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The spatiotemporal distribution of terahertz (THz) radiation from plasma has been
demonstrated with the technology of THz focal-plane imaging. It has been found that
the spatiotemporal distribution will vary with the frequency, as well as the length of plasma.
A doughnut-shaped distribution appears in the lower frequency range, while the bell-
shaped distribution corresponds to the higher frequency range. For plasmas with different
lengths, their generated THz images in the time domain are similar, the THz images in the
frequency domain as well. The spatiotemporal distributions are simulated with the off-axis-
phase matching theory. All the findings will renew the understanding of the THz generation
from plasma induced by two-color pulses.
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INTRODUCTION

Terahertz (THz) wave generated from plasma has been proven to be a valuable tool in the field of
nonlinear spectroscopy, imaging, and remote sensing [1–3]. The scheme of THz radiation from
plasma induced by two-color laser pulses [4–7] has attracted more attention, and became
popular owing to the emitted THz wave with broad spectrum and high intensity, as well as the
good quality of polarization. With the widely application of THz radiation from two-color-
induced plasma, its spatial characterization is desired. Many efforts have been put on this by
using incoherent or coherent methods. The THz spatial distribution was deduced to be the shape
of bell [8, 9] by raster scanning with the pyroelectric detectors or doughnut-shape [10] by raster
scanning with Michelson interferometer; With a THz camera the transverse intensity of THz
wave was captured and 3D-reconstructed to be the dumbbell shape [11]. There is also reported
work contributing the conical hollow of THz distribution into the photo-induced carriers in the
silicon wafer [12], which was used to filter the THz waves in the experiment. However, all these
results seem incomplete for the comprehensive spatial characterization of THz waves. The
influence of single-color plasma channel length on an angular THz radiation distribution was
studied [13], yet its THz emission mechanism differs significantly from that of the two-color
scheme. To fully understand the THz emission from two-color-induced plasma, it is necessary to
characterize the spatiotemporal distribution of THz wave generated from plasma induced by
two-color pulses.
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In this work, the spatiotemporal distribution of THz wave
radiated from plasma has been measured by using the technology
of THz focal-plane imaging. For the plasma with unchanged length,
THz spatial images in the time domain and frequency domain are
presented, as well as their evolution. For plasmas with different
lengths, the similarity and difference of the THz spatiotemporal
distribution are also demonstrated. The experimental results are in
accord with their simulations. These results are helpful in re-
understanding the mechanism of the THz generation from plasma.

EXPERIMENTAL AND SIMULATION
RESULTS

In the experiment, the technology of THz focal-plane imaging is
used to obtain the spatiotemporal distribution of THz waves
radiated from plasma induced by two-color pulses. The
experimental setup is illustrated in Figure 1. A laser amplifier
provides laser pulses with the central wavelength of 800 nm,
repetition frequency of 1 kHz and pulse width of 35 fs. The
femtosecond pulses are divided into two beams by a beam
splitter (BS), one is used as the pump pulse and the other one
is used as the probe pulse. The average pump and probe power are
700 and 13 mW, respectively. The pump pulse is focused by a lens
with the focal length of 200 mm.With this lens, a relative uniform
plasma about 7 mm is formed. There is a Barium Boron Oxide
(BBO) crystal between the lens and its geometric focus. When the
fundamental waves (800 nm) of femtosecond laser pass through
the BBO crystal, their second harmonic waves generate. Both the
fundamental (ω) and second harmonic (2ω) pulses ionize the air
at the focus, which form a filament radiating THz waves. A 4f
imaging system consisting of 2 THz lenses with the focal length of
100 mm and diameter of 75.8 mm is introduced in the THz beam.
The front focal plane of the 4f imaging system coincides with the
focus of the optical lens, while its back focal plane coincides with
the ZnTe crystal (<110>, 10mm × 10mm × 1mm). With this 4f

imaging system, THz images delivered from the front focal plane
to the detection crystal. A silicon wafer is used to combine the
probe pulses and THz waves. The probe pulses are subjected to
the refractive index modulation of the crystal by the THz electric
field, then they are captured by a CCD. In the measurement, the
images of THz waves have been extracted by the technology of
dynamic matching and subtraction [14]. For clarity, the THz
time-domain signal and its Fourier-transformed spectrum are
also shown in the inset of Figure 1, which was obtained by
summing the values of four pixels in the center part of the CCD.

