
Adversarial Machine Learning on
Social Network: A Survey
Sensen Guo1,2, Xiaoyu Li1,2* and Zhiying Mu1,2

1Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China, 2School of
Cybersecurity, Northwestern Polytechnical University, Xi’an, China

In recent years, machine learning technology has made great improvements in social
networks applications such as social network recommendation systems, sentiment
analysis, and text generation. However, it cannot be ignored that machine learning
algorithms are vulnerable to adversarial examples, that is, adding perturbations that are
imperceptible to the human eye to the original data can cause machine learning algorithms
to make wrong outputs with high probability. This also restricts the widespread use of
machine learning algorithms in real life. In this paper, we focus on adversarial machine
learning algorithms on social networks in recent years from three aspects: sentiment
analysis, recommendation system, and spam detection, We review some typical
applications of machine learning algorithms and adversarial example generation and
defense algorithms for machine learning algorithms in the above three aspects in
recent years. besides, we also analyze the current research progress and prospects
for the directions of future research.
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1 INTRODUCTION

In recent years, with the rapid development of internet technology, social networks have played an
increasingly important role in people’s lives [1]. Among them, social networks such as Facebook,
Twitter, and Instagram have shortened the distance between people and changed the way that people
get information. For example, more and more people are willing to share new things happening
around them with friends through social networks, and government agencies release the latest policy
information to the public through social networks. With the rapid popularization of social networks,
the role of social networks is not limited to providing people with a channel to communicate with
friends. For example, users can be profiled according to its timelines, then the system can recommend
friends, topics, information, and products that users may be interested in, which can greatly enrich
people’s leisure life. Filtering useless spam and robot accounts can not only reduce the time that users
spend on browsing spam but also protect users from phishing website attacks. Besides, research on
social network information dissemination [2, 3] can not only facilitate social network marketing but
also effectively predict and control public opinion. The study of the interaction between disease and
disease information on complex networks [4] has played an important role in understanding the
dynamics of epidemic transmission and the interaction between information dissemination.
Therefore, how to use social networks to achieve various functions has become a research
hotspot in recent years.

With significant improvement in the performance of computers and the widespread application
of GPUs, Machine learning (ML) especially Deep Learning (DL) has been widely used in various
industries (such as automatic driving, computer vision, machine translation, recommendation
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systems, cybersecurity, etc.). In terms of social networks, many
scholars also use machine learning algorithms to implement
functions such as friend or information recommendation, user
interest analysis, and spam detection. However, it can’t be ignored
that machine learning algorithms are vulnerable to adversarial
examples, that is, adding perturbations that are not perceptible to
the human eye can mislead the classifier to output a completely
different classification result. After the concept of adversarial
examples was proposed, many studies have shown that no matter
how the machine learning model is adjusted, it can always be
successfully broken by new adversarial example generation
methods. In recent years, the research on the generation and
defense of adversarial examples has spread from the field of
computer vision [5] to social networks, cybersecurity [6], natural
language processing [5, 7], audio and video processing [8], graph
data processing [5], etc. Therefore, the ability to effectively defend
against adversarial examples has become a key factor of whether
machine learning algorithms can be applied on a large scale.

In this paper, we focus on adversarial machine learning in the
field of social networks, that is, adversarial example generation
and defense technology in the field of social networks. Firstly, we
reviewed the recent research progress of machine learning
algorithms in social networks in terms of sentiment analysis,
recommendation systems, and spam detection, and then we
summarized the latest research on adversarial example
generation and defense algorithms in recent years. Next we
sorted out some research progress of adversarial example
generation and defense algorithms in social networks. Finally,
we summarized the advantages and disadvantages of existing
algorithms, and prospects for its future research directions.

The rest of this paper is organized as follows. In section 2, the
application of machine learning algorithms in social networks in
recent years is reviewed. Section 3 reviews the security issues
faced by machine learning algorithms and the robust
reinforcement strategies against different attacks. Section 4
summarizes the attack and defense algorithms for machine
learning in social networks. Section 5 analyzes the problems
of adversarial example generation and defense algorithms in the
field of social networks, prospect the future research direction,
and concludes this paper.

2 MACHINE LEARNING IN SOCIAL
NETWORKS

While social network such as Twitter, Facebook, and Instagram
facilitate people’s communication, they also change people’s
lifestyles to a great extent. The application of machine learning
in social networks also promotes the vigorous development of
social networks to a large extent. The main applications of
machine learning in social networks are as follows: sentiment
analysis, recommendation system, spam detection, community
detection [9], network immunization [10], user behavior analysis
[11, 12], and other aspects. In this paper, we mainly review the
application of machine learning in social networks from three
aspects: sentiment analysis, recommendation system, and spam
detection.

2.1 Sentiment Analysis
Millions of users have posted various opinions on social networks
every day, involving daily life, news, entertainment, sports, and
other aspects. The emotional of user’s comment on different
topics can be divided into positive, neutral, and negative
categories. With the user’s emotional tendency on different
topics, we can learn the user’s personality, value tendency, and
other information. And then more targeted strategies can be used
for specific users in activities such as topic dissemination and
product promotion. Some researches of machine learning in
sentiment analysis are shown in Table 1.

Wang et al. [26] introduced a multi-head attention-based
LSTM model to perform aspect-level sentiment analysis, they
carry out their experiment on the dataset of SemEval 2014 Task 4
[27], the results of the experiment show that their model is
advantageously competitive in aspect-level classification. Based
on this, Long et al. [15] introduced an improved method with
bidirectional LSTM network and multi-head attention
mechanism, they utilize the multi-head attention to learn the
relevant information from a different representation subspace,
and achieved 92.11% accuracy on comment dataset from Taobao.

To perform aspect-based sentiment analysis of Arabic Hotels’
reviews, both SVM and deep RNN were used in Al-Smadi et al.
[13]’s works, respectively. They evaluated their method on Arabic
Hotels’ reviews dataset. The results show that the performance of
SVM is superior to the other deep RNN approach in the aspect
category identification, opinion target expression extraction, and
the sentiment polarity identification, but inferior to RNN
approaches in the execution time required for training and
testing.

By using the API provided by Twitter, Hitesh et al. [14]
collected 18,000 tweets without retweets on the term Indian
elections. Based on these data, they proposed a model that
combined with word2vec and random forest model to perform
sentiment analysis, and they used a Word2Vec feature selection
model to extract features and then train a random forest model
for sentiment analysis, and their final accuracy reaches 86.8%.

Djaballah et al. [16] proposed a method to detect content that
incites terrorism on Twitter, they collected tweets related to
terrorism in Arabic and manually classified these tweets in
“tweets not inciting terrorism” and “tweets inciting terrorism”.
Based on Google’s Word2vec method [17], they introduce a
method of Word2vec by the weighted average to generate
tweets feature vectors, then SVM and Random Forest
classifiers were used for the prediction of sentiments. The
experiments results show that their method can improve the
prediction results of the Word2vec method [17] slightly.

Ho et al. [18] proposed a two-stage combinatorial model to
perform sentiment analysis. In the first stage, they trained five
machine learning algorithms: logistic regression, naive Bayes,
multilayer perceptron, support vector machine and random
forest with the same dataset. In the second stage, a
combinatorial fusion is used to combine a subset of these five
algorithms, and experiment results show that the combination of
these algorithms can achieve better performance.

To capture precise sentiment expressions in aspect-based
sentiment analysis for reasoning, Liu et al. [19] introduced a
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method named Attention-based Sentiment Reasoner (AS-
Reasoner). In their model, an intra attention and a global
attention mechanism was designed, respectively. The intra
attention computes weights by capturing the sentiment
similarity between any two words in a sentence, and the global
attention computes weights by a global perspective. They carried
out an experiment on various datasets, and the results show that
the AS-Reasone is language-independent, and it also achieves
state-of-the-art macro-F1 and accuracy for aspect-based
sentiment analysis.

