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The robustness of interdependent networks is a frontier topic in current network science. A
line of studies has so far been investigated in the perspective of correlated structures on
robustness, such as degree correlations and geometric correlations in interdependent
networks, in-out degree correlations in interdependent directed networks, and so on.
Advances in network geometry point that hyperbolic properties are also hidden in directed
structures, but few studies link those features to the dynamical process in interdependent
directed networks. In this paper, we discuss the impact of intra-layer angular correlations
on robustness from the perspective of embedding interdependent directed networks into
hyperbolic space. We find that the robustness declines as increasing intra-layer angular
correlations under targeted attacks. Interdependent directed networks without intra-layer
angular correlations are always robust than those with intra-layer angular correlations.
Moreover, empirical networks also support our findings: the significant intra-layer angular
correlations are hidden in real interdependent directed networks and contribute to the
prediction of robustness. Our work sheds light that the impact of intra-layer angular
correlations should be attention, although in-out degree correlations play a positive role in
robustness. In particular, it provides an early warning indicator by which the system
decoded the intrinsic rules for designing efficient and robust interacting directed networks.

Keywords: robustness, interdependent directed networks, intra-layer geometric correlations, targeted attacks,
network embedded

1 INTRODUCTION

In the past few decades, increasing studies had proved that most real-world networks are multi-
layered by dependency connectivity to interact with one another, and such structures are of great
interest in the aspect of the robustness [1-6]. An emerging field is also called the robustness of
interdependent networks, interconnected networks, or interdependent networks. Indeed, cascading
failures of interdependent networks are possible to induce catastrophic consequences: the failure of a
node in one network leads to the collapse of the dependent nodes in other networks, which in turn
may cause further damage to the first network [7, 8]. Enhancing the understanding of the real-world
dynamical process thus needs to focus on the structure of interdependent networks, which is of
utmost importance for preventing crashes or for engineering more efficient and stalwart networked
systems [9, 10].

The study of the robustness for interdependent networks has been widely investigated in across-
layers and intra-layers features of topology structures, including the degree correlations [11, 19], the
coupling strength between layers [12], the community structure [13, 14], the historic dependency
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[15], the degree heterogeneity [16], and so on. In particular, the
correlated structures affect the structural robustness in diverse
fashions: strong degree correlations across layers suppress
susceptibility to a social cascade process [17] and be robust
against targeted attacks [18]. For another branch of studies,
attentions have shifted to understanding the dynamical process
of interdependent networks by hidden geometric correlations
[19-21]. The geometric correlation contains two parts: one, the
radial correlation is equal to degree correlation, which has been
widely discussed on its contribution to systems robustness; and
two, the angular correlation is a novel statistical property.
Angular correlations across layers can produce the lower
outbreak threshold [21] and mitigate the breakdown of mutual
connectivity under targeted attacks [20].

Even though the robustness of interdependent networks has
received much research interest, few studies focus on
interdependent directed networks. Taking the real-world
scenes into consideration, network structures are generally
asymmetric, which may cause a more enriched phenomenon
in the critical behaviors of the robustness [22, 23]. For instance,
different measures characterize the feature of nodes in directed
systems: in-degrees, out-degrees, and their correlations (i.e., in-
out degree correlations). The robustness of many real-world
systems increases as the in-out degree correlations [22]. An
open question is whether other correlations indexes affect the
robustness of interdependent directed networks, even in the state
of the high in-out degree correlations, or not?

Inspired by those studies, we argue for a need to study the
robustness of interdependent directed networks in hyperbolic
space. Here, we expand the concept of geometric correlations [19]
to interdependent directed networks, defined as intra-layer geometric
correlations which are derived from directed structures. Specifically,
each layer of interdependent directed networks is represented by four
hidden geometric features in hyperbolic space: in-radius, out-radius,
in-angles, and out-angles [24]. To this end, intra-layer geometric
correlations include intra-layer radial correlations (i.e., equivalent to
in-out degree correlations) and intra-layer angular correlations. In this
study, we will simulate and investigate the effects of intra-layer angular
correlations on the robustness of artificial interdependent directed
networks. Meanwhile, we analyze the intra-layer geometric correlation
and its contribution to robustness in real-world systems by mapping
interdependent directed networks into hyperbolic space.