In the experiment, by selecting proper experimental
parameters, such like the crystal axis angle of the BBO crystal
and the distance to the geometric focus of the focusing lens, the

FIGURE 1 | Schematic diagram of experimental setup. BS: Beam Splitter, BBO: Barium Boron Oxide Crystal. The dashed part is used to measure the
spatiotemporal distribution of THz waves generated by plasma with different lengths. The insets are the THz time-domain signal and its Fourier-transformed spectrum,
obtained by summing the values of four pixels in the center part of the CCD.

FIGURE 2 | Normalized THz images in the time domain (A) and
frequency domain (B).
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generated THz signal was optimized. After that, the THz
spatiotemporal distribution is measured and shown in
Figure 2A. At the initial time of the THz pulse t ≤ 2.533 ps,
the spatial intensity distribution obtained by the above system is
mainly concentrated near the center of the optical axis, like a solid
bright spot. Thereafter, it diffuses when t ≥ 3.066 ps, and the THz
light spot diffuses into a hollow ring with the radius gradually
increasing. In the process of diffusion, the amplitude of THz wave
in the ring region decreases gradually due to the effect of
divergence until the overall signal disappears. These THz
temporal images were Fourier-transformed to obtain their field
distributions at different frequencies. The results are shown in
Figure 2B. For clearly, all images are normalized by the
maximum value of the THz signal. It is clear that the THz
field appears as a weak annular profile in the lower frequency
range, while it appears in the region near the optical axis in the
higher frequency range. With the frequency increasing, the
annular side lobes gradually appear around the solid spot.
Compared with that of the central spot the intensity of the
annular side lobes becomes more and more obvious. It
indicates that the radiation angle is corresponding to the
frequency component of the radiated THz wave, which is
consistent with the result reported in Ref. [15]. As illustrated
in Figure 2, it seems that there are some nonuniform intensity
distributions in these THz images, which was caused by some
defects in the ZnTe crystal.

As shown in Figure 2B, with the frequency increasing, the
spatial distribution of THz wave changes from the shape of
doughnut to bell mixed with dark ring lobes. Currently, there
are many theoretical models used to describe THz generation
from ionized plasma, including the model of pondermotive,
photocurrent, four-wave mixing and off-axis phase matching
[7, 16–18]. Considering this experimental system, we adopt an
off-axis phase matching model for simulation, in which the
parameters similar to that in the experiment was selected.
Different from the work in Ref. [16], the near-field profile of
THz emission from the plasma has been calculated. For the case
of plasma length shorter than the dephasing length, the near-filed
integration and their initial phases are also considered in the
simulation. The simulation results are shown in Figure 3A. In the
lower frequency range, ]≤ 0.558 THz, the spatial distribution of

THz wave gradually changes from the shape of doughnut to bell,
and the ring side lobes begin to appear; In the higher frequency
range, ]≥ 0.705 THz, the center spot of THz image becomes
smaller and the annular side lobe becomes more obvious.
According to the theory of off-axis phase matching, THz
waves radiated from each point sources interfere constructively
and accumulate continuously in the paraxial region; Away from
the axis, THz waves interfere destructively and form alternative
dark side ring lobes. For demonstration, we present the
unnormalized experimental and simulated images at
0.117 THz, as shown in Figure 3B, the upper one is the
experimental result, while the lower one is the simulated
result. It is obviously that both the experimental and simulated
spatial distributions are circular with the similar size, indicating
that the theoretical simulation results are in good agreement with
the experimental ones. To reveal the dependence of THz spatial
distributions at different frequency, we extracted their THz
amplitude information along the center line of the simulated
images at different frequencies. The values of these curves were
normalized by their own maximum, respectively, and plotted in
Figure 3C. In Figure 3C, the left subfigure corresponds the lower
frequency range 0.117 THz≤ ν≤ 0.558 THz, while the right one
corresponds the higher frequency range
0.705 THz≤ ν≤ 1.147 THz. When 0.117 THz≤ ν≤ 0.325 THz,
the simulated distribution transits gradually from the shape of
annular to bell with the frequency increasing; When
] � 0.411 THz, the ring side lobe appears. With the frequency
increasing, the ring side lobe becomes more obvious, as shown in
the right subfigure of Figure 3C. Comparing Figure 3 with
Figure 2B, one may find that more ring side lobes in the
simulation results than that in the experimental ones, it may
be caused by an error of optical focus position between the
experiment and simulation.

