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Cells dynamically change their viscoelastic properties by restructuring networks of actin
filaments in the cytoskeleton, enabling diverse mechanical processes such as mobility and
apoptosis. This restructuring is modulated, in part, by actin-binding proteins, such as
myosin II, as well as counterions such as Mg2+ and K+. While high concentrations of Mg2+

can induce bundling and crosslinking of actin filaments, high concentrations of K+

destabilize myosin II minifilaments necessary to crosslink actin filaments. Here, we
elucidate how the mechanics and structure of actomyosin networks evolve under
competing effects of varying Mg2+ and K+ concentrations. Specifically, we couple
microfluidics with optical tweezers microrheology to measure the time-varying linear
viscoelastic moduli of actin networks crosslinked via myosin II as we cycle between
low and high Mg2+ and K+ concentrations. Our complementary confocal imaging
experiments correlate the time-varying viscoelastic properties with salt-mediated
structural evolution. We find that the elastic modulus displays an intriguing non-
monotonic time dependence in high-salt conditions, that correlates with structural
changes, and that this process is irreversible, with the network evolving to a new
steady-state as Mg2+ and K+ decrease back to their initial concentrations.
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1 INTRODUCTION

Diverse networks of semiflexible actin filaments, key components of the cell cytoskeleton, play
important mechanical and structural roles in myriad cellular processes ranging from motility and
division to shape change and metastasis [1–5]. To enable such diverse processes, a wide variety of
actin-binding proteins (ABPs) crosslink, bundle, sever, and pull on actin filaments [6–8]. The size,
shape, binding affinity and concentration of the ABP determines the resulting mechanical and
structural network properties [7,9–11,11–20].

Myosin II, one of the most widely-studied ABPs [21–27], is best known for its ATP-driven
restructuring of actin networks by polymerizing into minifilaments that actively push and pull on
actin filaments [28–32]. However, at low ATP concentrations (≲1 mM), myosin II minifilaments
function as passive transient crosslinkers that can also bundle actin filaments [24–27].
Microrheological measurements of actomyosin networks carried out in this limit [26,31] have
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shown that myosin crosslinking leads to an increased plateau
modulus and reduced stress dissipation [26].

Further, due to the polyelectrolyte nature of actin filaments,
high concentrations of multivalent counterions, such as Mg2+,
can also crosslink and bundle actin filaments by forming
counterion crossbridges [2,13,33–37]. Several studies have
investigated this effect, focusing on the structural properties of
actin networks formed under varying multivalent salt conditions
[33,38–42]. Further, we previously showed that the plateau
modulus, nonlinear stiffness, and relaxation timescales of
entangled actin networks were all higher when polymerized in
the presence of higher Mg2+ concentrations (ranging from 2 to
52 mM) [34].

On the other hand, increasing the concentration of K+ in
actomyosin networks, can destabilize myosin minifilaments [43].
At K+ concentrations of ∼600 mM, myosin remains in dimeric
form, but upon lowering to < 150 mM, myosin dimers assemble
into minifilaments that can crosslink and bundle actin filaments
and generate forces at high enough ATP concentration
[30,43,44].

Here, we use time-resolved optical tweezers microrheology
coupled with microfluidics to probe the time-varying
viscoelasticity of steady-state actomyosin networks subject to
in situ modulation of [K+] and [Mg2+] (Figure 1). Our
complementary confocal microscopy experiments shed light
on the structural evolution that gives rise to the non-
equilibrium viscoelasticity. We find that networks exhibit first
an increase then a decrease in elastic modulus with increasing
[Mg2+] and [K+], and that this non-monotonic dependence is
irreversible, with the networks transitioning to a new steady-state
as the environment returns to the initial ionic conditions. We
postulate that this intriguing behavior arises from a competition
between salt-mediated actin bundling, which increases the
modulus, and myosin minifilament depolymerization, which
destroys the network connectivity and thus elasticity. While
minifilament disassembly is reversible, filament bundling is
not; so the network that reforms at low salt is in a new
bundled state.

