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All the arguments of a wavefunction are defined at the same instant, implying the notion of
simultaneity. In a somewhat related matter, certain phenomena in quantum mechanics
seem to have non-local causal relations. Both concepts contradict the special relativity. We
propose defining the wavefunction with respect to the invariant proper time of special
relativity instead of the standard time. Moreover, we shall adopt the original idea of
Schrodinger, suggesting that the wavefunction represents an ontological cloud-like object
that we shall call “individual fabric” that has a finite density amplitude vanishing at infinity.
Consequently, the action of measurement can be assimilated to the introduction of a
confining potential that triggers an inherent nonlocal mechanismwithin the individual fabric.
This mechanism is formalised by multiplying the wavefunction with a localising Gaussian,
as in the GRW theory, but in a deterministic manner.
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INTRODUCTION

As clearly explained by Travis Norsen in his book “Foundations of Quantum Mechanics” [1] there
are three main interconnected problems in Quantum Mechanics: measurement, relativity (non-
locality and simultaneity) and ontology of a wavefunction.

Quantum measurements can be highlighted by measuring the physical properties of a
microscopic system using a measuring instrument. Suppose the quantum mechanical
wavefunction describing the microscopic system is in a superposition of the eigenstates of an
operator corresponding to the physical property that is being measured. Then, contrary to real
observations, the Schrodinger equation evolution implies that the measuring instrument should be in
a macroscopic superposition of many distinct states. Standard quantum mechanics (Copenhagen
interpretation) solves this problem of macroscopic superposition by introducing Born’s rule. This
rule postulates that a wavefunction evolves deterministically in accordance with Schrodinger’s
equation, except during measurement when it collapses with a certain probability measure to one
particular eigenstate. The measurement problem consists of understanding this paradoxical
transition from a deterministically evolving spread-out wavefunction into a sudden probabilistic
localisation.

The relativity problem concerns two main interrelated features. The first relates to the relativity of
simultaneity which is a consequence of Lorentz invariance, and the second relates to the notion of
relativistic locality. In quantum mechanics, all the arguments of a wavefunction are defined at the
same instant, thus requiring the notion of absolute simultaneity. For example, a quantum system
composed of a pair of entangled particles behaves in such a manner that the quantum state of one
particle cannot be described independently of the state of the other. Standard quantum mechanics
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postulates that neither one of the particles has a determinate state
until it is measured. As both particles are correlated, it is necessary
that when the state of one particle is measured, the second particle
should “simultaneously” acquire a determinate state. However,
the laws of physics are invariant under Lorentz transformations.
There is no meaning of “simultaneity” independently of any
frame of reference, and there should be no preferred frame of
Refs. [2, 3]. On the other hand, the nonlocality problem can be
resumed by Einstein’s argument that if quantum mechanics is
complete, then the collapse of the wave function is a dynamical
process that conflicts with relativistic locality. This quantum
phenomenon was first introduced as a thought experiment in
the EPR paper [4], and it was later discovered that it can be
experimentally testable by using Bell’s inequality [5, 6].
Numerous experiments, such as Aspect’s experiment [7],
proved the validity of quantum entanglement and hence a
certain notion of non-local connections. The notions of non-
locality and simultaneity are thus inferred by quantummechanics
while being forbidden by the postulates of relativity. The notions
of non-locality, causation, and time in QM are discussed in the
papers of L. Felline and K. Thomsen [8, 9].

Finally, the ontological problem concerns the fact that for
more than one particle, the wavefunction is defined on a high-
dimensional configuration space and not on a physical space, and
thus, cannot represent a physically real field. For a physical
ontology, the wavefunction should be the representation of a
real physical entity.

In addition to the Copenhagen interpretation, there are several
candidate theories that propose solutions to at least some of the
above problems. Drummond [10] provided a conceptual analysis
of these different theories with deep critical insight. The main
current theories comprise the Everett many-world theory [11], de
Broglie Bohm pilot-wave theory [12, 13], and the GRW
spontaneous collapse theory [14]. This study is primarily
related to the last two theories.

Everett’s many-world theory [11] discards the collapse
postulate, and all measurement results exist but in different
worlds. In line with this interpretation, it has been claimed
[15] that when a measurement is conducted on a particle in a
superposition state, a deterministic branching takes place where,
on one branch, a first detector detects the particle while a second
detector does not, and at the same time, but on the other branch
(i.e. another world), the first detector does not detect the particle
while the second detector detects it. However, this interpretation
pauses probabilistic and ontological problems. In particular, the
axioms of quantum mechanics say nothing about the existence of
multiple physical worlds [16]. Greaves [17] provided a detailed
account of the probabilistic aspects of this theory.