Umer et al. [21] proposed a deep learning model which is
combined with CNN and LSTM network to perform sentiment
analysis on Twitter. The CNN layer is used to learn the higher-
level representation of sequences from original data and feed it to
the LSTM layers. They carry out their experiment on three
Twitter dataset which includes a women’s e-commerce dataset,
an airline sentiment dataset, and a hate speech dataset, and the
accuracy on three datasets is 78.1, 82.0, and 92.0%, respectively,
which is markedly superior to singly use of CNN [22] and
LSTM [23].

2.2 Recommendation System
The social network recommendation system is an important part
of the social network system. Recommendation systems such as
friend recommendation, content recommendation, and
advertising delivery greatly enrich people’s social life while also
create huge economic benefits. Recommending friends and article
content that users may be interested in will extend the time users

surf the social networks; Pushing advertising information to users
reasonably and effectively can not only creating significant
economic benefits but also facilitate users’ lives. As shown in
Table 2, with the rapid development of machine learning, many
scholars have also carried out research on social network
recommendation system based on machine learning.

Fan et al. [28] try to perform social recommendation with
graph neural networks, and they introduced a model named
GraphRec (Graph Neural Network Framework), which is
composed of the user modeling, the item modeling, and the
rating prediction. Both the user modeling and the item modeling
used graph neural network and attention network to learn user
latent factors (hi) and the learn item latent factors (zj) from the
original data, respectively, the rating prediction concatenate the
user latent factors and the item latent factors and feed into a
multilayer perceptron neural network for rating prediction. They
evaluated the GraphRec with two representative datasets
Epinions and Ciao, and the results show that the GraphRec
can outperform GC-MC (Graph Convolutional Matrix
Completion) [29], DeepSoR (Deep Neural Network Model on
Social Relations for Recommendation) [30], NeuMF (Neural
Matrix Factorization) [31], and some other baseline algorithms.

Guo et al. [33] hold that the feature space of social
recommendation is composed of user features and item
feature, the user feature is composed of inherent preference
and social influence, and the item feature include attribute
contents, attribute correlations, and attribute concatenation.
They introduced a framework named GNN-SoR (Graph

TABLE 1 | Maching learning in sentiment analysis.

Authors Introduced methods Year Datasets Baseline

Al-Smadi et al. [13] SVM and Deep RNN 2018 Arabic Hotels’ reviews —

Hitesh et al. [14] Word2Vec & Random forest 2019 Twitter BOW, TF-IDF
Long et al. [15] BiLSTM-MHAT 2019 Taobao CNN, BiLSTM, Attention-BiLSTM
Djaballah et al. [16] SVM, Random Forest 2019 Twitter Word2vec [17]
Ho et al. [18] Combinatorial model 2019 Kaggle LR, NB, RF, SVM, MLP
Liu et al. [19] AS-Reasoner 2019 SemEval-2014, SemEval-2015 LSTM, TD-LSTM, TD-LSTM.etc
Yao et al. [20] DSSA-H 2020 Twitter SVM, RF
Umer et al. [21] CNN-LSTM 2021 Twitter CNN [22], LSTM [23]
Lv et al. [24] CAMN 2021 SemEval-2014, Twitter CEA, DAuM, TNet-AS,etc
Rawat et al. [25] SMODT 2021 Twitter KNN, SVM, DT, SMO

TABLE 2 | Maching learning in recommendation system.

Authors Introduced methods Year Datasets Baseline

Fan et al. [28] GraphRec 2019 Epinions, Ciao GC-MC [29], DeepSoR [30], NeuMF [31]
Gui et al. [32] Cooperative Multi-Agent

Approach
2019 Dataset Containing 50 Historical Tweets Per User LSTM, Attention methods, Independent Q-Learning,

Random sampling
Guo et al. [33] GNN-SoR 2020 pinions [34], Yelp [35], Flixster [36] SocialMF [37], TrustSVD [38], TrustMF [39], AutoRec [40]
Huang et al. [41] MAGRM 2020 Meetup, MovieLens-1M DPMF-CNN [42], AGR [43], AGREE [44]
Pan et al. [45] CoDAE 2020 Epinions, Ciao CDAE [46], TDAE [47]
Zheng et al. [48] ITRA 2021 Delicious [49], FilmTrust [50], CiaoDVD [51] CDAE [46], SAMN [52], CAVE [53]
Ni et al. [54] RM-DRL 2021 Netflix, BookCrossing, Movielens-20M, Movielens-1M,

HetRec 2011-Movielens
ConvMF [55], DRMF [56], GNN [57], AFM [58], RACMF
[59], HRAM [60], DAINN [61]

Tahmasebi
et al. [62]

SRDNet 2021 MovieTweetings, Open Movie Database AutoRec [40], MRS-RBM [63], PP-CF [64], et
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Neural Network-based Social Recommendation Framework) to
exploit the correlations of item attributes. In their framework, two
graphs neural network methods are used to encode the user
feature space and the item feature space, respectively. Then, the
encoded two spaces are regarded as two potential factors in the
matrix factorization process to predict the unknown preference
ratings. They conducted experiments on real-world datasets
Epinions [34], Yelp [35] and Flixster [36] respectively, and the
experimental results indicated that the perform of GNN-SoR is
superior to four baselines algorithm such as: SocialMF (Matrix
Factorization based Social Recommendation Networks) [37],
TrustSVD [38], TrustMF [39], and AutoRec [40].

Huang et al. [41] introduced a model named MAGRM
(Multiattention-based Group Recommendation Model) to
perform group recommendation, and the MAGRM is consists
of two multiattention based model: the VR-GF (vector
representation for group features) and the PL-GI (preference
learning for groups on items). The VR-GF is used for getting
the deep semantic feature for each group. Based on VR-GF, the
PL-GI is used for predicting groups’ ratings on items, the
experiment with two real-world dataset Meetup and
MovieLens-1M, and the performance of MAGRM outperforms
AGR [43], AGREE (Attentive Group Recommendation) [44] and
other algorithms.

Pan et al. [45] introduced a model named CoDAE
(Correlative Denoising Autoencoder) to perform top-k
recommendation task, which learn user features by modeling
user with truster, roles of rater, and trustee with three separate
denoising autoencoder model. They carried out an experiment
on Ciao and Epinions datasets, they found that their method is
superior to CDAE (Collaborative Denoising Auto-Encoders)
[46], TDAE [47], and some other baseline algorithms. Similar
to [45], Zheng et al. [48]. proposed a model named ITRA
(Implicit Trust Relation-Aware model) which is based on
Variational Auto-Encoder to learn the hidden relationship
between huge amounts of graph data. They evaluated their
model on three dataset: Delicious [49], FilmTrust [50], and
CiaoDVD [51], where the performance of ITRA was markedly
superior to SAMN (Social Attention Memory Networ) [52],
CVAE [53], and CDAE [46] in the top-n item recommendation
task.

By capturing the semantic features of users and items
effectively, Ni et al. [54] proposed a model named RM-DRL
(Recommendation Model based on Deep Representation
Learning). According to the authors, firstly, they used a CNN
network to learn the semantic feature vector of the item from
its primitive feature vectors. Next, they used an Attention-
Integrated Gated Recurrent Unit to learn user semantic feature
vector from a series of user features such as the user preference
history, semantic feature vectors, primitive feature vector and so
on. Finally, the users’ preferences on the items were calculated
with the semantic feature vectors of the items and the users.
They conduct their experiments on five datasets, and the
results show that the performance of RM-DRL is superior to
ConvMF [55], AFM (Attentional Factorization Machines) [58],
GNN [57], HRAM (Hybrid Recurrent Attention Machine)
[60], etc.

2.3 Spam Detection
Social networking is one of the main channels for people to
acquire information. However, the overwhelming spam and
network phishing links also bring great troubles to people’s
work and life. Therefore, how to detect spam on social
networks effectively is an important issue. As shown in
Table 3, many scholars have proposed various methods to
solve this problem in recent years.

