocity to the analytical solution by
showing the velocity value depending on the polar angle θ for
an azimuthal angle ϕ � 0. Again, we observe very good
agreement between numerical and analytical solution and a
systematic convergence with increasing number of nodes as
shown in Figures 3F,G for both systems i) and ii), respectively.

4.2 Dynamics of an Axisymmetric Viscous
Active Cortex
Having tested the algorithm for the static scenario in the previous
section, we now apply our method to a dynamically evolving
viscous active cortex immersed in a passive outer fluid. We
consider an active surface stress distribution similar to what is
known for cytokinesis, i.e., the separation of the two daughter
cells by an evolving cleavage furrow during cell division [30, 32,
33, 46]. Initially, on the undeformed spherical cortex, we
consider an active surface stress that is isotropic with constant
offset ζ0 at the poles and increases towards the equator to form a
contractile ring

ζ11(θ, ϕ) � ζ22(θ, ϕ) � ζ(θ, ϕ) � ζ0 + ζ̂ exp −σ θ − π

2
( )p( ), (59)

where ζ̂ is the amplitude of active surface stress increase
around the equator, p the exponent, and σ the width of the
active surface stress distribution. Again we use R � 1 and for
the active surface stress we fix ζ0 � 1, σ � 10, retaining the planar
shear and bulk viscosity as ηs � ηb � 1. The exponent p is varied.We
use an initially spherical mesh with 2562 nodes and 5120 triangles.

For the given active surface stress distribution in Eq. 59 and
for given cortex shape, we solve numerically for the three-
dimensional velocity field v on the discrete cortex. We split up
the total velocity field v into the tangential velocity vt � (1 − n⊗ n) ·
v and the normal velocity vn � (n⊗ n) · v. Since only the normal
velocity leads to flows in the cortex that change the overall
cortex shape, we integrate the cortex evolution similar to Refs.
[45, 71] by advecting each node ] with its normal velocity v]n.
With this, a numerically demanding re-meshing, which would
be necessary in case of tangential advection of the mesh nodes, is
avoided. Advection is carried out using the Euler algorithm

r](t + Δt) � r](t) + v]n(t)Δt, (60)

with a time step Δt, which is typically chosen to be Δt � 5 × 10–4 ta
with the time scale ta � ηs

ζ0
. After a number of time steps, we

observe that the normal velocity on the whole cortex vanishes,
i.e., the cortex has reached a final, steady state.

We first consider a broad distribution of active surface stress
with exponent p � 8 in Eq. 59 with ζ̂ � 1 as shown in Figure 4A.
We apply a bending viscosity of �η � 0.0005ηs and �ηb � 0.0025ηs.
Figure 4B shows the velocity field on the initially spherical cortex.
Because of the dominating contractile active surface stress
around the equator, the normal velocity points towards the cell

FIGURE 9 | Fold formation. A cortex undergoing fold formation with a patch of increased active surface stress using (A–C) (left) ζ̂ � 3.5, σϕ � 200 and (D–F) (right)
ζ̂ � 4.5, σϕ � 12. In (A,D) the active surface stress is color coded whereas in (B,C,E,F) the velocity magnitude is color coded and its direction is indicted by arrows. The
upper half of the cortex is shown. The initial spherical cortex bends inwards at the patch of increased active surface stress while it extends at the poles.
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interior around the equator. As a consequence of the
incompressibility of the enclosed fluid, the normal velocity
points outward at the poles. Therefore, the velocity leads to an
expansion of the cortex along the z-axis and a simultaneous
contraction around the equator. Integration of the cortex
evolution leads to the shape shown in Figure 4C, where we
also show the final velocity field on the deformed cortex. Here,
no normal velocity remains, but a finite tangential velocity
points towards the equator.

For this setup, we compare the three-dimensional dynamics to
the one obtained by axisymmetric simulations of viscous active
surfaces [72] in Figure 5. Details of the axisymmetric simulations
are given in Supplementary Appendix S4. For comparison
between the simulation methods, we track the distance
between the poles, which is divided by a factor of two, as well
as the radius of the furrow at the equator. Both quantities are
displayed as functions of time in Figure 5A. While the pole to
pole radius increases over time, the cortex contracts at the equator
and thus the furrow radius decreases. Both quantities reach a
constant plateau at longer time, which corresponds to the
convergence of the simulation and results from the interplay of

the contractile active stress at the pole and cortical ring contraction
mediated by the incompressibility of the enclosed fluid [33]. We
obtain excellent agreement between three-dimensional and
axisymmetric simulation.

To go one step further, we also compare the velocity field on
the discrete cortex at different times. On the left hand side of
Figure 5 we show the absolute value of the tangential velocity vt
depending on the axial position z. On the right hand side we show
the normal velocity vn. Velocities are shown at different times and
are normalized by va � R0

ta
. While the tangential velocity increases

over time, i.e., with increasing deformation of the cortex, the normal
velocity decreases until the cortex reaches its final shape (the latter is
shown in Figure 4C). Overall, our developed three-dimensional
algorithm leads to a velocity field on the evolving cortex, which is in
very good agreement with the axisymmetric simulation.