The de Broglie Bohm theory is very promising and is discussed
in detail by Jean Bricmont in his book “Making Sense of Quantum
Mechanics” [18] and in Norsen [1] as well as in the Symposium
Louis de Broglie, and in particular, in the introduction to this
symposium [19]. The basic idea behind this theory is that a
corpuscle, such as an electron, always has a well-determined
position on a definite trajectory through physical space. However,
its movement is influenced by an associated wavefunction, giving
rise to wave-like properties. Thus, according to this theory, an

electron is a particle “and” a wave. The de Broglie Bohm theory
solves the measurement problem and accounts for nonlocality.
However, this does not seem to solve the problem of simultaneity.
For a multi-particle system, the theory explicitly formulates the
dependence of a particle’s evolution at a given instant on the
positions of all the other particles at the same instant. Moreover,
the ontology of the wavefunction which is defined in the
configuration space, remains unclear. However, de Broglie
tried to develop [20] a version of the theory according to
which interactions between quantum systems are not in the
configuration space but in the real three-dimensional
physical space.

The GRW spontaneous collapse theory [13] was discussed by
Norsen [1]. It modifies Schrodinger’s equation with stochastic
terms that has the effect of making a wavefunction obeys
Schrodinger’s equation most of the time, except for
exceedingly rare and random instants when it undergoes a
spontaneous collapse. GRW solves the measurement problem,
accounts for non-locality, and provides a physical explanation of
the wavefunction. Nevertheless, it does not solve the problem of
simultaneity and seems to be ad hoc.

Mielnik [21] showed that an apparent paradox is produced
when attempting to reconcile the instantaneous collapse of the
wavefunction with the requirements of special relativity. What is
instantaneous in one Lorentz frame is not necessarily
instantaneous in the other.

Helwig and Kraus [22] provided a formal description of the
field measurements according to a covariant description of the
relativistic measurement process. They consider a formalism in
which the field state remains unchanged in the backward light
cone of a finite spacetime region and changes in the forward and
side light cones. They advocated the idea that collapse should
occur along the backward light cone of the measurement. This
picture has been criticised by Aharonov and Albert [23, 24].

Finkelstein [25] illustrates the difficulty of reconciling the
collapse with special relativity with the following two
assumptions:

A1: A quantum system is represented by a state vector which does
not depend on the Lorentz from which the system is
described.

A2: When the quantum system is measured, the state vector does,
in general, collapse; that is, the state vector will not be
independent of time.

Finkelstein [25] considers that both assumptions A1 and A2
can be maintained at the cost of allowing the state vector to
depend on the position from which it is described. Finkelstein
[25] advocated the idea that it is not meaningful to talk about the
state (or probability density) at a given time in the absence of the
position from which it is described. He outlines a procedure in
which collapse occurs along the forward light cone of
measurement, such that all observers at a given spacetime
point will obtain the same density operator or state vector.
Aharonov and Albert [23, 24] seem to consider that the state
vector should not depend on the place from which it is described,
and that assumption A1 should be abandoned. Mielnik [21], on
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the other hand, considers collapse as instantaneous and prefers to
abandon A2.

In this paper, we point out that assumptions A1 and A2 are
compatible for all observers when the state vector is defined with
respect to the proper time instead of ordinary time.

INVARIANT SPACETIME STRUCTURE

We propose to consider the evolution of a particle from the
perspective of proper time τ, by using the hyperbolic spacetime
structure inside a light cone associated with the particle.
Specifically, we shall use the formalism of Minkowski
spacetime [26] as defined in a geometrical manner by Eric
Gourgoulhon in his book “Special Relativity in General
frames” [27].

The Minkowski spacetime M is defined as an affine space of
dimension 4 on R endowed with a bilinear metric tensor g defined
in an underlying vector space E of signature (+,−,−,−). In the
vector space E, a set C composed of the zero vector, and all null
vectors form a light cone C composed of two sheets C+ and C−

defining the future and past light cones, respectively.
Given the above defined spacetime M and given an arbitrary

pointO ∈ M , a family of affine subspaces (Sτ)τ∈R is defined such
that each subspace Sτ corresponds to the set of points of M that

can be connected to O by a time-like vector ON
���→

of modulus τ,

where τ ∈ R :

Sτ � {N ∈ M, ON
���→

.ON
���→ � −τ2 < 0} (2.1)

We are henceforth interested in physical systems that follow
time-like or null worldlines and do not consider the set of
space-like vectors. In the spacetime (M, g), a point N ∈ M is
said to belong to the subspace Sτ iff ON

���→
.ON
���→ � −τ2. Each set of

points Sτ consists of two subsets or two sheets, S+τ and S−τ
belonging to the interiors of the future C+ and past C− light
cones, respectively:

S+τ � {N ∈ Sτ , τ ≥ 0 } (2.2)

S−τ � {N ∈ Sτ , τ < 0 } (2.3)

Let (x0, x1, x2, x3) be the coordinates of N ∈ Sτ in the affine
frame defined by origin O and basis (eα), thenON���→.ON

���→ � −τ2 can
be expressed as follows:

−(x0)2 + (x1)2 + (x2)2 + (x3)2 � −τ2 (2.4)

Where xo � t, x1 � x
c, x2 � y

c, x3 � z
c.