This paper is structured as follows. Section 2 introduces the
basic knowledge, including hyperbolic embedding methods,
cascading failure model, and artificial geometric model for
interdependent directed networks. In section 3, we analyze the
influence of intra-layer angular correlations on robustness in both
artificial networks and real-world networks. Section 4 concludes
the paper finally.

2 MATERIALS AND METHODS
2.1 Interdependent Networks

Interdependent networks can be defined as a sequence of graphs:
G = {G4, Gg...}. Usually, nodes in two or more monoplex
networks are adjacent to each other via edges that are called
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FIGURE 1 | lllustration of interdependent directed networks. Directed
networks A and B are coupled by dependency links (dotted lines).

dependency edges [1]. In our paper, interdependent directed
networks contain two layers in terms of a layer A and a layer
B, and each layer is a directed and unweighted scale-free network
with the size Ny = Np = N, as shown in Figure 1. Thus, the degree
distributions of in-degree and out-degree are the power-law
distribution in interdependent directed networks, where y;,
and y,,; are the power-law exponent of in-degree and out-
degree, respectively. In Mathematics, it is sufficient to provide
the adjacency matrix to formally characterize interdependent
directed networks. For each layer (e.g., network A), and an
asymmetric N x N matrix A whose generic entry a; = 1 if a
link from node i to j exists, otherwise a;; = 0.

2.2 Cascading Failure Model

One may observe cascades in interdependent directed networks,
i.e., avalanches of failures triggered by the failure of one or more
nodes, as the nodes are removed gradually with a specific order K.
K is defined by K = max(ky, kg), where the degree of nodes in the
network A or B are set by ks = ka in + ka our OF kg = kg iy + kp oyr. In
practice, we begin removing a fraction 1 — p in network A and a
fraction 1 — p in network B, and removing all the links connected
to these removed nodes. For interdependent nodes across layers,
if node i fails to function due to being attacked or isolated, node i
also fails in another layer. We continue this process until no
further new failed nodes can occur.

To measure the robustness for interdependent directed
networks under targeted attacks, we compute its mutually
connected components (MCC) in each step of removing nodes
with fraction 1 — p. Each layer network fragments into MCC,
within which each pair of nodes can reach each other by a path [7,
20]. Some nodes in the MCC of the layer A network will play an
important function in the layer A network, but they may not exist
in the MCC of layer B. Thus, we define the MCC of
interdependent systems to be the average value of all layers. A
similar definition also applies to calculate the second maximum
connected component (2nd-MCC). By doing this, when the
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reserved fraction p is tuned increasingly from zero to a unit, at a
certain critical fraction p,, the MCC of networks shifts from zero
to non-zero. When p < p,, the interdependent networks have no
MCC, and otherwise p > p.. The critical fraction p, thus reveals
the robustness of interdependent directed networks, i.e., the
smaller p,, the higher network robustness.

2.3 The Intra-layer Geometric Correlations
Intra-layer geometric correlations are composed of intra-layer
radial correlations and intra-layer angular correlations in a
certain layer, obtained by embedding interdependent directed
networks into hyperbolic space. Therefore, we introduce the
A-PSO  (the asymmetric popularity and  similarity
optimization) model to map each layer of interdependent
directed networks into hyperbolic space [24].

In this model, each node i is firstly split into two sets (a; in the set
aand b; in the set b), and a directed link goes from a node i to a node
Jj» which will be transformed a link between a; and b;. Then, each pair
of nodes a; and b; correspond to polar coordinates (6,; and r,;) and
(6, and rp,;), respectively. The radial coordinates can be calculated
by x — r mapping: r = R — 2In(k/k ), where hidden variable x«,;(* €
{a, b}) is derived from p(x) = (y - 1)x%Vi?, the minimum of
hidden variable %, = k(y. —1)/(y. —2), and 6 is drawn from
uniform Probability Density Function (PDF). Finally, the dlrected
link is created by any integrable function f(y)= (1 +x*)"
hyperbolic space, where hyperbolic distance y = 7,,; + 1, + Zln(du,)b]
2), B is a model parameter.