In addition, images of THz radiation from plasma with
different lengths are also obtained. As shown in the dashed
part of Figure 1, a tinfoil is placed slightly away from the end
of the plasma. Moving the tinfoil to make it approach the plasma
end, until the tinfoil is penetrated by the plasma. Since the
diameter of the hole on the tinfoil is similar to that of the
plasma, we believe that the THz wave radiated from the
plasma at the left side of the foil can be blocked and only the

FIGURE 3 | Simulation and experimental results of THz spatial distribution. (A) Simulation results by the off-axis phase matching model. (B) Unnormalized
experimental (up) and simulation (bottom) images at 0.117 THz. (C) THz amplitude distributions at lower frequencies (left) and higher frequencies (right).
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THz wave radiated from the plasma on the right side can be
detected. By moving the foil to the left, the electric field Ei(i �
1 , 2 , 3 . . .) of THz waves radiated from plasma of different
lengths can be obtained. For the case of plasma length
comparable with the depth of field of the 4f system, the
influence of the fixed front-focus of the 4f system on the
experimental results is acceptable. In the experiment, we
move the tinfoil across the plasma with the length of 7 mm
by the step of 1 mm. The experimental results in the time
domain and frequency domain are shown in Figures 4A,B,
respectively. From Figure 4A, it can be found that the patterns
of THz radiation from the plasmas with the same length diffuse
from solid to hollow ring and then disappear over time.
Moreover, the spatial shape and size of THz wave radiated
from different lengths of plasma are maintained, but their
intensities decrease with the plasma length shortened.
Similarly, the images in Figure 4A are Fourier-transformed
to obtain their frequency-domain images as shown in
Figure 4B. For the plasmas of the same length, the spatial
distribution of THz waves at different frequencies evolves from
a doughnut-shape at low frequencies to a bell-shape at high
frequencies; For the same frequency, the spatial distribution
shape of THz waves radiated from different lengths of plasma is
similar, while the intensity decreases with the decrease of plasma
length. All these results indicate the accumulation effect of THz
waves radiated from plasma.

It is known that the above THz electric fields Ei(i �
1 , 2 , 3 . . .) are generated from plasma fragments with
different lengths, and these fragments are obtained by
separating from one and the same filament. Thus, it allows us
to achieve the THz electric fields at different positions of the
plasma by subtracting the electric fields generated from the
adjacent plasma fragments,

METHzi � Ei − Ei−1(i � 1 , 2 , 3 . . . ) (1)

E0 is the THz electric field when the plasma length is 0,
i.e., E0 � 0. It is reported that the peak frequency of the THz
emission was used in characterizing the plasma density [19], the
THz frequency corresponds to the plasma frequency, which can
be written as,

ωp � ���������
4πe2ne/me

√
, (2)

Where ne is the electron density and me is the electron mass. The
electric fieldETHz is proportional to the oscillation frequency of the
plasma under the assumption of the appropriate laser field and gas
density [20], meaning that ETHz ∝

��
ne

√
. Therefore, the electron

density distributions at different positions of the plasma can be
obtained, as shown in Figure 5. It can be found that the electron
density of the plasma distributes symmetrically in the cross section.
Additionally, the electron density is higher in the center of the plasma,
and it decreases gradually with the increase of the diameter of the
plasma. In the longitudinal direction, the electron density is also not
uniform, and its density maximum locates near the beginning of the
filament, which is in reasonable agreement with Refs. [19, 21–23].

CONCLUSION

The THz spatiotemporal distribution of THz radiation from plasma
has been measured by the technology of THz focal-plane imaging.
With the off-axis phasematchingmodel, we obtained their simulation
results, and the simulation results are in good agreement with the
experimental ones. THz spatial distributions are doughnut-shape at
low frequencies and bell-shape at high frequencies. The
spatiotemporal distribution characteristics of THz wave from

FIGURE 4 | Experimental results of THz waves radiated from plasmas with different lengths. THz images in the time domain (A) and frequency domain (B).

FIGURE 5 | Electron density distributions at different positions of the
plasma.
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plasmas with different lengths are similar, but their intensities depend
on the length of the plasma seriously. With the THz images radiated
from plasmas of different lengths, the electric density inside of the
plasma has been revealed.
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