Equation 2.4 is a three-dimensional hyperboloid of the two
sheets S+τ and S−τ spanned by the free extremities of the time-like

vectors ON
���→

.
The modulus τ of the time-like vector ON

���→
is the proper time

for the physical system. It generates a family of affine subspaces
(Sτ)τ∈R defined by (2.1). This family consists of three-
dimensional hyperboloids associated on one hand with future-
directed proper times τ ≥ 0 and on the other hand, with past-
directed proper times τ < 0.

The sheet Sτ of each hyperboloid forms a “spatial-
hypersurface” that we shall simply call “slice” associated with a
corresponding proper time τ ∈ R. All points on any given slice Sτ
are associated with the same proper time τ which is indeed
invariant to all observers from the perspective of any inertial
frame of reference.

Without any loss of generality, we refer hereafter to the two-
dimensional space time. Let (O; x, t) be an orthonormal frame
of reference defined by origin O, a spatial x-axis, and a temporal
t-axis. We take c � 1, then the light cone is composed of the lines
X and Y (where X is defined by t � x and Y is defined by t � −x)
inside which are piled with a family of simple hyperbolas (Sτ)τ∈R.
Let (x, t) be the coordinates of a point M on a given hyperbola

(M ∈ Sτ ). Then, similar to Eq. 2.4, OM
���→

.OM
���→ � −τ2 can be

expressed as follows:

t2 − x2 � τ2 (2.5)

Proper time τ is thus, given by the following expression:

τ � ± ������
t2 − x2

√
(2.6)

Where the “+” sign corresponds to a future-directed proper time
and the “−” sign corresponds to a past-directed proper time.

For each proper time τ, the free extremity M of the vector OM
���→

(of modulus τ) spans the hyperbolic-slice Sτ . The hyperbolic slice
Sτ is a piecewise twice continuously differentiable curve of the
Minkowski spacetime (MI, g) composed of a set of hyperbolic
points (u, τ). The hyperbolic coordinate u represents the
orientation of a straight line (or a ray Ru) passing through the
origin. All points (u, τ) on the same ray Ru share the same
hyperbolic coordinate u. On the other hand, all points (u, τ) on
the same slice Sτ share the same invariant proper time coordinate
τ.

Thus, the rays (Ru)u and hyperbolic slices (Sτ)τ define a
hyperbolic frame of reference (O;Ru, Sτ) where a given
hyperbolic point (u, τ) is the intersection between the
corresponding ray Ru and slice Sτ .

The hyperbolic slice Sτ can be parameterised by a bijective
function φ from the points on the real axis R into the points on
that slice Sτ (i.e. : R → Sτ ) such that any point u on slice Sτ is
given by u � φ(λ) ≡ u(λ). The parameter λ can be chosen as
the standard time coordinate t or standard space coordinate x.

The mapping between a point (x, t) in the orthonormal frame of
reference (O;x, t) and a hyperbolic point (u, τ) within the upper
light cone in the hyperbolic frame of reference (O;Ru, Sτ) is

u � ln

����
t + x

t − x

√
and τ � ������

t2 − x2
√

(2.7)

The inverse mapping of (2.7) can be expressed as follows:

x � τ sinh u and t � τ cosh u (2.8)

As each slice Sτ is associated with a corresponding proper time
τ, then, all points u belonging to that slice Sτ are said to be
“simultaneous” in the sense of proper time. In other words, each
slice Sτ is a class of “proper-time-simultaneity”made up of a set of
points uτ that are associated with the same proper time instant τ.
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The passage from one slice Sτ1 into a subsequent slice Sτ2
represents the “transition” from the first proper time τ1 to a
consequent proper time τ2. Proper time provides invariant time
ordering of the set of slices.

We note that the passage from one slice Sτ1 into a
subsequent slice Sτ2 expands the standard spatial
separation between any two points. Indeed, let (ua, τ1) and
(ub, τ1) be two different points at an initial proper time τ1, and
(ua, τ2) and (ub, τ2) be the corresponding points at a
subsequent proper time τ2, where ua and ub represent two
different rays. As τ2 > τ1, then, the standard spatial separation
τ2 sinh(ub − ua) at the later proper time τ2 is greater than the
standard spatial separation τ1 sinh(ub − ua) at the previous
proper times τ1.