Karakasli et al. [65] tried to detect spam users with machine
learning algorithms. Firstly, they collect twitter user data with
software named CRAWLER. Then, 21 features in total was
extracted from the original Twitter data. Next, a dynamic
feature selection method was used to reduce the model
complexity. Finally, they used SVM and KNN algorithm to
perform spam user detection, and the success detects rate for
KNN was 87.6 and 82.9% for SVM.

Aiming at the problem of difficult spam detection caused by
the short text and large semantic variability on social networks, by
combining the convolutional neural network (CNN) with long
short term memory neural network (LSTM), Jain et al. [66]
introduced a deep learning spam detection architecture named
Sequential Stacked CNN-LSTM (SSCL). Firstly, it uses the CNN
network to extract feature sequences from original data, then it
feed the feature sequences to the LSTM network, and finally the
sigmoid function was used to classify the label as spam or none-
spam. They evaluated the performance of SSCL on two dataset:
SMS and Twitter, and its precision, accuracy, recall, and F1 score
achieved 85.88, 99.01, 99.77, and 99.29%, respectively.

Zhao et al. [68] introduced a semi-supervised graph
embedding model to detect spam bot for the directed social
network, where they used the attention mechanism and graph
neural network to detect spam bot based on the retweet
relationship and the following relationship between users.
They experimented with the Twitter 1KS-10KN dataset [69]
which was collected on Twitter, compared with GCN,
GraphSAGE, and GAT, their method achieved the best
performance in Recall, Precision, and F1-score.

Focusing on the uneven distribution of spam data and non-
spam data on Twitter, Zhang et al. [70] proposed an algorithm
named I2RELM (Improved Incremental Fuzzy-kernel-
regularized Extreme Learning Machine), which adopt fuzzy
weights (each input data is provided with a weight si, which is
in the interval of (0,1] and assigned by the ratio of spam users to
non-spam users in the whole dataset) to improve the detection
accuracy of the model on the non-uniformly distributed dataset.
They evaluated their method with the data obtained from Twitter,
and the performance of I2RELM on the accuracy, TRP, precision,
and F-measure was superior to SVM, DT, RF, BP, RBF, ELM, and
XG-Boost.

To perform spam detection for movie reviews, Gao et al. [71]
proposed an attention mechanism based machine learning model
named adCGAN. Firstly, they used SkipGram to extract word
vectors from all reviews, and extended SIF algorithm [80] to
generate sentence embedding. Then, they combined the encoded
movie features and sentence vectors, and used attention driven
generate adversarial network to perform review spam detection.
They evaluated their method with the review data collected from
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Douban, the accuracy of adCGAN achieved 87.3%, which was
markedly superior to MCSVM [72], VAE [73], and some other
baseline algorithms.

Aiming at the problem of class imbalances in the spam
detection task, Zhao et al. [74] proposed an ensemble learning
framework which based on heterogeneous stacking. Firstly, six
different machine learning algorithms including SVM, CART,
GNB (Gaussian Naive Bayes), KNN, RF, and LR were used to
perform classification tasks separately. Then, feed the output of
six machine learning algorithm to cost-sensitive learning based
neural network to get the spam detect result. They experimented
with the dataset collected by Chen et al. [75], and its performance
was markedly superior to CSDNN and WSNN [76].

3 SECURITY IN MACHINE LEARNING

The concept of adversarial example was first introduced by
Szegedy et al. [81], they found that the machine learning
classifier would get completely different results by adding
perturbation that hardly perceptible by the human eye to the
original picture, Szegedy believes that the discontinuity of
mapping between input and output caused by the highly
nonlinear machine learning model is the main cause for the
existence of adversarial examples. While Goodfellow et al. [82]
and Luo et al. [83] believe that the machine learning model are
vulnerable to adversarial examples is mainly due to its linear part,
in the high-dimensional linear space, the superposition of
multiple small perturbations in the network will cause a great
change in the output. Glimer et al. [84] believe that adversarial
examples are caused by the high dimensionality of the input data,
while Ilyas et al. [85] believe that the adversarial example is not
bugs but features, since the attributes of the dataset include
robustness and non-robustness features, when we delete non-
robust features from the original training set, we can obtain a
robust model through training, the adversarial examples are
generated due to its non-robust features, and have little
relation with machine learning algorithms.

3.1 Attacks to Machine Learning Models
The generation process of adversarial examples is to mislead the
target machine learning model by adding perturbation η that are

imperceptible to the human eye on the original data, which can be
expressed as [86]:

min
xadv

J f xadv( ), yadv( )
s.t.

‖η‖p ≤ ε,
f x( ) � y,
y≠yadv,

⎧⎪⎨⎪⎩
(1)

where J(·) is the loss function, f(·) is the target machine learning
model, xadv is the adversarial example, η is the adversarial
perturbation added to original data x, ε is a normal used to
limit the size of η.

According to the degree of understanding to the target model,
attacks to machine learning models can be divided into white-box
attacks and black-box attacks. White-box attacker obtains all
information such as the structure and parameters of the target
model, on the contrary, the black-box attacker know nothing
about the structural information of the target model, and can only
query the output of the target model based on the input [87].

3.1.1 White-Box Attacks
Szegedy et al. [81] first introduced a white-box attack method
named L-BFGS, which try to craft adversarial examples by
defining the search for the smallest possible attack
perturbation as an optimization problem, it can be expressed as:

minx′c‖η‖ + Jθ x′, l′( )
s.t. x′ ∈ 0, 1[ ] (2)

where c is a constant, η is the perturbation, J(·) is the loss
function.

Although L-BFGS has a high attack success rate, its
computational complexity is expensive; Similar to Szegedy,
based on optimization method, Carlini et al. [88] also
proposed an adversarial example generate method named
C&W. The research made by Carlini et al. showed that the
algorithm can effectively attack most of the existing models
[89, 90]; Combining C&W and Elastic Net, Chen et al. [91]
introduced a method named EAD to craft adversarial examples,
compared with C&W, the adversarial examples generated by
EAD have stronger transferability.

To reduce the computation complexity of L-BFGS,
Goodfellow et al. [82] introduced a method named FGSM

TABLE 3 | Machine learning in spam detection.

Authors Introduced methods Year Datasets Baseline

Karakasli et al. [65] SVM and KNN 2019 Twitter —

Jain et al. [66] SSCL 2019 SMS and Twitter KNN, NB, RF, SVM etc.
Tajalizadeh
et al. [67]

INB-DenStream 2019 Twitter DenStream, StreamKM++, CluStream

Zhao et al. [68] Attention + GNN 2020 Twitter 1KS-10KN [69] GCN, GraphSAGE, and GAT
Zhang et al. [70] I2RELM 2020 Twitter SVM, DT, RF, BP, RBF, ELM, XG-Boost
Gao et al. [71] adCGAN 2020 Douban MCSVM [72], VAE [73]
Zhao et al. [74] Ensemble Learning 2020 [75] CSDNN and WSNN [76]
Alom et al. [77] Text-based & Combined

classifier
2020 Twitter Social Honeypot, Twitter 1KS-

10KN [69]
Blacklist-based Approach [78]

Neha et al. [79] LSTM + Attention 2021 Twitter Bi-LSTM, K Neighbor, Random forest, Decision tree, Naive
Bayes
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(Fast Gradient Sign Method), which is a single-step attack that
adds perturbation along the direction of gradient, and the
perturbation is calculated as η � εsign(∇xJ(θ, x, y)), where
J(·) is the loss function, θ is the parameters of target model,
and ε is the size of the perturbation; Based on FGSM, Kurakin
et al. [92, 93]) introduced a method named BIM (Basic Iterative
Method), which used an iterative method to generate adversarial
examples, and they also used the real pictures to evaluate the
effectiveness of BIM; Based on BIM, by limiting the size of the
perturbation in each iteration strictly, Madry et al. [94]
introduced a method named PGD (Projected Gradient
Descent), the experiment result shows that the adversarial
examples crafted by PGD have better transferability; Similar to
Madry et al. [94], Dong et al. [95] introduced a method named
MI-FGSM, which integrated the momentum term into the
iterative process to craft adversarial examples, compare with
BIM, the MI-FGSM can effectively escape from poor local
maxima during the iterations.