2 MATERIALS AND METHODS

Sample Preparation: Rabbit skeletal actin (Cytoskeleton, Inc.
AKL99) and Alexa-568 labeled actin (Thermo Fisher Scientific,
A12373) are stored at −80°C in G-buffer (2 mM Tris pH 8.0,
0.5 mM DTT, 0.1 mM CaCl2, 0.2 mM ATP). Chicken skeletal
myosin II, a gift from the Kovar lab at University of Chicago, is
stored at −80°C in (600 mM KCl, 25 mM KPO4, 10 mM EDTA,
1 mM DTT). Before experiments, myosin is dialyzed against
300 mM KCl in a 96-well 10 KDa MWCO microdialysis plate
(ThermoFisher) for 4 h, changing the buffer once after 2 h, and
stored on ice.

To polymerize actin and myosin and assemble actomyosin
networks, 0.23 μM myosin II dimers and 11.6 μM actin
monomers (at a molar ratio of 1:10 of Alexa-568-labeled and
unlabeled actin monomers) are mixed and incubated in F-buffer
(10 mM Imidazole pH 7.0, 50 mM KCl, 1 mM MgCl2, 1 mM

EGTA, 0.2 mM ATP) for 1 h at room temperature. For reference,
the nominal mesh size of an actin network with concentration
ca � 0.5 mg/ml (11.6 μM) is ξ ≃ 0.3/

��

ca
√

≃ 0.42 μm [45]. Note
that the initial Mg2+ and K+ concentrations are 1 and 50 mM,
respectively, and the ATP level is low enough to prevent
noticeable myosin II ATPase activity. A trace amount of Alexa
Fluor 488-BSA-coated polystyrene microspheres (Polysciences
Inc.), with radius a � 2.25 μm, is added for microrheology
measurements. The microsphere diameter was chosen to be
∼5 times larger than the network mesh size, such that our
microrheology measurements described below are reporting
the properties of the full network [46–48].

Microfluidics: The microfluidic device shown in Figure 1 is
assembled as previously described [33,49,50]. Briefly, a coverslip
(no. 0, 22 × 22 mm) and glass slide are washed thoroughly with
acetone, isopropanol, and deionized water (DI), then plasma

FIGURE 1 | Experimental approach to measuring the time-varying
microrheological response of actomyosin networks subject to in situ salt
modulation. (A) Schematic of microfluidic device containing a central chamber
that holds the sample of actin (red), myosin II (green), and microspheres
(white); flanking Buffer channels used to pull in new buffer (through the Inlet)
and remove existing buffer (via the Outlet), and two semipermeable
membranes (crosshatches) to allow for buffer exchange via passive diffusion.
Cartoon is not drawn to scale. (B) Plot depicting the concentrations of Mg2+

and K+ in the sample chamber as a function of time, enabled by in situ buffer
exchange via the microfluidic device. Initial [Mg2+] and [K+] of 1 and 50 mM,
respectively, and are increased to 500 and 200 mM over ∼10 min. After
150 min, [Mg2+] and [K+] are reduced back to initial concentrations for the
remaining 150 min. Curves shown are those expected based on
concentration measurements from Ricketts et al. [33]. (C) Sample data trace
from optical tweezers microrheology experiment showing measured stage
position (red) and force exerted on the microsphere (black) over the course of
the 2 min acquisition time. The amplitude of the force F0 and position x0, as
well as the phase shift Δϕ between the two oscillations, are used to determine
viscoelastic moduliG′ andG″. Data shown is for a frequency ofω � 32 rad s−1.
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cleaned. A parafilm spacer is placed between the slip and slide and
the resulting chamber is fused together using a soldering iron. To
form two semipermeable membranes in the chamber, a 50:1
mixture of poly (ethylene glycol) diacrylate (PEG-DA) and a
photoinitiator (2-hydroxy-2-methylpropiophenone) diluted to
20% (v/v) in DI, are flowed into the chamber. The chamber is
then exposed to UV through a custom photomask to form two
cross-linked PEG-DA membranes, and flushed with DI to
remove the PEG-DA solution. This process results in a central
chamber for holding the sample separated by semipermeable
membranes from two flanking channels that enable buffer
exchange via diffusion (Figure 1A).

