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Small Training Set
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Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel

We present an analysis method that can automatically classify live cancer cells from cell
lines based on a small data set of quantitative phase imaging data without cell staining. The
method includes spatial image analysis to extract the cell phase spatial fluctuation map,
derived from the quantitative phase map of the cell measured without cell labeling, thus
without prior knowledge on the biomarker. The spatial fluctuations are indicative of the cell
stiffness, where cancer cells change their stiffness as cancer progresses. In this paper, the
quantitative phase spatial fluctuations are used as the basis for a deep-learning classifier
for evaluating the cell metastatic potential. The spatial fluctuation analysis performed on the
quantitative phase profiles before inputting them to the neural network was proven to
increase the classification results in comparison to inputting the quantitative phase profiles
directly, as done so far. We classified between primary and metastatic cancer cells and
obtained 92.5% accuracy, in spite of using a small training set, demonstrating the method
potential for objective automatic clinical diagnosis of cancer cells in vitro.

Keywords: quantitative phase microscopy, spatial fluctuations, classification, deep-learning, neural network,
cancer cells

INTRODUCTION

Much effort has been invested on studying the relationship between biological cell properties and
cancer. Detection and monitoring of the cell physiological changes by isolating circulating tumor
cells from liquid biopsies could be a breakthrough in disease diagnosis and treatment. Conventional
cancer cell analysis and sorting techniques, such as fluorescence-based measurements, require
specific cell labeling, with prior knowledge of the labeling agent [1-5]. Alternatively, the biophysical
properties of cancer cells might be used as a clinical diagnosis tool [6-9], such as an increased
dependence on glucose [10]. Cancer cell stiffness has been reported to correlate well with the disease
invasiveness, due to cellular stiffness variations in tumors following changes in cell cytoskeleton, and
membrane microviscosity, [6, 8, 11-13]. Metastatic cells have elastic features that allow them to
detach from the primary tumor, penetrate the walls of lymphatic or blood vessels, and create
secondary or metastatic tumors [14-17]. Thus, cancer cell stiffness and its associated properties
could form a diagnosis tool, by classifying cancer cell types for early detection, monitoring, and
development of specific cancer treatment [18].

The common way to characterize cell stiffness is atomic force microscopy (AFM) [19]. However,
this modality is complicated and hard to perform in clinical settings. Additional methods for cell
stiffness measurements, such as optical tweezers and magnetic tweezers [20, 21], pipette aspiration
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[22], microfluidic optical stretcher [23], and mechanical
microplate stretcher [24, 25], are invasive and cause
deformations that may lead to cell damage.

Quantitative phase imaging (QPI) clinical modules can record,
without using cell staining, the fluctuation maps of live biological
cells based on their quantitative phase map, which is proportional
to the optical path delay (OPD) map of the cell [26-30].
Reflection phase microscope with coherence gating have
shown success to measure cell membrane temporal fluctuation
[31]. This method uses coherence gating and requires manual
adjustments to the cell surface, which limits the possibility of
producing an automatic test for a large number of cells.
Quantitative phase temporal fluctuations can be measured
directly from the entire cell thickness for red blood cells
(RBC), as described in Refs. [32, 33], and for cancer cells, as
described in Ref. [34]. The latter analysis can be used as a
diagnostic tool for discriminating between healthy and cancer
cells of different metastatic potential. However, since this method
measures temporal fluctuations, it requires high temporal
stability of the optical system and good cell-surface
attachment. Also, in Ref. [34], no classifier was presented but
only statistical results. Another approach was presented in Ref.
[35]. It uses the cell stationary quantitative phase map to capture
spatial differences. By itself, this map gives only small statistical
differences between groups of cancer cells. Therefore, instead, this
map was transformed into the disorder-strength map, which is
better linked to the cell shear stiffness. The method is
demonstrated using stiffness-manipulated cancer cell lines,
rather than cells originated from in vivo stages of cancer. Here
too, statistical data was given, rather than a classifier that can
differentiate between cancer cells on an individual cell basis.