In order to find theminimal perturbations that are sufficient to
mislead the target machine learning model, based on the iterative
linearization of the classifier, Moosavi-Dezfooli et al. [96]
proposed the DeepFool algorithm, which helps the attacker to
craft adversarial examples with minimal perturbations.

Without calculating the gradient of the target model, Baluja
et al. [97] introduced a method named ATN (Adversarial
Transformation Network) to perform white-box or black-box
attacks by training an adversarial transformer network, which can
transformer the input data into the target or untargeted
adversarial examples. Similar to ATN, Xiao et al. [98]
introduced advGan to craft adversarial examples, based on
generative adversarial network, the generator of advGAN is
used to generate the perturbation to the input data, and the
discriminator is used to distinguish the original data from
adversarial examples generated by the generator. Besides, Bai
et al. [99] proposed AI-GAN to crafted adversarial examples. The
above methods [97–99] only need to query the target model
during the stage of model training stage, which is fast and
efficient.

To find the strongest attack policy, Mao et al. [100] proposed
Composite Adversarial Attacks (CAA). They adopted the NSGA-
II genetic algorithm to find the best combination of attack
algorithms from a candidate pool composed of 32 base
attackers. The attack policy of CAA can be expressed as:

s : As
N As

2 As
1 x,F ; ϵs1, ts1( ),F ; ϵs2, ts2( )( ) . . . ,F ; ϵsN, tsN) (3)

whereAi(·) is one of the attack algorithm in attack pool, ϵsi and tsi
is the hyperparameter of Ai(·), F is the target model.

3.1.2 Black-Box Attacks
During the processes of black-box attack, the attacker know
nothing about the target model, and the mainstream approach
is based on gradient estimation and substitute model.

3.1.2.1 Based on Gradient Estimation
In this scenario, the attacker estimates the gradient information of
the target model by feeding data into the target model and
querying its output. Chen et al. [101] extended the C&W [88]

algorithm and proposed Zeroth Order Optimization (ZOO)
algorithm to perform black-box adversarial examples
generation. Although the ZOO algorithm has a high success
rate in generating adversarial examples, it requires a large
amount of queries on the target model. To reduce the number
of queries to the target model, Ilyas et al. [102] used the variant of
NES algorithm [103] to estimate the gradient of the target model,
which significantly reduces the query complexity to the target
model. Tu et al. [104] proposed a framework named AutoZOOM,
which adopts an adaptive random gradient estimation strategy
and dimension reduction techniques to reduce the query count,
compared with the ZOO [101], under the premise of achieving
the same attack effect, AutoZOOM can significantly reduce the
query complexity. Du et el [105]. also train a meta attacker mode
to reduce the query count. Bai et al. [106] proposed the NP-attack
algorithm, which also greatly reduces the query complexity by
exploring the distribution of adversarial examples around benign
inputs. Besides, Chen et al. [107] proposed the HopSkipJumpAttack
algorithm, which applies binary information at the decision
boundary to estimate gradient direction.

3.1.2.2 Based on Substitute Model
Based on the transferability of the adversarial examples, the attack
usually trains a substitute model and uses the white-box attack
algorithm to craft adversarial examples on the substitute model.
Papernot et al. [108] first used substitute model to generate
adversarial examples. Their research also shows that the
attacker can perform black-box attack based on the
transferability of adversarial examples, even if the structure of
the substitute model is completely different from the target
model. Zhou et al. [109] proposed a data-free substitute model
train method (DaST) to train a substitute model for adversarial
attack without any real data. By efficiently using the gradient of
the substitute model, Ma et al. [110] proposed a highly query-
efficient black-box adversarial attack model named SWITCH.
Zhu et al. [111] used the PCIe bus to learn the information of
machine learning models in the model-privatization deployments
and proposed the Hermes Attack algorithm to fully reconstruct
the target machine learning model. By focusing on the training
strategy of the substitute model on the data distributed near the
decision boundary, Wang et al. [112] improve the transferability
of adversarial examples between the substitute model and the
target model significantly. Based onmeta-learning, Ma et al. [113]
train a generalized substitute model named Simulator to mimic
any unknown target model, which significantly reduces the query
complexity to the target model.

3.2 Defense Against Adversarial Examples
The defense of adversarial examples is an important component
of machine learning security. Many scholars have also proposed
different adversarial example defense strategies in recent years.
The strategies are divided into input data transformer, adversarial
example detection, and model robust enhance.

3.2.1 Input Data Transformer
Since perturbation of adversarial examples are usually visually
imperceptible, by compressing away these pixel manipulation,
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Das et al. [114] introduced a defense framework based on JPEG
compression. Cheng et al. [115] adopt a self-adaptive JPEG
compression algorithm to defend against adversarial attacks of
the video.

Based on generative adversarial network, Samangouei et al.
[116] introduced the Defense-GAN to defend against adversarial
attacks. By learning the distribution of unperturbed images, the
Defense-GAN can generate the clean sample that approximates
the perturbed images. Although the Defense-GAN could defend
against most commonly attack strategies, its hyper-parameters is
hard to train. Hwang et al. [117] also introduced a Purifying
Variational Autoencoder (PuVAE) to purify adversarial
examples, which is 130 times faster than Defense-GAN [116]
in inference time. Besides, Lin et al. [118] introduced InvGAN to
speed up Defense-GAN [116]. Zhang et al. [119] proposed an
image reconstruction network based on residual blocks to
reconstruct adversarial examples into clean images, in
addition, adding random resize and random pad layer to the
end of the reconstruction network is very effective in eliminating
the perturbations introduced by iterative attacks.

3.2.2 Adversarial Example Detection
Just as the name implies, the adversarial example detection
algorithms enhance the robustness of the machine learning
model by filtering out adversarial examples in a large number
of data sets, it detects adversarial examples mainly by learning the
differences in characteristics and distribution between the
adversarial examples and the normal data.

Among many works, Liu et al. [120] used the gradient
amplitude to estimate the probability of modifications caused
by adversarial attacks and applied steganalysis to detect
adversarial examples. The experiment indicated that their
method can accurately detect adversarial examples crafted by
FGSM [82], BIM [92], DeepFool [96], and C&W [88]. Wang et al.
[121] proposed a SmsNet to detect adversarial examples, which
introduced a “SmsConnection” to extract statistical features and
proposed a dynamic pruning strategy to prevent overfitting. The
experiment indicated that the performance of SmsNet was
superior to ESRAM (Enhanced Spatial Rich Model) [120] on
detecting adversarial examples crafted by various attacks
algorithms.

Noticing the sensitivity of adversarial examples to the
fluctuations occurring at the highly-curved region of the
decision boundary, Tian et al. [122] proposed Sensitivity
Inconsistency Detector (SID) to detect adversarial examples,
which achieved detection performance in detecting adversarial
examples with small perturbation. Besides, based on the feature
that adversarial examples are more sensitive to channel
transformation operations than clean examples, Chen et al.
[123] proposed a light-weighted adversarial examples detector
based on adaptive channel transformation named ACT-Detector.
The experiments show that the ADC-detector can defend against
most adversarial attacks.

To lessen the dependence on prior knowledge of attacks
algorithms, Sutanto et al. [124] proposed a Deep Image Prior
(DIP) network to detect adversarial examples, they used a
blurring network as the initial condition to train the DIP

network only using normal noiseless images. In addition, it is
applicable for real-time AI systems due to its faster detection
speed for real images. Liang et al. [125] consider the perturbation
crafted by adversarial attacks as a kind of noise, They use scalar
quantization and smoothing spatial filter to implement an
adaptive noise reduction for input images.

3.2.3 Model Robust Enhancement
Model robust enhancement mainly includes adversarial training
and certified training. Adversarial training improves the model’s
immunity to adversarial examples by adding adversarial examples
in its training set [126]. Certified training enhances model
robustness by constraining the output space of each layer of
the neural network under specific inputs during the training
process.