WAVEFUNCTION AND ITS EVOLUTION
THROUGH PROPER TIME

In view of the above, we propose to define the wavefunction with
respect to the proper time which is indeed the only real physical
time. In general, the notion of proper time is defined with respect
to the worldline, followed by a particle. However, in this study, we
take advantage of the geometrical representation of the proper
time, as described in [3, 27]. Indeed, as all the points on a given
hyperboloid or slice Sτ are equidistant from the origin of a
Lorentz coordinate system, all these points have the same
proper time.

We propose to define a unit state vector |φ(τ)〉 as a function of
proper time τ ∈ R by relating it to a slice Sτ which is globally
associated with the corresponding proper time τ. Thus, once the
proper time τ is specified, the points of the slice Sτ may be defined
by the set of points uτ � (τ, u) where u is a hyperbolic variable or
by the set of points xτ � (τ, x)where x is a Cartesian variable. For
a given proper time τ, the variables x and u are one-to-one related
according to Eq. 2.8.

For simplicity, we express a slice Sτ by the set of points
{xτ � (τ, x)}. Each slice Sτ is then considered to represent a
position basis {|xτ〉} which can be associated with a
corresponding Hilbert space H with elements |xτ〉 labelled by
a continuous variable xτ normalised using the Dirac δ-function:

〈xτ′ |xτ〉 � δ(xτ′ − xτ) (3.1)

The invariant unit state vector |φ(τ)〉 in the Hilbert space H
associated with slice Sτ can then be expanded as an integral
function of the base elements |xτ as follows:∣∣∣∣φ(τ)〉 � ∫dxτ φ(xτ)|xτ〉 (3.2)

The right-hand side of Eq. 3.2 is defined by a line integral
along the piecewise smooth curve representing slice Sτ . It
describes the state vector |φ(τ)〉 of a physical system as a
superposition of position basis elements |xτ〉 each one of
which corresponds to a definite position (τ, x) on the slice Sτ .
The expanding coefficients or “weights” φ(xτ) represent a
complex-valued invariant wavefunction.

The left-hand side |φ(τ)〉 belongs to the Hilbert space H and
represents the vector sum or the resultant of the decomposed
position states. As all the superposed arguments are defined at the
same invariant proper time instant τ, there is a sense of
calculating their resultant.

The arguments xτ of the wavefunction φ(xτ) are associated
with the points (τ, x) of the corresponding slice Sτ . The
wavefunction φ(xτ) being defined with respect to proper time
τ is relativistically invariant and shall be called “invariant
wavefunction.” Thus, the position state of a physical system at
any given proper time τ is represented by an invariant
wavefunction φ(τ, x) where x ∈ ]−∞,+∞[ and has a
corresponding relativistic energy E(τ, x) at that specific time τ.

Hereafter, we define the evolution of the invariant
wavefunction φ(τ, x) from one slice to a subsequent slice. A
simple method is to use the relativistic energy E(τ, x) associated
with the invariant wavefunction φ(τ, x) of a system having a
definite momentum P (or velocity v) with respect to an inertial
frame of reference. The relativistic energy E(τ, x) is defined as
follows:

E � ����������
m2c4 + P2c2

√ � mc2/
�������
1 − v2/c2

√
(3.3)

The differential quantum operator associated with energy E is
given by:

iZ z/zt ≡ E (3.4)

It should be noted that momentum and energy operators are
generators of translations in space x and time t, respectively, and
they operate on the wavefunction to quantify the rate of change of
its states. Thus, even though the momentum and energy
operators are defined as functions of differentials in space x
and time t, respectively, the corresponding momentum and
energy observables should not necessarily depend explicitly on
space and/or time variables. For example, the momentum and
energy observables are stationary for free particles.

To define the energy operator with respect to proper time, we
use Eq. 2.6 to express the differential of proper time δτ as a
function of the differentials of ordinary time δt and space δx as
follows:

δτ � ± ��������
δt2 − δx2

√
(3.5)

The “+/−” signs designate vectors inside the upper/lower light
cones. In the upper light-cone δτ ≥ 0 and correspondingly δt≥ 0,
whereas in the lower light cone δτ ≤ 0 and correspondingly δt≤ 0.
Thus, the “+” sign designates a future-directed proper time δτ
and correspondingly a future-directed standard time δt, while the
“−” sign designates a past-directed proper time δτ and
correspondingly a past-directed standard time δt.

Using relation (3.5), the differential δτ can be expressed as
follows:

δτ � ±δt
����������
1 − (δx/δt)2

c2

√
� ±δt �������

1 − v2/c2
√

(3.6)

However, the term
�������
1 − v2/c2

√
can be expressed as a function

of the relativistic energy E, as
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�������
1 − v2/c2

√ � mc2/E (3.7)

Injecting Eq. 3.7 into Eq. 3.6, we obtain

δτ � ±δt(mc2/E) (3.8)

By substituting Eq. 3.8 into Eq. 3.4, we obtain the following
energy operator with respect to the proper time:

iZ z/zτ ≡ ± E2/mc2 ≡ ± E (3.9)

The left-hand term of the above expression (17) is the differential
operator with respect to proper time τ and the middle term
represents an associated energy which shall be called “proper
energy operator” and is symbolised in the right-hand term by E
which can be considered as a proper-time evolution operator.