Next, we consider an active surface stress distribution around
the equator, which is narrower with exponent p � 4 in Eq. 59 and
systematically vary the amplitude ζ̂ . Figure 6 shows the active
surface stress distribution for ζ̂ � 1 as illustration in Figure 6A
together with the corresponding shape and velocity profile in
the Figure 6B initial and Figure 6C final state. Figures 6D,E

FIGURE 10 | Sheared cortex. (A) A cortex subject to an initial shear of cx � 0.35 is shown with the active surface stress distribution according to Eq. 59with ζ̂ � 3.5
color coded. The velocity field is shown on the evolving cortex over time with arrows indicating the direction and magnitude given by color code for time (B)
t
ta
� 3.5 × 10−3, (C) t

ta
� 3.5 × 10−2, (D) t

ta
� 8.7 × 10−2 and (E) t

ta
� 3.5. While the cortex contracts around the equator and extends at the poles, it relaxes back to a shape

nearly oriented as the active surface stress distribution on the undeformed cortex.
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show the initial and final state for ζ̂ � 3. We use �η � 0.0005ηs
and �ηb � 0.0025ηs in Figures 6A–C and �η � 0.0001ηs, �ηb �
0.0035ηs in Figures 6D,E. With increasing amplitude of the
active surface stress the cortex extends farther at the poles and
constricts around the equator more strongly. The final tangential
velocity increases systematically, which is due to the gradient in the
active surface stress distribution increasing with increasing
magnitude and constant offset. We again compare the dynamics
based on the pole to pole and the furrow radius as well as the
velocity field at different times to axisymmetric simulations. In
Figure 7, we show the comparison for the amplitude ζ̂ � 1 and in
Figure 8 for ζ̂ � 3. In all cases the results of the three-dimensional
algorithm agree very well with the axisymmetric simulations.

Overall, the comparison to axisymmetric simulations clearly
shows the accuracy of the developed algorithm for a viscous active
cortex in three dimensions also in case of dynamic cortex
evolution.

4.3 Embryonic Fold Formation
As a first sample application we consider a non-axisymmetric
stress pattern, which leads to the formation of a local indentation
reminiscent of fold formation during embryogenesis [50]. We
apply a line of increased active stress connecting both poles,

which broadens towards the equator. Therefore, we modulate
the active stress pattern in Eq. 59 with two additional Gaussian
functions in ϕ-direction, i.e., we multiply by exp(−σϕ(ϕ − π/2)4)
or exp(−σϕ(ϕ − 3π/2)4), respectively. The resulting active
surface stress distribution is shown in Figure 9A for ζ̂ � 3.5
and σϕ � 200 and in Figure 9D for ζ̂ � 4.5 and σϕ � 12, where in
both cases ζ0 � 1, p � 4, and σ � 1.5. We note that the cortex
fulfills up-down symmetry such that we only show one half for
clarity. The velocity profiles shown in Figures 9B,C,E,F,
respectively, show a large initial inward velocity across the
patch of enhanced active stress, where in the end Figures
9C,F a local fold forms. During fold formation an in-plane
flow from the poles towards the fold develops. At the poles the
cortex expands.

4.4 Robust Cleavage Furrow Formation
Under Non-axisymmetric Perturbations
In order to provide a further example application of an evolving
cortex in a non-axisymmetric situation, we consider in the
following a cell cortex with an initial shape that is not aligned
with respect to the Cartesian coordinate axes. We use the same
values for the viscosity as above, i.e., ηs � 1 and ηb � 1, an exponent

FIGURE 11 | Tilted sheared cortex. (A) A cortex subject to an initial shear of cx � 0.35 is shown with the active surface stress distribution according to Eq. 59 with
ζ̂ � 3.5 but rotated with an angle of 45° towards the direction of the shear color coded. The velocity field is shown on the evolving cortex over time with arrows indicating
the direction and magnitude given by color code for time (B) t

ta
� 3.5 × 10−3, (C) t

ta
� 3.5 × 10−2, (D) t

ta
� 8.7 × 10−2 and (E) t

ta
� 3.5. While the cortex contracts around the

equator and extends at the poles, it retains its overall orientation.
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p � 4 for the active surface stress distribution with constant offset
ζ0 � 1 and amplitude ζ̂ � 3.5. For the bending viscosity we choose
�η � 1 × 10−4 and �ηb � 5 × 10−3. Initially, we deform the cortex
according to a shear strain of cx � 0.35 along the x-axis.