3.2.3.1 Adversarial Training
Adversarial training is one of the effective methods to defend
against the attacks from adversarial example, the process of
adversarial training can be approximated by the following
minimum-maximum optimization problem [94].

min
θ

E x,y( )∈D max
δ∈S

L fθ x + δ( ), y( )[ ] (4)

where D is the set of training data, f(·) is the target neural
network, θ is the parameter of f(·), L is the loss function, and δ is
the adversarial perturbation.

Szegedy et al. [81] first introduced the concept of adversarial
training by training the neural network on the dataset
composed of clean data and adversarial examples.
Goodfellow et al. [82] also tried to enhance the robustness
of the machine learning model by adding adversarial examples
crafted by FGSM algorithm to the training set. Although it is
more effective in defending against attacks from the FGSM
algorithm, it is helpless against attacks from more aggressive
algorithms such as C&W [88] and PGD [94]. Madry et al. [94]
tried to enhance the robustness of neural networks from the
lens of robust optimization, they used the saddle point formula
to optimize the parameters of the network model, thereby
reducing the loss of the model on adversarial examples.
Although adversarial training with PGD [94] algorithm can
significantly enhance the robustness of the model, the
computational complexity is very expensive when training
on large-scale datasets.

To reduce the computational complexity of adversarial
training, Shafahi et al. [127] introduced a speed adversarial
training method by updating both the model parameters and
images perturbations for each update step, and its training speed
is 3–30 times than that of PGD [94]. Zhang et al. [128] found that
the adversarial perturbation was only coupled with the first layer
of the neural network, based on this, they proposed an adversarial
training algorithm named YOPO(You Only Propagate Once), by
focusing adversary computation only on the input layer of the
neural network, experiment indicated that the training efficiency
of YOPO was 4–5 times than that of original PGD training [94].
Besides, the research of Wong et al. [129] shown that the
combination of FGSM [82] and random initialization in
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adversarial training can significantly reduce training cost while
achieving similar effects to original PDG training [94].

3.2.3.2 Certified Training
Gowal et al. [130] proved that the robustness to PGD [94] attack
was not a true measure of robustness. They focus on research on
formal verification, and they proposed a neural network verified
training algorithm named IBP (Interval Bound Propagation).
Although the IBP algorithm is not only computationally
cheaper but also significantly reduce the verified error rate, its
training process is unstable, especially in the initial stages of
training, to enhance the stability of IBP. Zhang et al. [131]
combined the IBP [130] algorithm and the tight linear
relaxation algorithm named CROWN [132], and proposed a
verified training algorithm named IBP-CROWM. The
experiment results shown that both standard errors and

verified errors of IBP-CROWN were outperforming than
IBP [130].

4 SECURITY OF MACHINE LEARNING IN
SOCIAL NETWORKS

Most of the existing researches related to adversarial examples are
focusing on the field of image classification. However, the
generation of adversarial examples in social networks needs to
process data like text and graph, unlike images, text and graph are
discrete in feature distribution, which makes it more difficult to
craft adversarial examples with text or graph. In this section, we
mainly review the researches of adversarial examples in sentiment
analysis (SA), spam detection (SD), and recommendation
systems (RS), as well as some researches on question and

TABLE 4 | Attack to machine learning in social network.

Authors Year Method Dataset Baseline Attack type Aspect

Black-
box

White-
box

SA SD RS

Gao et al. [133] 2018 DeepWordBug Enron spam emails, IMDB Projected FGSM, Random +
DeepWordBug Transformer

✓ ✓ ✓

Vijayaraghavan
et al. [134]

2019 AEG IMBA, AG News DeepWordBug [133], NMT-BT [135] ✓ ✓

Ren et al. [136] 2020 Lage Scale Adversarial
Attack

IMBA, Rotten Tomatoes
Movie Reviews

FGSM [82], DeepFool [96],
Textbugger [137]

✓ ✓

Li et al. [138] 2020 BERT-Attack AG News, IMDB, Yelp,
FAKE, SNLI, MNLI

TextFooler [139], Genetic attack [140] ✓ ✓ ✓

Nuo et al. [141] 2020 WordChange Ctrip, JD.com TF-IDF, TextRank ✓ ✓ ✓
Li et al. [142] 2020 CLARE Yelp, AG News, MNLI, QNLI TextFooler [139], TextFooler + LM,

BERTAttack
✓ ✓

Garg et al. [143] 2020 BAE Amazon Yelp, IMDB, MR TextFooler [139] ✓ ✓
Jin et al. [139] 2020 TextFooler AG News, FAKER, MR,

Yelp, IMDB
Textbugger [137] ✓ ✓

Maheshwary
et al. [144]

2021 Hard Label Attack AG News, Yahoo Answers,
MR, IMDB, Yelp, SNLI,
MNLI

TextFooler [139], PSO [145],
AEG [134]

✓ ✓

Yang et al. [146] 2017 Co-visitation attack YouTube, eBay, Amazon,
Yelp

Popular-item-attack, Random-item-
attack

✓ ✓

Fang et al. [147] 2018 Graph Poisoning Attack MovieLens-100K, Amazon
Instant Video

Co-visitation attack [146] ✓ ✓

Christakopoulou
et al. [148]

2019 Oblivious
Recommender System
Attack

MovieLens-100K,
MovieLens-1M

— ✓ ✓

Sun et al. [149] 2020 NIPA Cora, Citeseer, Pumbed Random, Preferential, PGA ✓ ✓
Song et al. [150] 2020 PoisonRec Steam, MovieLens-1M and

Amazon
Popular Attack, Random Attack,
Middle Attack, Power Item Attack,
ConsLOP

✓ ✓

Chang et al. [151] 2020 GF-Attack Cora, Citeseer, Pubmed Random, Degree, RL-S2V, Aclass ✓ ✓
Fang et al. [152] 2020 TNA Yelp, Amazon, Digital Music PGA [153], SGLD [153] ✓ ✓
Lin et al. [154] 2020 AUSH MovieLens-100K, Amazon,

FilmTrus
Random, Segment, Bandwagon,
DCGAN

✓ ✓

Fan et al. [155] 2021 CopyAttack MovieLens-10M & Flixster,
MovieLens-20M & Netflix

RL-Generative, RandomAttack,
TargetAttack

✓ ✓

Zhan et al. [156] 2021 BBGA Cora, Citesser, Cora-ML DICE-BB, Random, Mettack, Aclass ✓ ✓
Finkelshtein
et al. [157]

2021 Single-Node Attack Cora, CiteSeer, PubMed,
Twitter-Hateful-Users

EdgeGrad ✓ ✓ ✓

Huang et al. [158] 2021 Poisoning Attack Movielens-100K,
Movielens-1M, Last.fm

Random, Bandwagon, MF ✓ ✓

Wu et al. [159] 2021 TrialAttack Movielens-100K,
Movielens-1M, FilmTrust

Random, Average, PGA [153], TNA
[152], AUSH [154]

✓ ✓
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answer robot and neural machine translation. Since the data used
in sentiment analysis and spam detection are both texts, they are
similar in the generation and defense of examples, we will review
them in one subsection, due to the relative lack of research on
question and answering robots and neural machine translation,
we will review them in one subsection. Table 4 and Table 5 has
shown some algorithms in sentiment analysis, spam detection,
and machine translation of adversarial example generation and
defense studies in recent years.

4.1 Security in Sentiment Analysis and Spam
Detection
4.1.1 Adversarial Attacks
The goal of the attack against sentiment analysis and spam
detection system is to craft a text x′ that is semantically

similar to the original text x but can mislead the target
classifier. It can be expressed as:

min
x′

S x, x′( ) s.t. F x( )≠F x′( ) (5)

where function S(·) is used to compute the semantic similarity
between x and x′, F(·) is the target model.