In the last years, deep-learning techniques were significantly
developed, due to the rapid evolvement of computational
resources. Conventional machine-learning techniques extract
hand-crafted features from the cell quantitative phase map [36],
where hidden features in the image might be missed. Deep-learning
techniques, on the other hand, also take into account hidden
features, since the input to the classifier is the entire OPD map,
rather than the hand-crafted features. A recent paper presented a
deep learning technique, called TOP-GAN [37], which can classify
cancer cells based on their quantitative phase maps when only a
small training set is available, but many unclassified maps of other
cell types are available. All methods in Refs. [35-37] did not use the
cell spatial fluctuations as a means to discriminate between cancer
cells of different metastatic potential.

In the present study, we developed a deep-learning method
to automatically classify between stain-free primary cancer
cells and metastatic cancer cells originated from an in vivo
source, based on the cell quantitative phase maps and the
spatial fluctuations of the cell. We compared two types of live
cells that were taken from the same organ of the same donor,
SW480 cells, from colorectal adenocarcinoma cells from a
colon tissue, and SW620 cells, from metastatic cells that
originated from a lymph node from a colon tissue. These
are established cell lines taken from the same donor, and
available for commercial purchase. We show that in spite of
the small training set used, we can still use deep learning and
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obtain very good classification performance, provided that a
spatial fluctuation analysis is performed on the quantitative
phase profiles, before inputting them into the deep network.
This preliminary spatial image analysis extracts essential
features and accelerates the convergence of the network,
while achieving high accuracy in cancer cell classification.

MATERIALS AND METHODS

We acquired quantitative phase maps of primary and metastatic
cancer cells, as described in Cells preparation, Optical system, and
Phase retrieval. We then implemented two deep learning
classifiers, as elaborated in Classification, where each time we
used another type of input. First, we used the stationary phase
maps directly. Second, we applied spatial fluctuation analysis, as
elaborated in Spatial fluctuation analysis, and only then inputted
the resulted maps to the network, validating this method
superiority in the case of a small training set.

Cells Preparation

SW480 and SW620 cell lines were purchased from ATCC. Both cell
lines were isolated from the same donor, and originated from a
primary adenocarcinoma of the colon. SW480 was established from
a primary adenocarcinoma of the colon, while SW620 is metastatic
cell lines established from a lymph node metastasis. Cells were grown
inside the flask in Dulbecco’s Modified Eagle Medium (DMEM)
until 80% confluence and incubated at 37°C. Then, the cells were
suspended using trypsin. Cells were sown on a coverslip, covered
with ECL-cell attachment matrix, and put inside a Petri dish
overnight to enable cell attachment to the coverslip. For imaging
live cells, we used stickers that can be placed on top of the coverslip,
forming wells containing ~10 pl medium to keep the cells alive. The
coverlip with the cells is then imaged by the optical system.

Optical System

To acquire dynamic quantitative phase maps of cancer cells of
different metastatic potentials, we built a diffraction phase
microscopy (DPM) system [38]. The cell quantitative phase
profiles were later used to generate the inputs to deep neural
network classifiers. DPM can create off-axis holograms and
enable single-exposure wavefront sensing. It has high spatial and
temporal sensitivities due to using a broadband source with a
common-path interferometric geometry. The DPM system was
added as an external module to the output of a commercial
inverted microscope (IX83, Olympus, United States). As shown
in Figure 1, the microscope was illuminated by a supercontinuum
laser source (SuperK Extreme, NKT, Denmark), coupled to an
acoustooptic tunable filter, AOTF (SuperK SELECT, NKT,
Denmark), which emits a wavelength bandwidth of 633 + 2.5 nm
and is spatially coherent. Inside the microscope, the beam passes
through the sample S, and is magnified by microscope objective MO
(Olympus UPLFLN, 40x, 0.75 NA, United States). Then, it is
reflected toward tube lens TL (f = 200 mm), which projects the
beams onto the output image plane of the microscope. There, we
place the DPM module. In this module, an amplitude diffraction
grating (100 lines/mm) generates multiple diffraction orders, each
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FIGURE 1 | Setup scheme, containing an inverted microscope with a diffraction phase microscopy module positioned at its output. AOTF, acousto-optic tunable