In practice, we do not know the nodes’ coordinates by given
the adjacency matrix A of a layer. We are interested in the
conditional probability P(6,x|A) that the possibility of
assigning a coordinate to each node, giving our observed
network data. Following Bayes’ rule, we have

P ({x, 6}lai;) o< P (ayjl{x, O})P ({x, 6}). 1

where the posterior distribution P ({x, 0}|a,»j) is proportional to
two components: the likelihood P (a;j|{x, 6}) of the network data

a; the prior probability P ({x,0}) x and 6 are obtained by
following some constraints mentioned above, and we write
P({x, 8}) = 1 if the constraint is satisfied and otherwise P({x,
6}) = 0. Thus, the likelihood can be calculated as followed:

Plagli6) = [ fO0™ 11— fG01™, 2

1<i#j<N

where hidden variables are solved by «; = k; — y,8 and angular
coordinates are inferred by using the localized Metropolis-
Hastings (LMH) algorithm [25, 26].

To this end, we have the angular coordinate (6,; 6,) and the
radial coordinates (r,; 1) in according with giving a directed
network layer. Then, we use mutual information to describe
intra-layer geometric correlations. Formally, the mutual
information about two random various X, Y is obtained by [27].

VY p(xy)
160 = | | pis y)ln(p(x) p(y))dxdy, )

where p(x, ) is the joint probability density function of X, Y,
and p(x), p(y) are marginal PDF of X and Y. In this paper, the
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intra-layer angular correlation of each layer is quantified by
the normalized mutual information NMlIy = I(0,; 6,)/max
{16, 6,), I(6p; 06p)}. Similarly, the intra-layer radial
correlation is defined as NMI, = I(r,; rp)/max{I(ry r,), I(ry;
rp)}. The higher the NMI (NMI € [0, 1]), the stronger are the
intra-layer geometric correlations.

2.4 Artificial Geometric Model

We simulate targeted attacks on artificial networks to investigate
the relationship between the robustness and intra-layer angular
correlations. The geometric multiplex model (GMM, Ref. [19]) is
applied to generate the artificial undirected interdependent
networks with across-layer geometric correlations. Inspired by
it, we use this framework to develop a single-layer directed
network with an intra-layer geometric correlation. The
difference between the GMM and our work is that we aim to
obtain the out-direction and the in-direction coordinates in a
specific correlation. In Figure 2, each directed layer is generated
according to the following steps:

Step 1. Determine the initial parameters: the network size N,
the exponent f3 of the connection probability, the power-law
exponent of out-degree y,, the power-law exponent of in-degree
vp» the average degree k, the intra-layer radial correlation v € [0,
1], and the intra-layer angular correlation g € [0, 1].

Step 2. Determine the hyperbolic coordinates with a certain
correlation in each layer of interdependent directed networks.

First of all, each node is assigned in-direction hldden variables
%p> 0p in the set b, as sampled from p(xp) = (y;, — Dk, mm) x,” and
uniform PDF, respectively.

Secondly, the out-direction angular coordinates are chosen
from 8, = mod[0y, + 27li/N, 27|, where I; is an arc length of radius
R in a hyperbolic disc, which is satisfied by zero-mean truncated
Gaussian PDF, defined as f, = #&%, =0o(l/g - 1),
0o = min[100, N/47]. ¢(x) is normal distribution. ®(x) is the PDF
of ¢(x).

Thirdly, each node of out-direction radial coordinates r,
is assigned. Notice that r, is taken the place of the hidden
variables «, to implement the algorithm easily. Specifically,

the «, is derived from the copulas function
C (F(Ka), F(Kb)) =e —[-In(F (1))"+ (~1n(Fxa))"] Y where F(Ka) =
l—K(l va) ;;;,m, Faxp) =1- (1 y”)K;iyfmil), n = 1/(1 - v), the
minimum of hidden Varlable Ka,min = k(y, — D/(y, —2) and

Kpmin = k(yp = D/(y, —2). We then transform hidden
variables to radial coordinates r, = R — 2In(k,/K, min) and
ry = R — 2In(xp/Kp,min)-

In particular, when g = 1 and v = 1, the coordinates of each
node is identical in the two directions (that is, 6, = 6, and x,, = },
respectively), and a generated network degenerates into a
undirected network. To overcome this problem, we regard v =
0.99 and g = 0.99 as the full correlations (i.e., v=1and g=1) in
this paper and make sure to generate a directed network.