Thus, to describe the evolution of the invariant wavefunction
φ(τ, x) with respect to the proper time, we apply the above
operator (3.9) as follows:

iZ
zφ(τ, x)

zτ
� ±(E2/mc2)φ(τ, x) � ±Eφ(τ, x) (3.10)

The solutions of the above system of equations are:

φ(τ, x) � φ0e
±i(E2/Zmc2)τ ≡ φ0e

±i(Ɛ/Z)τ (3.11)

Where φ0 is an initial distribution.
The above solutions can be considered as invariant plane

waves with always positive energies. These solutions show that
for example, in the future-directed dynamics, an increase in
proper time τ changes the phase of the proper wavefunction
at a proper-time rate E2/Zmc2.

Equation 3.11 implies that the proper-time evolution operator
on an isolated system can be described by unitary operators U
defined as follows:

U(τ) ≡ e±i(E2/Zmc2)τ (3.12)

Where the “+” sign (respectively, “−” sign) designates a future-
directed (respectively, past-directed) evolution of the invariant
wavefunction φ(τ, x) with respect to proper time τ.

Expanding expression (3.10) into a system of two equations,
while using the relativistic energy E of Eq. 3.3, we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

iZ
zφ(τ, x)

zτ
� +(mc2 + P2/m)φ(τ, x) future − directed

iZ
zφ(τ, x)

zτ
� −(mc2 + P2/m)φ(τ, x) past − directed

(3.13)

Expressing the momentum P according to its corresponding
operator −iZz/zx, the above set of Eq. 3.13 becomes

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
iZ
zφ(τ, x)

zτ
� +(mc2 − Z2

m

z2

zx2)φ(τ, x) future − directed

iZ
zφ(τ, x)

zτ
� −(mc2 − Z2

m

z2

zx2)φ(τ, x) past − directed

(3.14)

Eq. 3.14 are related in a simple manner to the proper time
evolution. This system (Eq. 3.14) of equations shall be called
“invariant equation of motion” describing the evolution of
the invariant wavefunction φ(τ, x). It is composed of two
different dynamics: the first equation corresponds to a future-
directed dynamics taking place within a future-light cone,
while the second equation corresponds to a past-directed
dynamics taking place within a past-light cone. Each
equation is in the conventional sense, that is the time
reversal of the other. That is, flipping the direction of
proper time (τ → − τ) in any one of Eq. 3.14, leads to the
other one of these equations.

The system of invariant equations of motion (3.14) can be
considered a relativistic Schrodinger equation of motion. Indeed,
by introducing Eq. 3.8 into the system of Eq. 3.10while replacing
the invariant wavefunction φ(τ, x) by the standard wavefunction
ψ(x, t), we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

iZ
zψ(x, t)

zt
� +Eψ(x, t) futur − directed

iZ
zψ(x, t)

zt
� −Eψ(x, t) past − directed

(3.15)

The energy E for a free particle in the non-relativistic limit can
be expressed as follows:

E � ����������
m2c4 + P2c2

√ � mc2
�������
1 + v2/c2

√
≈ mc2 +mv2/2 (3.16)

Introducing the approximation of Eq. 3.16 into the above
system of Eq. 3.15, we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

iZ
zψ(x, t)

zt
� (mc2 +mv2/2)ψ(x, t) for t≥ 0

iZ
zψ(x, t)

zt
� −(mc2 +mv2/2)ψ(x, t) for t≤ 0

(3.17)

We note that the termmc2 is a constant corresponding to the
rest energy that has no consequences for the evolution of the
physical system and can be omitted. Moreover, the non-
relativistic kinetic energy mv2/2 can be expressed as p2/2m,
leading to the following system of equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

iZ
zψ(x, t)

zt
� (p2/2m)ψ(x, t) for t≥ 0

iZ
zψ(x, t)

zt
� −(p2/2m)ψ(x, t) for t≤ 0

(3.18)

The first equation corresponds to Schrodinger’s standard
equation for a free particle in the future direction, while the
second equation corresponds to Schrodinger’s equation in the
past direction.