For experiments, the actomyosin solution is pipetted into
the central chamber, and the flanking buffer channels are
filled with F-buffer. Buffer channels are then connected to
capillary tubes at both ends. Both tubes from one end are
connected to Tygon tubing I, which is connected to a syringe
pump, while the tubes at the other end are connected to two
separate Tygon tubing II which are inserted into a buffer
reservoir to enable buffer exchange. All channels are then
sealed with epoxy. Using the syringe pump, the existing buffer
is pulled from the buffer channels at a flow rate of 5 μl/min as
new buffer from the reservoir is pulled in, thereby enabling
diffusion-controlled buffer exchange into the central
chamber. To vary the buffer conditions between “low-salt”
(1 mM MgCl2 and 50 mM KCl) and “high-salt” (500 mM
MgCl2 and 200 mM KCl), the F-buffer in the reservoir is
replaced with F-buffer containing the “high” concentrations
of MgCl2 and KCl at the beginning of the 300 min experiment
(Figure 1B). After 150 min, the buffer in the reservoir is
replaced with the initial “low-salt” F-buffer. Complete
buffer exchange in each cycle is achieved in ∼10 min. Note
that the concentrations of all other buffer components remain
constant throughout the experiment.

Microrheology: The optical trap used in microrheology
measurements was built by outfitting an Olympus IX71
fluorescence microscope with a 1064 nm ND:YAG fiber laser
(Manlight) focused with a 60x 1.4 NA objective, as previously
thoroughly described [51–53]. The trap stiffness was calibrated
via Stokes drag in water [54,55] and passive equipartition
methods [56], as previously described and validated [52,53].
For each measurement, a probe embedded in the sample is
trapped and oscillated sinusoidally relative to the sample at an
amplitude of x0 � 1.0 μm at five frequencies from ω � 0.5 to
107 rad/s by using a piezoelectric nanopositioning stage (Mad
City Laboratories) to oscillate the sample while keeping the trap
fixed. A position-sensing detector (First Sensor) measures the
laser deflection, which is proportional to the force F exerted on
the probe by the surrounding network. We analyze the stage
position and laser deflection for each trial to ensure that the
stage completes full amplitude oscillations and the bead
remains trapped for the duration of the measurement. The
stage position and force data are both fit to sine curves using the
least-squares method, from which the frequency-dependent
elastic modulus G′ and viscous modulus G″ are computed
via G′ � |Fo| cos(Δϕ)/6πa|Xo| and G″ � |Fo| sin(Δϕ)/6πa|Xo|,
where Fo and Δϕ are the amplitude of measured force F and the

phase shift between the force and the stage oscillations.
Measurements are performed every 5 min over the course of
300 min where t � 0 is immediately before exchange from low-
to high-salt buffer is initiated, and t � 150 min is immediately
before exchange from high-salt back to low-salt buffer begins.
G′ and G″ data shown in Figure 2 are averaged over all
frequencies for two replicates and error bars are the
standard error of these values. As shown in Supplementary
Figure S1, while there is modest frequency dependence of G′
and G″, this dependence does not depend on the measurement
time, so averaging over frequency does not impact the time-
dependence shown in Figure 2. Further, due to the dynamic
nature of the network, there is inherent noise in the
measurement due to network fluctuations, such that

FIGURE 2 | Actomyosin networks display non-monotonic and
irreversible changes in viscoelastic properties during in situ cycling of [Mg2+]
and [K+]. (A) Linear elastic and viscous moduli, G′ (filled) and G″ (open), of
actomyosin networks during a complete cycle of salt modulation -
starting (t � 0) in “low-salt” conditions (1 mM MgCl2, 50 mM KCl) (blue),
switching to “high-salt” (500 mM MgCl2, 200 mM KCl) until t � 150 min (red),
then returning to “low-salt” (1 mMMgCl2, 50 mM KCl) conditions (blue) for the
remaining duration of the 300 min measurement. Each data point is an
average over five frequencies across two replicates and error bars are
standard error. Boxed-in regions highlight times in which G′ increases
substantially. Zoom-ins of these regions are shown in (B) and (C). Switching
from low-salt to high-salt conditions leads to a nearly ∼100x increase in G′
followed by rapid drop. Upon reintroducing the initial low-salt conditions G′
slowly increases to values well above the starting values. (D) Loss tangent, tan
δ, versus time for the full time course of the experiment, highlighting the
complex variation in the elastic storage of the network during salt modulation.
Dashed horizontal line indicatesG′ �G″. For data points below this line, elastic
storage dominates the response over viscous dissipation, with smaller tan d
values indicating more elastic-like behavior.
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averaging over a range of frequencies results in more robust
measured trends.