containing the magnified image of the sample. The zeroth- and first-
order beams are isolated at the Fourier plane of lens L1 (f= 150 mm).
The zeroth-order beam is spatially low-pass filtered by a 75-um
pinhole, so that only the DC component of the central diffraction
order remains. Note that this pinhole size is small enough to create a
clear reference beam under the partially coherent illumination used,
as shown in the imaging results in the next section. The first
diffraction order is used as the sample beam, and the central
diffraction is used as the reference beam. L2 (f = 180 mm)
creates a 4f imaging system with L1, followed by another 4f
imaging system, L3 (f = 50 mm) and 14 (f = 250 mm), so that
totally L1-L4 create an additional 6x magnification of the image
from the output of the microscope. The imaged field of view was
50 um X 50 um. The optical resolution limit was 0.422 um. Both
beams interfere at a small off-axis angle on the camera and generate a
spatially modulated off-axis interference image, which is then
captured by a fast camera (FASTCAM Mini AX200, 512 x 512
pixels, 20 um each, Photron, United States) at 500 frames per second.

Phase Retrieval

Off-axis holography captures the complex wavefront of the
sample by inducing a small angle between the sample and
reference beams. The interference pattern recorded by the
digital camera is defined as follow:

Linsor = |El* + |E,|> + 2|E,||E,| cos (¢'), 1)

where E, represents the reference beam, E; represents the sample
beam, and ¢’ is the phase difference between the beams. After
subtracting the phase induced by the off-axis angle and the phase
of the reference beam, we get ¢, the phase of the sample, which is
proportional to the OPD of the sample, as following:

9(xy) = T OPD(xy) = T hn(x )d(xy) @)

where A is the illumination wavelength. The OPD value obtained
at each point is equal to the product of the sample thickness

d(x, y) at that point and the integral refractive-index difference
An(x, y) at this point. An(x, y) refers to the difference between
the integral refractive index of the cell and the refractive index of
the surrounding media, where the latter typically equals 1.33 for
cells in a watery medium. After the acquisition of the off-axis
hologram, we Fourier transform it. To cancel the effect of the off-
axis angle, we filter out one of the cross-correlation terms,
containing the complex wavefront of the sample [39]. An
inverse Fourier transform of this cross-correlation term results
in the complex wavefront of the sample, and its phase argument is
the wrapped phase of the sample. Next, we apply a digital 2D
phase unwrapping algorithm to avoid 27 ambiguities [40].

Spatial Fluctuation Analysis

We applied a spatial analysis on each of the quantitative phase
maps of the cells, which represents the spatial fluctuation metric
[35]. Phase variance, (A¢ (x, y)*) is calculated from the phase
image in a window of 3 x 3 diffraction limited spots surrounding
each pixel (x, y), which is directly proportional to the variance
of the refractive index difference, (Ag@(x, y)2> o {An(x, y)2>.
To calculate the phase spatial fluctuation metric, regardless of
the sample thickness, the phase variance is normalized by the
mean square phase in the corresponding 3 x 3 window of
diffraction limited spots, ¢?(x,y), to create the phase
fluctuation map, (Ag = (x, ¥)*)/ ¢? (x, y). By multiplying by
the illumination wavelength and dividing by 2m, the OPD
fluctuation map is obtained. In the following analysis, we
emitted the cell edges, which are expected to have a
significantly higher fluctuation amplitude and thresholded
out noisy points. Finally, all the values were normalized.
Figure 2 presents an OPD map of one of the SW620 cells
analyzed and the resulting spatial fluctuation map. To ensure
that the spatial fluctuations are not absorbed inside noise level,
we calculate the system sensitivity by measuring the spatial
standard deviation of the OPD profile of 3.254 nm, and
temporal standard deviation of 0.282 nm.
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FIGURE 2| (A) OPD image of an SW620 cell. (B) The resulting spatial fluctuation map. The OPD fluctuation at each point is calculated by the OPD variance divided
by the mean squared OPD of a window of 3 x 3 of diffraction-limited spots [35]. The examined area, excluding the cell edges, is marked with a dashed black line.
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FIGURE 3 | VGG16 network architecture. The network contains five 2-D convolutional layers, two fully connected layers (FC), and two classes at the output.
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Classification