On the other hand, relation (3.9) iZ z/zτ ≡ ± E2/mc2 can also
be expressed as a product of two terms:

(iZ z

zτ
+ E2/mc2)(iZ z

zτ
− E2/mc2) ≡ 0 (3.19)

Thus, applying the above operator to the invariant
wavefunction φ(τ, x) with respect to the proper time
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(iZ z

zτ
+ E2/mc2)(iZ z

zτ
− E2/mc2)φ(τ, x) � 0 (3.20)

Developing Eq. 3.20, we obtain an invariant equation of
motion equivalent to the system of Eq. 3.10, as follows:

( − Z2 z
2

zτ2
− (E2/mc2)2)φ(τ, x) � 0 (3.21)

On the other hand, squaring expression (3.8), one gets:

δτ2 � δt2(mc2/E)2 (3.22)

Then, using the above relation, Eq. 3.21 can be transformed into

( − Z2
z2

zt2
− E2)φ(τ, x) � 0 (3.23)

Introducing the identity of relativistic energy (3.3) into Eq.
3.23, the latter becomes

( − Z2 z
2

zt2
−m2c4 − P2c2)φ(τ, x) � 0 (3.24)

Finally, expressing the momentum according to its
corresponding operator, Eq. 3.24 becomes Klein–Gordon’s
equation:

−Z2z
2ψ(x, t)
zt2

� ( − Z2c2∇2 +m2c4)φ(τ, x) (3.25)

The above analysis shows that the dynamics of the invariant
wavefunction with respect to proper time is, on the one hand,
equivalent to Klein–Gordon’s equation, and on the other hand,
yields Schrodinger’s equation in the non-relativistic limit. This
clearly confirms that the original hypothesis of defining the
wavefunction with respect to the proper time is reasonable.

On the other hand, the first and second Eqs 3.18 are not
mirror images of each other. However, flipping the direction of
time (t → − t) in any one of Eqs 3.18, we obtain the other one of
these equations. Thus, when the system of equations is taken as a
whole, time reversal consists merely of turning time’s sign around
in the same way as it is defined in classical mechanics.

Nevertheless, each equation is invariant under the standard
quantum mechanics time-reversal operator [28] within its
corresponding light cone. That is, a time-reversal anti-unitary
operator consisting of changing the sign of time (t → − t) and
taking the complex conjugate is exclusively applicable either in
the upper light cone or in the lower light cone. This
transformation can be interpreted as a reverse in the direction
of movement and not a reverse in the direction of time. We note
that some authors [29–31] have shed some doubt on the standard
definition of time reversal in quantum mechanics.

ONTOLOGY OF THE INVARIANT
WAVEFUNCTION

To gain insight into the ontology of the invariant wavefunction, it
would be appropriate to derive the continuity equation from the

invariant system of equations of motion (3.14). Hereafter, the
continuity equation is considered only in the future-directed
upper cone. Multiplying the first equation by the conjugate
invariant wavefunction φp(τ, x) and multiplying the complex
conjugate of Eq. 3.14a by the invariant wavefunction φ(τ, x),
gives

iZφpzφ

zτ
� +φp(mc2 − Z2

m

z2

zx2
)φ (4.1)

−iZφ zφ
p

zτ
� +φ(mc2 − Z2

m

z2

zx2
)φp (4.2)

Subtracting Eq. 4.2 from the first Eq. 4.1 yields the following
result:

iZ
zφpφ

zτ
� Z2

m
(φ z2φp

zx2
− φpz

2φ

zx2
) (4.3)

The above Eq. 4.3 can be simplified, as follows:

z
∣∣∣∣φ∣∣∣∣2
zτ

� −iZ
m

z

zx
(φ zφp

zx
− φpzφ

zx
) (4.4)

Equation 4.4 can be written as a continuity equation:

zρ

zτ
+ z

zx
j � 0 (4.5)

Where the current j and the density ρ are given by:

j � −iZ
m
(φ zφp

zx
− φpzφ

zx
) (4.6)

ρ ≡ ρ(xτ) �
∣∣∣∣φ(τ, x)∣∣∣∣2 ≡ ∣∣∣∣φ∣∣∣∣2 (4.7)

More generally, in a three-dimensional space (x, y, z), the
current �j can be expressed as follows:

�j � −iZ
m
(φ �∇φp − φp �∇φ) (4.8)

Then, the three-dimensional continuity equation becomes:

zρ

zτ
+ �∇ . �j � 0 (4.9)

Integrating the continuity equation over the volume of the
entire space:

d

dτ
∫ ρdxdydz � ∫ zρ

zτ
dxdydz � −∫ �∇ . �jdxdydz � ∫ �jd2s

(4.10)

In the last equality, Gauss’s theorem is used to transform the
volume integral into a surface integral over s. The last integral is
equal to zero, as the current �j vanishes at the boundary of surface
s at infinity. Thus, Eq. 4.10 becomes

d

dτ
∫ ρdxdydz � 0 (4.11)

Therefore, the integral of ρ � |φ|2 over the entire space is
conserved with respect to the proper time τ.
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It can be outlined from the preceding sections that an invariant
wavefunction φ(xτ) ≡ φ(τ, x) has two main properties. The first
property is that all the arguments of the invariant wavefunction
are associated with the points (τ, x) of a corresponding slice Sτ ,
and are thus defined at a specific proper time instant τ which is
invariant for all observers. The second property is that the
evolution of the invariant wavefunction through proper time is
unitary; that is, its global density ρ � |φ(τ)|2 is conserved at each
proper time instant τ regardless of the spacetime interval between
any two arguments. These first and second properties imply that
the invariant wavefunction forms a holistic bloc with an
inseparable identity. The invariant wavefunction φ(τ, x) can
thus be considered as a single “quantum event,” which
describes the quantum state of a physical system at a specific
proper time τ.