Microscopy: To gain insight into the salt-mediated structural
reorganization of actomyosin networks during exchanging
between low-salt and high-salt conditions, the same buffer
exchange program described above is performed while
imaging the Alexa-568-labeled actin comprising the
actomyosin networks using a Nikon A1R laser scanning
confocal microscope with 60x 1.4 NA objective and 561 nm
laser line. Single 512 × 512 pixel images are collected every
minute for a total of 300 min. To quantify the network
structure at various time-points during the experiment, a
custom-written python script was used to perform spatial
image autocorrelation (SIA) analysis on each image [57]. SIA
measures the correlation g(r) in intensity I(r) of two pixels in an
image as a function of separation distance r. We generate each
autocorrelation curve by taking the fast Fourier transform of an
image, multiplying by its complex conjugate, applying an inverse
Fourier transform, and then normalizing by the intensity squared:
g(r) � F−1(|F(I(r))|2)/[I(r)]2 where F and F−1 represent fast Fourier
and inverse Fourier transforms, respectively. The corresponding
correlation length ξ is obtained by curve-fitting autocorrelation
curves to g(r) � go exp(−r/ξ). This approach is based on previous
studies that have applied SIA to confocal images of cytoskeleton
networks to determine correlation lengthscales [58,59]. Because
many of the curves exhibit non-exponential tails at large distances
due to flat-field noise, as in these prior studies, we restrict curve-
fitting to g(r≤ 2 μm).

3 RESULTS AND DISCUSSION

To determine the effect of combined increases in Mg2+ and K+ on
the mechanics and structure of actomyosin networks, we use
microfluidic perfusion chambers to modulate the counterion
concentration without inducing flow or disrupting the
network. Importantly, we keep the ATP concentration low
such that the enzymatic activity of the myosin motors is
suppressed [26]. We form networks in the standard “low-salt”
buffer (containing 1 mM MgCl2 and 50 mM KCl) in the
microfluidic chamber. At the start of our measurements
(either microrheology or confocal imaging), we immediately
switch to the “high-salt” buffer (with 500 mM MgCl2 and
200 mM KCl), and after 150 min we exchange the buffer again
to return to the initial “low-salt” buffer. The low-salt conditions
have been shown to result in homogeneous entangled networks of
individual actin filaments [7,13,14,18–20,55,60] and the
formation of myosin-II minifilaments that crosslink actin
[43,61]. Mg2+ concentrations above ∼20 mM have been shown
to induce substantial bundling of actin filaments [33,34], while
[K+] greater than ∼150 mM depolymerizes myosin-II
minifilaments [43,44].

We perform time-resolved optical tweezers microrheology
measurements during the course of the 300-min cycle of salt
modulation to determine how the mechanical properties of the
network vary in response to changing salt concentrations. We
complement these measurements with corresponding confocal

imaging experiments to link the changing viscoelastic properties
of the network to the structure.

Figure 2 displays the results of our microrheology
measurements, which reveal non-monotonic and irreversible
changes to the viscoelastic moduli of actomyosin networks
upon introduction of high-salt conditions. Specifically, G′ and
G″ both increase as high-salt buffer is introduced, reaching a
maximum at ∼35 min, before dropping to values below their
starting values, which remain constant for the duration of the
high-salt period. Upon returning to low-salt conditions at
150 min there is modest increase in the elastic modulus that
remains constant until ∼240 min at which point G′ steadily
increases for ∼30 min before reaching a steady value that is
nearly an order of magnitude larger than the value at t � 0.
Both periods of increased G′ values (in high-salt and low-salt
conditions) display elastic behavior with G′ significantly larger
than G″, as shown in Figures 2B,C. To better quantify the time-
varying elastic storage of the network we compute the loss
tangent, tan δ � G″/G′, which is a measure of the viscous
dissipation in the system (Figure 2D). tan δ > 1 indicates
largely viscous behavior while tan δ < 1 indicates elastic-like
behavior with lower values indicating increased elastic storage. As
shown, the elasticity increases dramatically at the beginning of the
high-salt phase and then abruptly drops to a viscous-dominated
regime. Substantial elasticity is not recovered until near the end of
the subsequent low-salt phase.