The adversarial example generation algorithm for texts is
mainly by finding the keywords in the whole sentence that
have a greater impact on the classification results and then
adding perturbation to these keywords.

Gao et al. [133] proposed an effectively black-box text
adversarial example generate method named DeepWordBug,
and they introduced temporal tail score (TTS) and temporal
score (TS) to evaluate the importance of words in the sentence.
According to the authors, firstly, they calculate the TTS and TS by

TABLE 5 | Defend against to adversarial examples in social network.

Authors Year Method Dataset Baselines Attacks Aspect

SA SD RS

Pruthi et al. [160] 2019 Robust Word
Recognition

SST, IMBA, Stanford
Sentiment Treebank

data augmentation [154], adversarial
training [82]

Swap, Drop,
Keyboard, Add

✓ ✓

Jia et al. [161] 2019 Certified
Robustness
Rraining

IMDB, SNLI Standard Training, Data
Augmentation

Genetic attack [140] ✓

Zhou et al. [162] 2019 DISP SST-2, IMDB Adversarial Data Augmentation
(ADA), Adversarial Training (AT),
Adversarial Training (AT)

Insertion, Deletion, Swap,
Random, Embed

✓

Si et al. [163] 2020 AMDA SST-2, IMDB Adversarial Data
Augmentation (ADA)

TextFooler [139],
PWWS [164]

✓

Wang et al. [165] 2020 MUDE Penn Treebank (Marcus,
Santorini, and Marcinkiewicz
1993)

Enchant 3 spell checker, scRNN Permutation, Insertion,
Deletion, Substitution

✓ ✓

Shi et al. [166] 2020 Transformers
Robustness Verify

Yelp, SST IBP — ✓

Ye et al. [167] 2020 Safer IMDB, Amazon Certified Robustness Rraining
[161], IBP

Genetic attack [140] ✓

Mozes et al. [168] 2020 FGWS SST-2, IMDB DISP [162] Genetic attack [140],
PWWS [164]

✓

Zeng et al. [169] 2021 RanMASK AG News, SST-2 Safer [167] TextFooler [139], Bert-
Attack [138],
DeepWordBug [133]

✓

Wang et al. [170] 2021 TextFirewall IMBA, Yelp Adversarial Training, Spelling Check
and Recovery (SCR), RSE

Deepwordbug [133],
Genetic attack [140],
PWWS [164]

✓ ✓

Karimi et al. [171] 2021 BAT SemEval 2014 task 4,
SemEval 2016 task 5

BERT [172] Gradient attack [173] ✓

Du et al. [174] 2019 FNCF Movielens-100K,
Movielens-1M

Distillation [175] C&W [88] ✓

Tang et al. [176] 2019 AMR Pinterest, Amazon POP, MF-BPR, DUIF, VBPR FGSM [82] ✓
Manotumruksa
et al. [177]

2020 SAO MovieLens, Beauty, Video,
Foursquare, Brightkite, Yelp

MostPop, BPR, APR, SASRec,
ASASRec

— ✓

Li et al. [178] 2020 SACRA Yelp, Foursquare WRMF, MMMF, BPRMF, CofiRank,
CLiMF, USG, GeoMF, etc.

FGSM [82] ✓

Wang et al. [179] 2020 ATMBPR Movielens-100K, Yelp BPR, CDAE, MPR, AMF, MLP,
NeuMF, LRML, JRL, etc.

FGSM [82] ✓

Shahrasbi
et al. [180]

2020 Semi-Supervised
Attack Detection

Instacart grocery LSTM — ✓

Wu et al. [181] 2021 APT FilmTrust, MovieLens-100K,
MovieLens-1M, Yelp

Adversarial Training (AT), PCMF AUSH [154], TNA [152],
PGA [153]

✓

Yi et al. [182] 2021 DAVE Yelp, Digital Music,
MovieLens-1M, MovieLens-
100K, Pinterest

NeuMF, CDAE, CFGAN, APR,
ACAE, AVB, VAEGAN, CVAE-GAN,
RecVAE

AAE ✓
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querying the output of the target model after shielding some
words, and then combine the value of TTS and TS to calculate the
importance of every word in the whole sentence. It can be
expressed as:

TS xi( ) � F x1, x2, . . . , xi−1, xi( ) − F x1, x2, . . . , xi−1( )
TTS xi( ) � F xi, xi+1, xi+2, . . . , xn( ) − F xi+1, xi+2, . . . , xn( )

Score xi( ) � TS xi( ) + λ TTS( ) xi( )
(6)

where, F(·) is target machine learning model, and xi is the i-th
word in the sentence. Finally, they modify some characters in the
keywords to generate text adversarial examples. Experiments
have proved that although DeepWordBug can generate text
adversarial examples with a high success rate, it will introduce
grammatical errors and can be easily defended by grammar
detection tools.

Vijayaraghavan et al. [134] proposed an Adversarial Examples
Generator (AEG) based on reinforcement learning to craft none-
target text adversarial examples, according to authors, they
evaluated the effectiveness of the AEG algorithm on two target
sentiment analysis convolutional neural networks: CNN-Word
and CNN-Char, the experiment showed that the AEG model was
able to fool the target sentiment analysis models with high success
rates while preserving the semantics of the original text.

Li et al. [138] also proposed a word-level text adversarial
examples generate algorithm named BERT-Attack. According to
the authors, firstly, different from [133], they tried to find the
vulnerable words in a sentence by masking each word and the
query the target model for correct label. Then they used a pre-
trained model Bert to replace vulnerable vocabulary with
grammatically correct and semantically similar words. The
process of calculating the vulnerability of each word can be
expressed as:

Iwi � F S( ) − F S \wi( ) (7)

whereF(·) is target machine learning model, S � [w0, . . . , wi . . . , ]
is the input text, and S\wi � [w0, . . . , wi−1, [MASK], wi+1, . . . , ] is
the text that replace the wi with [MASK].

Based on multiple modification strategies, Nuo et al. [141]
proposed a black-box Chinese text adversarial example generate
method named WordChange. Similar to the algorithm for
calculating TS in Eq. 6, they search for keywords by gradually
deleting a certain vocabulary in the sentence and then querying
whether the output of the model has changed, and then applying
“insert” and “swap” strategies on these keywords, thereby
generating Chinese text adversarial examples that can fool the
machine learning model.

Jin et al. [139] proposed a text adversarial examples generate
method named TextFooler, which craft adversarial examples by
finding the words that have the greatest impact on the output of
the target model in the whole sentence and replacing it with
words that share similar meanings with the original words.
Although the replaced words in the adversarial examples
generated by TextFooler are similar to the original words, it
may not fit overall sentence semantics. To make the text
adversarial examples more natural and free of grammatical
errors, Similar to [138] Garg et al. [143] proposed a text
adversarial example generation algorithm named BAE.

According to the authors, firstly, they calculate the importance
of each word in the text, and then choose a certain word and
replace it withMASK or insert aMASK adjacent to it according to
the importance of each word. Finally, they use the pre-trained
language model BERT-MLM [183] to replace the mask with a
word that fits the context. Similar to BAE [143], Li et al. [142] also
introduced a pre-trained language model based text adversarial
example generation algorithm named CLARE (ContextuaLized
AdversaRial Example). Compared with BAE [143], CLARE has
richer attack strategies and can generate text adversarial examples
with varied lengths. Experiment showed that the text adversarial
examples generated by BAE [143] and CLARE [142] were more
fluent, natural and grammatical.

To attack text neural networks in hard label black-box setting
where the attacker can only get the label output by the target
model, Maheshwary et al. [144] utilized a Genetic Algorithm
(GA) to craft text adversarial examples that share similar
semantics with the original text. Experimental results show
that on sentiment analysis tasks, their method can generate
text adversarial examples with a higher success rate using
smaller perturbation than algorithms such as TextFooler [139],
PSO (Particle Swarm Optimization) [145], AEG [134], etc.