Moreover, as explained by Tim Maudlin in his book
“Philosophy of Physics: Quantum Theory [32], the
wavefunction accounts faithfully for the interference pattern
(for example, in a two-slit experiment), and it is reasonable to
consider that it represents some real physical features of a
physical system. The characteristics and behaviour of the
wavefunction should reflect those of the physical system.

Indeed, Schrodinger originally suggested that a particle can be
assimilated to a “cloud” that continuously fills the entire space
and whose density is given by the square of the wavefunction.
This idea has been abandoned by Schrodinger mainly because the
cloud continues to diffuse and does not seem to correspond to the
relatively sharp macroscopic world [1]. Moreover, all the points
of the cloud are defined at the same instant of time, thus
contradicting the relative simultaneity principle of special
relativity.

Nevertheless, this idea was reintroduced in GRW theory [1,
14]. Hereafter, we adopt this concept in relation to the invariant
wavefunction whose points are defined at the same proper time
instant which is invariant for all observers and thus, does not
contradict the principles of special relativity. The diffusion of
Schrodinger’s cloud is highlighted by the continuity Eq. 4.9.

The physical system may thus be considered as a type of
continuously spread cloud that we shall call “individual fabric”,
which makes part of the spacetime fabric itself. Each individual
fabric has its proper identity (or individuality) and has a finite
“density amplitude” that vanishes at infinity, reflecting the effects
and properties of the corresponding invariant wavefunction. In
particular, the density ρ(xτ) of the individual fabric at each point
xτ is equal to the square of the invariant wavefunction at that
point, as expressed by Eq. 4.7.

The dispersion and probabilities of the invariant
wavefunction reflect the real density distribution within the
corresponding individual fabric. For example, an invariant
wavefunction whose density amplitude is defined by a normal
distribution would be the result of a normal distribution of the
density of the individual fabric. In particular, the dispersion of
the invariant wavefunction represents the width of the central
region where the density of the individual fabric is
concentrated, and the median is the centre of density of the
individual fabric, while the tails would represent rarefied
peripheral density regions. The region where the density is

concentrated interacts the most with its environment and is
called the “useful part” of the individual fabric, whereas the
rarefied density regions have little or no interactions with their
environment.

The idea that the invariant wavefunction φ(τ, x) represents an
individual fabric as a single bloc or a single quantum event can be
best explained by the notion of velocity. In particular, the
individual fabric can be represented by its centre of density
X(τ). It should be noted that the centre of density X(τ) is
only a simple manner to represent the distribution of density
within a fabric akin to the centre of mass in classical physics and is
not a hidden variable.

We consider an individual fabric represented by an invariant
wavefunction φ(τ, x, y, z) that can be expressed as a function of
its amplitude R(τ, x, y, z) and phase S(τ, x, y, z) as follows:

φ(τ, x, y, z) � R(τ, x, y, z)eiS(τ,x,y,z) (4.12)

To express the notion of velocity, we introduce the above
formulation into the current Eq. 4.8:

�j � 2Z
m
R2 �∇ S � 2Z

m
ρ �∇ S (4.13)

The current �j can be expressed as the density multiplied by
the velocity �U and Thus, in a manner similar to the de Broglie
Bohm theorem, the velocity �U can be related to the phase
S(τ, x, y, z) of the wavefunction, according to the following
equation:

�U � (dx
dτ

;
dy

dτ
;
dz

dτ
) � 2Z

m
�∇ S
∣∣∣∣∣∣X(τ)

(4.14)

The gradient of the phase �∇ S is evaluated at the location of the
individual fabric’s centre of density X(τ). Here, �U is an invariant
velocity corresponding to the space components of the 4-
relativistic velocity. The invariant velocity �U represents the
invariant velocity of the centre of density X(τ).

The difference with de Broglie Bohm’s theorem is that here,
the parameter X(τ) does not represent the actual position of a
particle but simply a centre of density of the fabric represented by
the wavefunction. This centre of density, X(τ) is not necessarily
located in the densest region of the fabric. For example, in the case
of a wavefunction moving across two slits, the dense region is
distributed between two zones corresponding to the locations of
these two slits, and thus, the centre of density is somewhere in
between. Consequently, the zone of interaction during a
measurement is not necessarily where the centre of density
X(τ) is located.