Step 3. Determine the artificial networks. Links are created by
the connection probability, i.e., each node pair i, j is connected by

g -1
Frobrgblhtles fl)=( +1%) s Xij = % and AO = |7 -
= |Via —

B3l|- To do so, a layer of the artificial network has been
constructed. The steps 1-3 are repeated to generate another layer.
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FIGURE 2| The flow diagram of construction teach layer of artificial interdependent networks. Yellow nodes and blue nodes are represented in-direction nodes and
out-direction nodes, respectively.
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FIGURE 3| Targeted attack in artificial networks. (A,B) Targeted attacks on different kinds of synthetic networks with N = 5,000. (C) The size of the 2nd-MCC as a
function of p for different sizes N. we set ga = ga =1, ra =ra = 0 in the correlation case and g4 = ga = 0, r4 = r4 = 0 in the non-correlation case. (D-F) Targeted attacks on
three kinds of synthetic networks with coupling strengths q. (G,H) Simulate targeted attack with different intra-layer angular correlations, and N = 500. The results are
averages over 100 realizations. (1) illustrates the relationship between parameter g and Pearson correlation coefficient in the artificial model.
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FIGURE 5 | The relative size of the MCC against the remaining fraction p of nodes remaining in the system for real interdependent directed networks, including
genetic interactions networks (A), C.elegance neurons networks (B), world trade networks (C), and social networks (D). The orange line and the blue line represent the
results of real-world networks (Original) and their reshuffled counterparts (Reshuffled), respectively.

3 RESULTS

3.1 The Influence of Intra-layer Angular
Correlations on Robustness in Artificial
Networks

In this section, all artificial networks are double-layer directed
networks, where a pair of nodes across layers are interdependent.

The artificial geometric model is used to generate each layer which is a
heterogeneous directed network with the power-law exponent of out-
degree y,, = 2.6, the power-law exponent of in-degree y,, = 2.6, average
node degree k = 6, and the parameter = 3.5. The intra-layer angular
correlation and the intra-layer radial correlation are denoted by the
symbols (g4, v4) in layer A and (gg, vp) in layer B.

By doing this, three kinds of artificial networks have been
generated to simulate targeted attacks, as shown in Figures 3A,B.
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TABLE 1 | The basic properties of empirical directed networks. NMlg,; and
NMlg e present the strength of the intra-layer angular correlation in original
networks and reshuffled networks, respectively.

Data set N Link NMlg o NMIg .
Social networks, layerA (Advice) 71 892 0.859 0.846
Social networks, layerB (Co. — work) 71 1,104 0.865 0.813
World trade, layerA (Creamfresh) 214 962 0.808 0.704
World trade, layerB (Cheese) 214 1,195 0.838 0.754
C.elegance neurons, layerA (ElectrJ) 281 1,032 0.886 0.874
C.elegance neurons, layerB (PolySyn) 281 950 0.831 0.725
Genetic interactions, layerA (direct) 1,449 2,499 0.718 0.629
Genetic interactions, layerB (physical) 1,449 2,205 0.640 0.539

Results reveal two geometric contributions to the robustness.
One, the value of p. in the orange line is larger than others, which
shows that intra-layer angular correlations increase the
vulnerability of interdependent directed networks. Notice that
our results are in contrast to the situation on across-layer
correlations between interdependent networks [20], which
reveals that intra-layer angular correlations are hidden factors
to understand complex systems. Two, such vulnerability will be
exacerbated by the increase in the number of layers. Additionally,
we also provide the behavior of cascading failures for the 2nd-
MCC in different size systems. The largest 2nd-MCC achieves its
extremum near the critical point, which is a way to estimate and
compare p.. Figure 3C illustrates the extreme value point p. for
interdependent directed networks with full angular correlations is
always significantly higher than the case of the non-angular
correlations. Multi-subsystem interaction and its hidden
geometric structure thus should be considered designing
network systems more robust. Additional, we analyze the
fraction of coupling strength g € [0, 1], where g = 0 represents
that network systems become two single and independent
networks, and g = 1 represents the mapping relationship of
nodes between two layers is one to one. Figures 3D-F
illustrates that the results of Figure 3A can expand to general
cases (the inter-layer coupling of arbitrary proportions).
Figure 3F shows their percolation behaviors with the fraction
of remaining nodes p changing from 0 to 1 under intra-layer
angular correlations and different coupling strengths q. The
results show that decreasing coupling strength can mitigate the
vulnerability of interdependent directed networks with the intra-
layer angular correlation against targeted attacks.