Two features of the described time-varying mechanical
properties that are surprising and notable are: 1) the abrupt drop
in tan δ after the initial increase, and 2) the increase in tan δ at the
end of the low-salt phase. To understand feature (1), we recall that
high Mg2+ concentrations induce actin bundling and crosslinking
via counterion crossbridges [26,27,31], which we expect to result in
increased elasticity [50], as we see in the first ∼30min of the
experiment. However, the unexpected subsequent drop to a
viscous-dominated regime suggests disruption of myosin-
crosslinks, as seen in previous studies on steady-state actomyosin
networks [25–27]. We postulate that this effect is due to the high
[K+] conditions depolymerizing myosin II minifilaments, as
described in the Introduction [43,50], and thus destroying the
crosslinks they form between actin filaments. In the following
section, we shed further light on the structural evolution that
competing effects of actin bundling and myosin minifilament
disassembly give rise to. Feature (2) is counterintuitive as one
would expect that returning the system to its initial buffer
conditions would cause the system to return to a state similar to
its initial state. Namely, wewould expect actin filaments to de-bundle
and myosin II minifilaments to reform and re-connect actin
filaments, such that G′ and G″ at t � 0 and t � 300min would
be similar. Instead we find that the network exhibits substantially
more elasticity at the end of the experiment than at the beginning -
suggestive of more bundling or connectivity. This effect implies that
there are irreversible processes at play and that the network is
encoding information about its previous state (i.e., mechano-
memory). We investigate this phenomenon further below.

We note that the error bars shown in Figure 2, which
represent the standard error (SE), are indeed larger than is
typical in steady-state microrheology measurements [34], with
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corresponding percent error (PE � SE/mean) values that average
to <PE> � 31% and 38% for G′ and G″, respectively. This
spread is a result of: 1) averaging over all frequencies, as there is a
modest frequency dependence of G′ and G″ (which does not
depend on time, see Supplementary Figure S1); and 2) the
dynamic nature of the system (i.e., its rheological and
structural properties are changing over time), such that there
are larger fluctuations than for a steady-state system. As such, to
demonstrate the statistical significance of our measured trends,
we compare <PE> to the percent variation in G′(t) and G″(t)
over the course of the experimental time t. Specifically, we average
over all G′ and G″ values over the course of the experiment
(<G> t), and determine the corresponding percent error (PEt),
which has values of PEt � 111% and 64% for G′ and G″
respectively, both significantly larger than the corresponding
<PE> values.

To shed light on the structural changes that give rise to the
salt-mediated variation in the viscoelastic response of the
network, we turn to our confocal imaging experiments
performed under the exact conditions as the microrheology
measurements (Figure 2, Supplementary Movie S1). Figure 3
shows images of the fluorescent-labeled actin filaments
comprising the network at different time points during the salt
modulation. The top row shows the structural evolution in high-
salt conditions (t < 150 min) while the bottom row shows the low-
salt phase (t > 150 min). As shown, the network formed under
low-salt conditions (t � 0 min) is homogeneous and comprised of
thin fibers. The minimal thermal noise in the images indicates
substantial crosslinking via myosin minifilaments [26,50].
However, upon introduction of high-salt buffer, the fibers
become darker and thicker, indicating bundling. The mesh
size appears to increase accordingly as the network transitions
to one composed of fewer, thicker bundles. Surprisingly, after
∼30 min, the network rapidly dissolves, with no signs of fibers for
the remaining duration of the high-salt period (until t � 150 min).
Fragments of disconnected fibers would appear as thermal noise

so the absence of any clear structure suggests that the bundles are
no longer connected and are thus rapidly diffusing. This
destruction is likely the result of the crosslinking myosin II
minifilaments depolymerizing due to the increased [K+],
thereby disrupting actin network connectivity. Further,
reintroducing the initial low-salt buffer leads to the re-
emergence of stable actin networks. However, these networks
are markedly different than the initial network, despite the fact
that the buffer conditions are identical. Specifically, the reformed
networks are comprised of much thicker and apparently stiffer
(i.e., less bent by thermal fluctuations) fibers that are more
sparsely connected. This irreversibility suggests that while
myosin minifilaments can reform as [K+] is lowered, salt-
induced actin bundling is not reversible, likely due to entropic
depletion interactions [44,50,62].