In addition, different from generating examples by replacing
some words or characters in the text, Ren et al. [136] introduced a
white-box text adversarial example generate model to generate
text adversarial examples on large scale without inputting the
original text, and their model is composed of a vanilla VAE-based
generator and a series of discriminators. The generator is used to
generate text adversarial examples, and the discriminators are
used to make the adversarial examples of different labels crafted
by G look more realistic. Their experiment showed that the
proposed model could deceive the target neural network with
high confidence.

4.1.2 Defense Against Adversarial Attacks
The current defense strategies for text adversarial examples are
mainly divided into two aspects: adversarial example processing
and model robustness enhancement. The adversarial example
processing method mainly includes identifying the adversarial
examples by detecting the misspellings and unknown words
contained in the text and performing partial vocabulary
replacement of the adversarial examples to convert them into
clean text; The model robustness enhancement method enhances
the model’s defense ability against adversarial examples through
methods such as adversarial training and formal verification.

4.1.2.1 Adversarial Example Processing
Adversarial example detection is an important way to detect
adversarial examples in sentiment analysis and spam detection.
Pruthi et al. [160] proposed RNN-based word recognizers to
detect adversarial examples by detecting misspellings in the
sentences, but it is hard to defend word-level attacks. By
calculating the influence of words in texts, Wang et al. [170]
proposed a general text adversarial examples detection algorithm
named TextFirewall. They used it to defend the adversarial
attacks from Deepwordbug [133], Genetic attack [140], and
PWWS (Probability Weighted Word Saliency) [164], and the
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average attack success rate decreased on Yelp and IMDB are 0.73
and 0.63%, respectively. Mozes et al. [168] also proposed
adversarial example detection method named FGWS
(Frequency-Guided Word Substitutions), and they tried to
detect text adversarial example with the frequency properties
of adversarial words and achieved a higher F1 score than DISP
[162] in SST-2 and IMDB dataset. Besides, Wang et al. [165] also
proposed a framework named MUDE (Multi-Level
Dependencies) to detect adversarial word by taking advantage
of both character and word level dependencies.

Zhou et al. [162] also introduced a framework named DISP
(Discriminate Perturbations) to transform the text adversarial
examples into clean text data. According to the authors, firstly,
they identified the perturbed tokens in the input text with a
perturbation discriminator, and then replaced the perturbed
token with an embedding estimator. Finally, they recovered
these tokens into a clean text with a KNN(k-nearest
neighbors) algorithm. The experiment indicated that the DISP
was outperforming the Adversarial Data Augmentation (ADA),
Adversarial Training (AT), and Spelling Correction (SC) in terms
of the efficiency and semantic integrity of the text adversarial
examples.

4.1.2.2 Model Robustness Enhancement
As mentioned above, the algorithms to enhance the robustness of
the NLP model mainly include adversarial training and formal
verification. In terms of adversarial training, Si et al. [163]
introduced a method named AMDA (Adversarial and Mixup
Data Augmentation) to cover the larger proportion of the attack
space during the process of adversarial training by crafting large
amount of augmented training adversarial examples and feeding
them to the machine learningmodel. They used AMDA to defend
against attacks from PPWS [164] and TextFooler [139] on the
data sets SST-2, AG News and IMBD, and achieved significant
robustness gains in both Targeted Attack Evaluation (TAE) and
Static Attack Evaluation (SAE). For large pre-training model
BERT, Karimi et al. [171] introduced a method named BAT
to fine-tuned the BERT model by using normal and adversarial
text at the same time to obtain a model with better robustness and
generalization ability. The experiment indicated that the BERT
model trained with BAT was more robust than the traditional
BERT model in aspect-based sentiment analysis task.

In terms of formal verification, Jia et al. [161] proposed
certified robustness training by using interval bound
propagation to minimize the upper bound on the worst-case
loss. Facts have proved that this method can effectively resist
word substitution attacks from Genetic attack [140]. Shi et al.
[166] proposed a transformers robustness verify method to verify
the robustness transformers network, compared with the interval
boundary propagation algorithm, their method could achieve
much tighter certified robustness bounds. Ye et al. [167] proposed
a structure-free certified robustness framework named SAFER,
which only needs to query the output of the target model when
verifying its robustness, so it can be applied to neural network
models with any structure, but it is only suitable for word
substitutions attacks. Zeng et al. [169] proposed a smoothing-
based certified defense method named RanMASK, it could defend

against both defense method against both the character and word
substitution-based attacks.

4.2 Security in Social Recommendation
System
4.2.1 Adversarial Attacks
The poisoning attack affects the recommendation list of the target
recommendation system by feeding fake users into the
recommendation system, which has occupies the dominant
position in adversarial attacks against machine learning-based
recommendation systems.

Yang [146] performed promotion and demotion poisoning
attacks by taking attacks as constrained linear optimization
problems, and they verified their method on real social
network recommendation systems, such as YouTube, eBay,
Amazon, Yelp, etc., and achieved a high success attack rate.
Similar to Yang [146], Fang et al. [147] also formulates the
poisoning attacks to graph-based recommendation system as
an optimization problem, and performs poison attacks by
solving these optimization problems. Christakopoulou et al.
[148] proposed a two-step white-box poisoning attack
framework to fool the machine learning-based
recommendation system. Firstly, they utilize a GAN network
to generate faker users, and then craft the profiles of fake users
with projected gradient method. Fang et al. [152] performed
attacks to matrix factorization based social recommendation
system by optimizing the ratings of a fake user with a subset
of influential users. Huang et al. [158] also tried to poison the
deep learning based recommendation system by maximizing the
hit rate of a certain item appearance in the top-n
recommendation list predicted by target recommendation
system.

To effectively generate fake user profile with strong attack
power for poisoning attacks, Wu et al. [159] introduced a flexible
poisoning framework named TrialAttack, the TrialAttack is
based on GAN network and consists of three parts: generator
G, influence module I, and discriminator D, the generator is used
to generate fake user profile that is close to the real user and has
attack influence, the influence model is used to guide the
generator to generate fake users profile with greater influence,
and the discriminator is used to distinguish the faker profiles
generated by the generator from the real.

The above attack methods are all white-box-based attack
algorithms, that is, the attacker needs to fully understand the
parameter information of the target model, but this is unrealistic
to the recommendation system in the real social network. In
terms of black-box attacks, Fan et al. [155] introduced a
framework named CopyAttack to perform a black-box
adversarial attack to recommendation system in social
network, they used reinforcement learning algorithms to select
users from the original domain and inject them into the target
domain to improve the hit rate of the target item in the top-n
recommendation list.

Song et al. [150] proposed an adaptive data poisoning
framework named PoisonRec, it leverages reinforcement
learning to inject false user data into the recommendation
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system, which can automatically learn effective attack strategies
for various recommendation systems with very limited
knowledge.

To attack the graph embedding models with limited
knowledge, Chang et al. [151] introduced an adversarial
attacker framework named GF-Attack, which formulated the
graph neural network as a general graph signal processing
with corresponding graph filters, and then attacked the graph
filters through the feature matrix and adjacency matrix. To
minimize the modification of the original graph data in the
attack, Finkelshtein et al. [157] introduced a single-node attack
to perform adversarial attack to graph neural networks, which
could fool the target model by only modifying a single arbitrary
node in the graph.

4.2.2 Defense Against Adversarial Attacks
The current defense algorithms for recommendation systems are
mainly divided into two aspects: model robustness enhancement
and abnormal data detection. Among them, model robustness
enhancement is based on adversarial training, and abnormal data
detection improves the robustness of the recommendation
systems by recognizing pollution data.

In terms of adversarial training, Tang et al. [176] proposed an
adversarial training method named AMR (Adversarial
Multimedia Recommendation) to defend against adversarial
attack. According to the authors, the process of adversarial
training could be interpreted as playing a minimax game. On
the one hand, continuously generate perturbations that can
maximize the loss function of target model. On the other
hand, continuously optimize the parameters of target model to
identify these perturbations.