For the first setup, the active surface stress distribution is
fully non-axisymmetric as shown in Figure 10A. We show in
Figures 10B–E the dynamic evolution of the cortex with the
velocity magnitude per node color coded and the velocity
direction indicated by arrows. Initially, a large normal
velocity is observed in Figure 10B with a stripe-like
pattern. Roughly along the long axis of the sheared cortex
the velocity points inwards the cell cortex. In direction
perpendicular to the shear, the velocity points outwards of the cell
cortex. This illustrates the tendency of the cell cortex to realign with
respect to the symmetry of the active surface stress distribution on the
undeformed cortex, which is similar to the one shown in Figure 6A.
The reorientation is visible throughout the time evolution as well.
Finally, the cell cortex is nearly aligned with the initial gradient of the
active surface stress distribution. This points to the symmetry of the
active surface stress distribution being the driving mechanism behind

this reorientation. From Figures 10D,E it can be seen that the cortex
subsequently contracts around the equator at the end of the
reorientation. In total, this indicates that the underlying symmetry
of the active surface stress distribution triggers a reorientation of the
total cortex, which in the end leads to a robust furrow formation
despite the initial shear disturbance.Wehypothesize that in nature this
autonomous reorientation may explain the robustness of cell
division in noisy environments where external non-
axisymmetric perturbations due to, e.g., forces by
neighboring cells may be prevalent.

In the second setup, we consider the dynamic evolution of the
cortex subject to the same initial shear, but with an active surface stress
distribution that is rotated such that the gradient of the active surface
stress distribution nearly aligns with the shear. The initial shape is
shown in Figure 11A while the evolution of the cortex is shown in
Figures 11B–E at the same time points as above. Initially, the flow field
shows four patches of large velocity in Figure 11B. The evolving flow
field first leads to a broadening of the cortex and a slight reorientation,
presumably with respect to the symmetry of the active surface stress
distribution. Subsequently, the cortex contracts around the equator

FIGURE 12 |More strongly sheared cortex. (A) A cortex subject to an initial shear of cx � 0.75 is shown with the active surface stress distribution according to Eq.
(59)with ζ̂ � 3.5 color coded. The velocity field is shown on the evolving cortex over time with arrows indicating the direction and magnitude given by color-code for time
(B) t

ta
� 3.5 × 10−3, (C) t

ta
� 3.5 × 10−2, (D) t

ta
� 8.7 × 10−2 and (E) t

ta
� 3.5. While the cortex contracts around the equator and extends at the poles, it relaxes back to a

shape nearly oriented as the active surface stress distribution on the undeformed cortex also for this larger shear rate.
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with the eventual shape shown in Figure 11E. The tangential velocity is
directed from the poles to the equator.

We note that for very long times—after reaching a steady state
regarding the reorientation and furrow formation—a slight
asymmetry in the volume of the two daughter cells leads to an
unstable shape of the dividing cell, which is due to the difference
in the Laplace pressure following a difference in curvature
between both regions [31, 46].

Finally, we consider about twice the shear rate, i.e., cx � 0.75, in
Figure 12 where the results are similar to before.

These two examples illustrate the applicability of our
algorithm to non-axisymmetric situations with a three-
dimensional deformation of the cortex.

5 CONCLUSION

In this work, we presented a simulation algorithm for the time-
dependent and fully three-dimensional deformation of a viscous cell
cortex including active stresses. The cell cortex is represented as a thin
shell in the framework of active gel theory and discretized using a set of
nodes connected by flat triangles. Using an inverted parabolic fitting
procedure, we were able to express the governing force balance
equations on each node in terms of the unknown velocity
components. The resulting linear system is solved on the whole
cortex using a global minimization ansatz. Extensive comparison to
analytical solutions on a rigid sphere as well as to axisymmetric
simulations of a dynamically deforming shape showed very good
agreement. As first examples of non-axisymmetric situations, we
considered fold formation as well as a cortex subject to a shear
deformation showing a reorientation mechanism of the cortex, which
can further contribute to robustness of furrow formation or cell
division.

The inherent three-dimensional character of the present
algorithm allows the computational investigation of more
complicated scenarios of cell or tissue mechanics in the future.
Especially, the robustness of cell division/furrow formation with
respect to externally induced deformations, external constraints as
e.g. present during embryogenesis, or even positioning of the
contractile ring can be investigated in more detail. Shape changes
of tissue layers triggered by active stress distributions as they occur
during embryonic or cancer development can also be addressed.

The generality of the presented algorithm, which directly solves the
force balance equations, allows for a straightforward inclusion of
different constitutive laws for cortex behavior and active stress. By
way of example, the active surface stress distribution on the discrete
cortex could be derived from a concentration field and/or take into
account cytoskeleton polymerization and depolymerization. Coupling
to an external environment can be achieved by adding corresponding
external forces to the force balance equations. Therefore, it would be
possible to compute cortex dynamics inside a flowing liquid in
combination with a fluid solver. Our developed numerical tool can

thus be the basis for future investigations of various three-dimensional
scenarios of cell and tissue morphogenesis.
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