To study this issue further, we examine the impact of different
angular correlations on robustness by several variations of artificial
networks, as shown in Figures 3G,H. As intra-layer angular
correlations decrease, the vulnerability of directed systems is
mitigated, irrespective of the effect of intra-layer radial correlations.
This means that, although the contribution of in-out degree
correlations is positive to robustness for interdependent directed
networks, intra-layer angular correlations play an essential factor in
undermining the robustness. Thus, intra-layer angular correlations
have an early-warming function when interdependent directed
networks face a sudden extreme attack. In addition, we also found
that such an increasing trend is not apparent in low-correlation
situations. To analyze the cause, we checked the relationship

The Robustness of Interdependent Directed Networks

between parameter ¢ and the Pearson correlation between intra-
layer angular coordinates. Figure 3I suggests that the nonlinear
relationship induces the phenomenon mentioned above.

3.2 Linking Intra-layer Angular Correlations
to Robustness in Real Interdependent
Networks

The influence of intra-layer angular correlations on the robustness in
real-world interdependent networks is simulated in this subsection.
Empirical networks are all derived from open databases and describe
in detail, as followed. 1) C. elegans neural dataset describes the neural
interconnection via chemical synapses and gap junctions, which can
be obtained from the Wormatlas database [28]. The nodes are
neurons, and each layer corresponds to a different type of synaptic
connection. 2) International trade dataset considers different types of
trade relationships among countries, obtained from Ref. [29]. The
worldwide food import/export network is an economic network in
which layers represent products, nodes are countries, and edges at
each layer represent import/export relationships of a specific food
product among countries. Each layer is directed and weighted
networks with 214 nodes. 3) Arabidopsis interdependent Genetic
networks are obtained from the Biological General Repository for
Interaction Datasets (BioGRID, thebiogrid.org), a public database
that archives and disseminates genetic and protein interaction data
from humans and model organisms [30, 31]. Each layer is directed
and unweighted networks with 1,449 nodes after removing the
isolated nodes. 4) Social networks consist of 3 kinds of (Co-work,
Friendship, and Advice) between partners and associates of a
corporate law partnership [32, 33]. Each layer is directed and
unweighted networks.

Secondly, we construct reshuffled counterparts (so-called
reshuffled networks) from real-world networks (so-called
original networks). The reshuffled counterpart is a variant of
the original network to alter intra-layer geometric correlations.
Specifically, each layer (a directed network) is transformed into a
bipartite structure, as shown in Figure 4, and randomly
reshuffled nodes’ ID of the set b in a way. Notably,
interdependent nodes are also reshuffled in the same way in
other layers if nodes” ID is reshuffled at a layer. Node b, and node
b, are also reshuffled in layer B, when node b; and node b, are
reshuffled in layer A, To this end, the reshuffled counterparts are
destroyed the intra-layer geometric correlation and preserved
across-layers geometric correlations.

Then, each layer for these networks can be embedded into a
hyperbolic space, where each layer is represented by a group of
angular coordinates (6,, 8)) and a group of radial coordinates (r,,
1p). To validate the influence of intra-layer geometric correlations
on this real-world multiplex network, we implement targeted
attacks on the original networks and reshuffled networks for
empirical networks, respectively. Figure 5 displays that the p, of
original networks is smaller than their reshuffled counterparts
under targeted attacks. We also observe that the NMIy ,,; is always
larger than the NMIy,, for different real-world networks, as
shown in Table 1. Linking those results, we find that the
larger the wvalue p. the stronger intra-layer angular
correlations. It is the reason why interdependent directed
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networks are more robust after the reshuffle. Results also suggest
our arguments and highlight the importance of intra-layer
angular correlations.

4 CONCLUSION

The hidden geometric structures of real-world networks provide a
new perspective in revealing a relationship between topology and
dynamical processes. Here, we examine the importance of intra-
layer geometric correlations in understanding the robustness of
interdependent directed networks from the perspective of
hyperbolic embedding. For one thing, simulations are
performed targeted attacks on artificial networks with diverse
geometric correlations. Our main finding is that strong intra-
layer angular correlations can quickly shift the sizes of the
mutually connected components to fragmentation. The
robustness will decrease as the increase in intra-layer angular
correlations, even if in the case of in-out degree correlations.
Couple strength g impacts the robustness: robustness of
interdependent directed networks enhances as decrease of gq.
For another, we have studied two-layered empirical directed
networks, validating that intra-layer geometric correlations
also induce the vulnerability of real-world systems. Our results
may help design a more robust network system and plan efficient
protection strategies. However, it is also the beginning of
clarifying the relationship between geometric structures and
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