We used Bottleneck Features network for binary classification in
Keras. We trained a VGG16 structure network. This network has
been previously proven as an effective feature-extraction
classification network [41], and reached a rapid convergence
on the given dataset. We attunemented the fully connected
layers for binary classification between primary cancer cells
and metastatic cancer cells, both isolated from the same
individual. The network architecture is shown in Figure 3. We
used 830 images for each class, obtained after 5x augmentation of
the acquired data, rotations of 90, 180, and 270°, and an additional
frame acquired at an additional time point after a second. The
augmented data was divided 80, 10, and 10% into training,
testing, and validation sets, respectively. To check
independence in this selection, this division was done 5 times
randomly, followed by new training, testing, and validation
processes. Each time, we trained the network from scratch to
ensure a stable division between the groups and that the network
maintained a similar accuracy average. We trained the same
network structure for each of the two classifiers. We then
compared the results of the network for classification done
separately based on the direct phase analysis and the spatial
fluctuation analysis. The weights were frozen after 40 epochs, and
the batch 10. The optimal selection of the
hyperparameters was done after achieving convergence in the
shortest time without causing overfitting. As verified, changing
the hyperparameters did not result in better performance. The

size was

network converged after a few seconds when running on Google
Colab GPU. Figure 4 presents the holograms, the quantitative
phase maps, and the spatial fluctuation maps for each cell type,
where the two latter ones are separately used as the inputs to the
two networks. As can be seen when comparing Figures 4C,F one
of the most prominent distinctions between the SW480 and
SW620 cells is more ‘hot’ areas in the SW620 cell appearing
after the spatial analysis.

RESULTS AND DISCUSSION

We examined the network performances on direct phase images
and on the further-processed spatial analysis images. Figure 5
shows the accuracy and loss versus epochs for both the training
and the validation stages for the two analyses. The overall deep-
learning classification performance results are also summarized
in Table 1. Here SW620 is defined as “positive” and SW480 as
“negative”. The best result was observed for using the spatial
analysis, with an accuracy of 92.5% and loss of 0.24. The direct
phase analysis yielded a worse result, with an accuracy of 78.26%
and loss of 0.45.

As shown in Table 1, the spatially processed data yielded
significantly higher accuracy, lower loss, higher sensitivity, higher
specificity, and higher AUC, compared to those obtained when
classifying the quantitative phase profiles directly. This validates
the fact that the spatial analysis on the quantitative phase is
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FIGURE 4 | Examples of the databases, which were used for training the two deep neural networks. (A-C) SW480 primary cancer cell. (D-F) SW620 metastatic
cancer cell. (A, D) Off-axis holograms. (B, E) Quantitative OPD maps. (C, F) The fluctuation maps obtained after the spatial analysis.

(0PD)/ OPD?X 1073
(Normalized)

Spatial Analysis

400
Cc

300

>

0.9

0.85 /\/—\/‘/
40 60 8

Accuracy
o
[+

e
~

0.75
0.65
0.6

0 20 0

Epochs

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55

Accuracy

Epochs

analysis model.

Direct Phase Analysis

Training

—— Validation

Spatial Analysis

FIGURE 5 | Accuracy and loss of the deep networks as they converge when classifying between the SW480 and SW620 cell lines. The blue line represents the
training set, and the orange line represents the testing set. (A, B) The convergence of the direct phase analysis model. (C, D) The convergence of the spatial

B

0.7

0.6
0.5
0.4
0.3

0.2

Loss

Epochs

0.7

0.6
0.5
0.4
0.3
0.2

0.1
0 20 40 60 80

Epochs

Loss

beneficial as a preliminary step even for an automatic classifier
that can theoretically find the best features for classification by
itself.