By combining knowledge distillation with adversarial training,
Du et al. [174] produced a more robust collaborative filtering
model based on neural network to defend against adversarial
attacks. The experiments indicated that their model can
effectively enhance the robustness of the recommendation
system under the attack of the C&W [88] algorithm.

Manotumruksa et al. [177] also proposed a recommendation
system robust enhancement framework named SAO (Sequential-
based Adversarial Optimization) to enhance the robustness of the
recommendation system by generating a sequence of adversarial
perturbations and adding it into the training set during the
training process.

Li et al. [178] introduced a framework named SACRA (Self-
Attentive prospective Customer Recommendation Framework)
to perform prospective customer recommendation. Similar to
Manotumruksa [177], the SACRA enhances its robust by adding
adversarial perturbation into the training set dynamically to make
the recommend system immune to these perturbations.

Wu et al. [181] used the influence function proposed by Koh
et al. [184] to craft fake users, and then injected these fake users
into the training set to enhance the robustness of the
recommendation system. They named their method as
adversarial poisoning training (APT), they used five poisoning
attack algorithms to evaluate the effectiveness of the APT. The
experiment indicated that APT can enhance the robustness of the
recommendation system effectively.

By combining the advantages of adversarial training and VAE
(Variational Auto-Encoder), Yi et al. [182] proposed a robust
recommendation model named DAVE (Dual Adversarial
Variational Embedding), which is composed of User
Adversarial Embedding (UserAVE), User Adversarial
Embedding (ItemAVE) and Neural Collaborative Filtering
Network, UserAVE and ItemAVE generate user and item
embedding according to user interaction vector and item
interaction vector, respectively. Then the user and item
embedding are fed into the Collaborative Filtering Network to
predict and recommend results. During the training process of
the DAVE, it reduces the impact of adversarial perturbation by
adaptively generating a unique embedding distribution for each
user and item.

In terms of abnormal data detection, Shahrasbi et al. [180]
proposed a GAN-based pollution data detection method.
According to the authors, firstly, they convert the clean user
session data to embedding sequences with a Doc2Vec language
model. Then, during the training process of GAN, the generator is
trained to learn the distribution of real embedding sequences, and
the discriminator is trained to learn the distinguish the real
embedding sequences and the sequence generated by the
generator. Based on this, when the training of GAN network
is completed, the pollution data can be identified from the whole
dataset.

4.3 Security in Other Aspects of Social
Networks
In this subsection, we mainly review some research on adversarial
examples from the aspects of question and answer robot and
neural machine translation.

4.3.1 Question and Answer Robot
Xue et al. [185] introduced a text adversarial example craft
method named DPAGE (Dependency Parse-based Adversarial
Examples Generation) to perform black-box adversarial attack to
Q&A robots. They extract the keywords of the sentence based on
the dependency relation of the sentences and then replace these
keywords with the adversarial word that are similar to these
keywords to craft adversarial questions. They evaluated the
performance of DPAGE with two Q&A robots: DrQA and
Google Assistant, and the results shown that the adversarial
examples crafted by DPAGE cannot affect both the correct
answer and the top-k candidate answers output by the Q&A
robot. Similar to [185] Deng et al. [186] proposed a method
named APE (Attention weight Probability Estimation) to extract
keywords from the dialogue and fool the target Q&A system by
replaced these keywords with synonyms. The experiment results
show that their method can attack the Q&A system with a high
success rate.

4.3.2 Neural Machine Translation
The NMT model is also vulnerable to attacks from adversarial
examples. Ebrahimi et al. [187] proposed a white-box gradient-
based optimization text adversarial example generation method
to perform targeted adversarial attacks to NMT models. The
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experiment results have shown that their method can attack the
target NMTmodel with a high success rate, and the robustness of
the model can improve significantly after robust training. Besides,
in the study of poison attacks, Wang et al. [188] can successfully
implement the poison attack by injecting only 0.02% of the total
data into the data set.

To enhance the robustness of the NMT model, Cheng et al.
[189] craft text adversarial examples with a white-box gradient-
based method and then used it to enhance the robustness of the
model. Experiments on English-German and Chinese-English
translation tasks have shown that their method can significantly
improve the robustness and performance of the NMT model. In
another study by Cheng et al. [190], they also try to enhance the
robustness of the NMT models by augmenting the training data
with an adversarial augmentation technique.

5 DISCUSSION AND CONCLUSION

5.1 Discussion
Although the generation and defense algorithms of adversarial
examples have made great achievements on unstructured data in
social networks, there are still many key issues that have not been
resolved.

5.1.1 Constraints for Attacks on Real Systems
Many adversarial example generation algorithms in social networks
do not consider the restrictions on attacks on real systems. In
terms of text adversarial generation, many studies [133, 138, 139,
141] try to get the keywords in the sentence by frequently
querying the target model, however, the action of the frequent
query is easy to be detected and defended when the attack is
performed on the real system. In terms of adversarial example
generation in the recommendation system, the attacker poisons the
recommendation system by modifying the edge and attribute
information of some nodes in the social network graph [146,
147, 150, 151], however, in the real social network, the node that
the attacker chooses to modify may be a node that is not controlled
by the attacker. Therefore, in the subsequent research on adversarial
example generation algorithms in the field of social networks, more
consideration should be given to the limitations in real scenarios.

5.1.2 The Security of Social Network Data
To adapt to the complex and changeable user structure on social
networks, the rapid change and short timeliness of cyber
language, the AI models applied to social networks need to
frequently fine-tune its parameters based on real data from
social networks. Therefore, poisoning attacks must be
effectively avoided during the process of online training. Since
adversarial examples are usually difficult to find visually, on the
one hand, there is currently little research on adversarial
examples detection for unstructured data such as graphs. On
the other hand, with the continuous evolution of attack methods,
the existing data enhancement and cleaning technologies cannot
effectively detect malicious data in all data. Therefore, how to
accurately detect poisoning data in social networks will become a
focus of future research.

5.1.3 Robustness Evaluation of Social NetworkModels
Due to the poor interpretability of machine learning algorithms,
it is difficult to analyze and prove the robustness of machine
learning mathematically. Therefore, the current robustness
evaluation of machine learning algorithms mainly depends
on the defensive ability of specific adversarial attacks,
however, the robustness conclusions obtained by this method
are difficult to apply to the latest attack algorithms. In the field
of computer vision, some researches [130, 131] have tried to
use formal verification to analyze the robustness of machine
learning algorithms. In terms of social networks, some researches
[161, 166, 167, 169] also try to use formal verification algorithms
to analyze the robustness of text classification machine learning
models, but it is great affected by the model structure and
data types, in terms of recommendation systems, the research
on the robustness analysis for machine learning algorithm is
still blank. Therefore, the robustness analysis for machine
learning algorithm will also be a research focus in social
networks.

5.2 Conclusion
Although machine learning algorithms have made significant
developments in many fields, it cannot be ignored that machine
learning algorithms are vulnerable to attacks from adversarial
examples. That is, adding perturbations that are not detectable by
the human eye to the original data may cause the machine
learning algorithm to make a completely different output with
a high probability. In this paper, we review the application of
machine learning algorithms in the field of social networks from
aspects of sentiment analysis, recommendation systems, and
spam detection, as well as the research progress of the
generation of adversarial examples and defense algorithms in
social networks.

Although the data processed by machine learning models that
are used in social networks is usually unstructured data such as
text or graphs, the adversarial example generation algorithm for
images in the field of computer vision is also applicable to
unstructured data such as text and graphs after extension.
Therefore, how to use machine learning algorithms to
implement various functions in social networks while ensuring
the robustness of the algorithm itself is one of the hotspots for
studying. Besides, to improve the robustness of machine learning
algorithms in the field of the social network, in terms of
adversarial example generation, more focus should be put on
the adversarial example generation algorithms that can be applied
to real online social network machine learning models, so as to
enhance the robustness of online machine learning models. In
terms of adversarial example defense, while strengthening
robustness against specific attacks, more research on active
defense algorithms such as certified training should also be
carried out to defend against adversarial attacks.
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