We note that in Figure 3, the network appears to reach
maximum bundling at ∼25 min (see Supplementary Movie
S1) rather than at ∼30–35 min, where we measure a minimum
in tan δ in Figure 2. Nevertheless, we maintain that maximal
bundling coincides with maximal G′ values (and minima in tan
δ), and that this ∼5–10 min difference, which equates to ≲ 3% of
the total measurement time, is due to sample-to-sample variation.
Specifically, confocal experiments were performed on different
samples than microrheology experiments, so we expect there to
be slight differences in the time at which peak bundling and
network elasticity occur. These variations are also evident in the
different microrheology trials we conducted and add to the
spread in the microrheology data shown in Figure 2.

To quantify the structural changes depicted in Figure 3, we
compute the spatial image autocorrelation function g(r) as a
function of distance r between pixels for each image shown in
Figures 4A,B. Faster decay of g(r) with r indicates smaller
network features and a higher initial value indicates brighter
features and higher signal-to-noise (resulting from filament
bundling or clustering). As shown, autocorrelation curves
increase in magnitude and decay more slowly as t increases

FIGURE 3 | Laser scanning confocal microscopy images of fluorescent-labeled actin filaments comprising actomyosin networks subject to in situ cycling of [Mg2+]
and [K+]. The buffer exchange program is identical to that done for microrheology measurements. Times are listed in minutes in the top right corner of each image. Scale
bars shown for t � 0 apply to all images and are 40 μm for main images and 10 μm for the zoomed-in insets. Colors around each image indicate the buffer conditions as in
Figure 2 [blue � low-salt (1 mM MgCl2, 50 mM KCl), red � high-salt (500 mM MgCl2, 200 mM KCl)]. At t � 0 the network is homogeneous and comprised of thin
fibers. Switching to “high-salt” leads to thickening (i.e., bundling) of fibers (t � 10, 20, and 30) followed by network destruction (t � 60, 90, and 150). Re-introducing “low-
salt” buffer leads to slow re-emergence of networks that are substantially more bundled that the initial low-salt network (t � 200, 240, 280, and 300). Each 512 × 512
inverted greyscale image is captured using an A1R laser scanning fluorescence confocal microscope with 60x 1.4 NA objective and 561 nm laser line.
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from 0 to ∼30 min (the time period at which we observe
substantial bundling), after which g(0) is reduced and g(r)
decays more quickly until ∼200 min (the time over which the
network is destroyed), at which point g(0) increases once again
and the decay becomes more broad as the network reforms.

Because all curves exhibit exponential decay for distances up to
∼2 μm, we fit this portion of each curve to g(r) � g0 exp(−r/ξ) to
extract a characteristic correlation length ξ for the network as a
function of time. This correlation length, which is proportional to
the mesh size for an isotropic polymer network, displays
noticeable changes that track with the rheological changes we
present in Figure 2. Specifically, ξ displays a non-monotonic
dependence on time during the high-salt phase, peaking at a
similar time at which the loss tangent exhibits a minimum,
indicating that the highly bundled network retains the most
elastic storage, in line with previous experiments [34]. During
the low-salt re-introduction ξ steadily rises starting at ∼200 min,
when we observe network reformation and a decrease in tan δ. ξ
continues to increase until ∼240 min when the network appears
to stabilize and tan δ reaches a new minimum. As ξ is a measure
of the average size of the features of the network, this lengthscale
could be reporting the mesh size or the bundle size. However,
because the formation of bundles leads to larger mesh sizes, as the
network becomes composed of fewer, but more rigid, fibers, the
bundling lengthscale and mesh size should scale together.

Further, the time dependence of both of these feature sizes
should track with tan δ, as we see in Figures 2, 4.

We note that these findings differ from those previously
reported for entangled composites of DNA and actin in which
actin bundling led to a decrease in network elasticity [63]. In this
previous work, the loss of elasticity was due to bundling
destroying the percolation of the actin network. As the actin
filaments bundled together, the mesh size grew (as in our system),
eventually surpassing a critical point at which percolation was
destroyed and thus the network was no longer predominantly
elastic. In our current work, we do not reach this critical point, as
evidenced by the confocal images that show that bundles remain
connected. These connections are likely further facilitated by the
myosin crosslinkers which were not present in the DNA-actin
composites.