In comparison, in Ref. [36] simple machine-learning classifier,
based on a support vector machine and principal component
analysis, was used on hand-crafted features extracted from the

quantitative phase maps of the cell lines. This previous study
achieved limited results for classifying SW480 and SW620 cell
lines based on the spatial morphological information. In this case,
hidden features in the image might be missed. In principle, deep-
learning techniques can better classify by finding the best features
automatically as the network is trained. However, they require a
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TABLE 1 | Network performance results for each analysis.

Performance/analysis type Direct phase analysis Spatial analysis

Accuracy 78.26% 92.5%
Loss 0.45 0.24
Sensitivity (%) 82.71 88.88
Specificity (%) 73.75 96.25
AUC 0.871 0.961

large number of examples with known classes in the training set.
In our case, we had only 133 images, 5x augmented, from each
cell type in the training set, which resulted in low performances
(78.26% accuracy) when applying the network directly on the
quantitative phase profiles. The TOP-GAN technique [37] is one
of the techniques that can cope with the problem of a small
training set, provided that unclassified examples (e.g., unclassified
quantitative phase maps of other cell types) are available. This
requires efforts of acquiring and processing many quantitative
phase maps of another cell type. Here, we use another approach to
cope with the small training set problem, first decreasing the
differences between the quantitative phase maps of the two
groups that do not contribute to the classification itself. Thus,
we focused on classification based on the cell spatial flucuations,
rather than the cell morphology, providing us good classification
results even though a small training set is available.

In general, it was previously shown that pre-preprocessing on
the data such as centering, scaling, and decorrelating known as data
whitening [42], and spatial transformation [43] can help in
speeding the training, reducing nuisances and redundancies,
and improving the classification performance [44]. Thus, the
preprocessing manipulation step standardizes and improves the
dataset quality for the subsequent deep neural-network training.

In this paper, the chosen preprocessing is the spatial analysis
that extracts the fluctuation map from quantitative phase images.
As shown in Table 1, this indeed resulted in better accuracy
(92.5% instead of 78.26%), better sensitivity (88.88% instead
82.71%), and better specificity (96.25% instead of 73.75%)
compared to the direct phase analysis.

CONCLUSION

We presented an automatic deep-learning approach for the
classification of live cancer cells by interferometric phase
microscopy without staining. We examined two analyses,
for which the resulting images are used as the inputs to the
deep-learning network. The goal was classification between a
pair of two types of live cells that were originated from the
same organ of the same donor, SW480 cells, colorectal
adenocarcinoma cells from colon tissue, and SW620 cells,

Cancer-Cell Spatial-Fluctuation Classification

metastatic cells from a lymph node from colon tissue. The
first deep-learning classifier worked on the quantitative phase
maps of the cell directly, and the second one used spatial
analysis, which produced cell phase fluctuation maps
representing the variance of the refractive-index difference.
332 off-axis holograms were acquired, 166 from each cell type,
with 133 images from each cell type in the training set. This is
considered a small training set for deep learning. For network
training, data augmentation was applied to enlarge our dataset
to a total number of 665 images for each class. We trained the
same VGG16 neural network structure with the same number
of epochs on each of the analyses. The pre-processed phase
profiles yielding the spatial fluctuation maps resulted in
significantly better results with the highest accuracy (92.5%)
and the lowest loss. On the other hand, the direct phase
analysis presented worse results, with an accuracy of 78.26%
and higher loss. This demonstrates that the use of the phase
fluctuation maps resulted from the spatial transformation
analysis, before inputting them to the network, reduces
nuisances and make the input less redundant, aiding to
obtain better classification results in case of using a small
training set in deep learning. The present study is expected to
bring to an automatic, non-subjective cancer-cell
classification, correlating the cancer-cell refractive-index
distribution, as measured by stain-free interferometric phase
imaging, and the cell metastatic potential.
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