Finally, it is informative to contrast our results with those
expected in the absence of either [Mg2+] or [K+] modulation.
Previous studies [33] examined the bulk conformational changes
of actin networks subject to increasing and decreasing [Mg2+].
These experiments showed that actin networks bundle and
contract as [Mg2+] increases, as we see here, but actually
continue to bundle when [Mg2+] is subsequently lowered,
albeit at a slower rate. There is no observed network
dissolution in these studies. As such, we expect that under
Mg2+ modulation only, we would observe continued bundling
over the course of the experiment; however, upon cycling back to

FIGURE 4 | Spatial image autocorrelation analysis quantifies the salt-mediated structural changes to actomyosin networks that give rise to the time-varying
viscoelastic properties. (A, B) Spatial image autocorrelation functions g(r) versus distance r computed from confocal images shown in Figure 3. Plots are divided into
“high-salt” (A) and “low-salt” (B) conditions with the experimental time (in min) of each image listed in the legend. (C, D) Structural correlation lengths ξ determined from
fitting each g(r) shown in (A) and (B) to an exponential decay function g(r) ∼ e−r/ξ. ξ, which indicates the average size of structural features, shows bundling
(increasing ξ) and subsequent destruction (drop in ξ) during the high-salt period (C), followed by re-assembly into highly-bundled networks during the low-salt period
[(D), increase in ξ to value larger than t � 0 value].
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low [Mg2+] conditions, the network would slow bundling
significantly but remain in a bundled state rather than
returning to its starting structure (a network of individual
filaments). Based on the reported effect of [KCl] on myosin
polymerization and stability [64], as we discuss above, as well
as the evidence that monovalent salt does not effectively bundle
actin filaments [64,65], we expect that networks subject to [K+]
modulation only would show minimal bundling, and would
instead exhibit elastic weakening as [K+] increases due to the
crosslinking myosin minifilaments falling apart. Upon decreasing
[K+] again the network would reconnect and rigidify, likely
returning to a crosslinked state similar to its initial state.

4 CONCLUSION

Here, we elucidate the effects of simultaneous cycling of Mg2+ and
K+ concentrations on the mechanics and structure of actin
networks crosslinked via myosin II minifilaments. We find
that while increasing [Mg2+] serves to bundle actin filaments,
increasing network strength and elasticity, increasing [K+]
destabilizes crosslinking myosin II minifilaments, thereby
compromising the connectivity and integrity of the network.

Specifically, we couple time-resolved optical tweezers
microrheology and confocal fluorescence imaging with
microfluidic perfusion chambers to characterize the time-
varying viscoelastic and structural properties of actomyosin
networks as we cycle the buffer conditions from low-salt
(1 mM MgCl2 and 50 mM KCl) to high-salt (500 mM MgCl2
and 200 mM KCl), then back to low-salt. Our results reveal a
surprising non-monotonic time-dependence of the network
elasticity under high-salt conditions, which mirrors the time
course of actin bundling and subsequent network destruction.
Namely, we observe a dramatic rise in the elastic modulus,
coupled to increased actin bundling, followed by an abrupt drop
to a viscous-dominated regime and apparent destruction of a
connected network. We postulate that this complex time-
dependence arises from the increased [Mg2+] driving actin
bundling via charge-screening, followed by slower [K+]-triggered
depolymerization of myosin II minifilaments that disconnect and
disrupt the network of bundles. Upon lowering [Mg2+] and [K+]
back to their initial concentrations, a connected network slowly re-
emerges but with features that are distinct from the initial networks
formed in the same ionic conditions. Namely, the network exhibits
increased elasticity and more bundled features, suggesting that while
connectivity can be restored as myosin II minifilaments re-
polymerize, actin bundling cannot be as easily reversed.

Our robust experimental approach can be applied to wide-
ranging soft and active materials to explore how varying

environmental conditions alter the mechanics and structure of
the system in real-time. Further, our results shed important light
on the various mechanisms that the cytoskeleton can use to alter
its mechanical and structural features. More generally, our results
demonstrate that the mechanical response of biopolymer
networks can encode information regarding their previous
state, which may be exploited in the design of next-generation
biosensors, memory storage devices, and other smart materials
applications. In future work, we will explore how varying the
concentrations of actin and myosin, as well as the types and
concentrations of salts, can be used to tune the mechanical and
structural response of cytoskeleton networks.
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