For a free particle, the centre of density X(τ) of the individual
fabric may be interpreted as the centre of a sphere-like space-time
fabric whose density diminishes at infinity. The centre of density
X(τ) can be assimilated to a point particle, as in point mechanics.

In general, the invariant wavefunction
φ( �x, τ) ≡ φ( �x1, . . . , �xi, . . . �xk, τ) of a set of physical systems
composed of k particles is defined in a high-dimensional
configuration space on R3k × R, codifying their different
positions and identities, where �x ≡ ( �x1, . . . , �xi, . . . �xk) and
�xi ≡ (xi, yi, zi).
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Analogous to the expression disclosed in Norsen [1], the
density distribution ρi(τ, �xi) of the ith individual fabric is the
integral of the square of the invariant wavefunction |φ( �x, τ)|2
over the coordinates associated with all the other individual
fabrics, as follows:

ρi(τ, �xi) � ∫ ∣∣∣∣φ∣∣∣∣2δ3( �xi − �x)d3x1d
3x2 . . . .d

3xk (4.15)

The above expression gives the density distribution
ρi(τ, �xi) of the ith individual fabric by integrating over the
coordinates associated with all the other individual fabrics.
The result ρi(τ, �xi) ≡ ρi(τ, xi, yi, zi) is thus defined as a
function of the proper time τ and only three space
coordinates (xi, yi, zi).

Then, the global density ρ(τ, �x) of the global fabric
representing the k-particle-system is the sum of all the
individual densities ρi(τ, �x1), . . . , ρi(τ, �xi), . . . , ρi(τ, �xk) of the
corresponding individual fabrics representing the k different
particles, as follows:

ρ(τ, �x) � ∑ k
i�1 ρi(τ, �xi) (4.16)

Where each individual density ρi(τ, �xi) ≡ ρi(τ, xi, yi, zi) is
defined as a function of proper time τ and only three space
coordinates (xi, yi, zi) which can be simply identified with the
three coordinates (x, y, z) of the physical space. Thus, the global
density ρ(τ, �x) can be reformulated as follows:

ρ(τ, x, y, z) � ∑ k
i�1 ρi(τ, x, y, z) (4.17)

This extrapolates Schrodinger’s original idea by first defining
the individual density for each particle separately, and then by
constructing the global density as the “sum” of all individual
densities. Thus, each particle corresponds to an individual fabric
whose points (τ, x, y, z) are defined in a four-dimensional
physical space time R × R3 such that the density distribution
of each individual fabric continuously fills the entire space. All
individual fabrics are isomorphic, and their density distributions
are defined on the same four-dimensional physical space time
R × R3.

Consequently, the multi-particle invariant wavefunction
φ( �x1, . . . , �xi, . . . �xk, τ) can be perceived as representing a
“global fabric” defined in the four-dimensional physical space
time R × R3 and whose density distribution corresponds to the
sum of all the density distributions of its constituent individual
fabrics. In other words, the global fabric is defined by a global
density distribution ρ(τ, x, y, z) over a set of points (τ, x, y, z) in
a four-dimensional spacetime R × R3 where each point represents
a common position of all the k-individual positions. Moreover,
we note that here, the k-particle system is unambiguously defined
at a specific proper time instant τ regardless of the distance
between the different centres of density and does not contradict
relativity.

However, the global density distribution ρ(τ, x, y, z)
provides only a partial representation of the global fabric.
Indeed, by making the above summing operation, we lose the
individual identity of each individual fabric, knowing that

these individual identities also determine the way they
interact with each other to form the global fabric. This can
be illustrated by breaking the invariant wavefunction
φ( �x, τ) ≡ φ( �x1, . . . , �xi, . . . �xk, τ) into its amplitude R( �x, τ)
and phase S( �x, τ), as follows:

φ( �x, τ) � R( �x, τ)eiS( �x,τ) ≡
����������
ρ(τ, x, y, z)√

eiS( �x,τ) (4.18)

The amplitude is expressed as a function of the global density
distribution ρ(τ, x, y, z) defined in physical space; thus, the
information concerning the individual fabrics and their
interrelations should be encoded in the phase
S( �x, τ) ≡ S( �x1, . . . , �xi, . . . �xk, τ).

Generalising the above velocity expression, the velocity
�U ≡ ( �U1, . . . , �Ui, . . . �Uk) relative to a plurality of individual
fabrics, is given by the following:

�U ≡ ( �U1, . . . , �Ui, . . . �Uk) � 2Z
m

( �∇ S
∣∣∣∣∣∣X1

, . . . , �∇ S
∣∣∣∣∣∣Xi

, . . . �∇ S
∣∣∣∣∣∣Xk

)
(4.19)

Where each �Ui represents the invariant velocity of the centre of
density Xi(t) relative to the ith individual fabric. The invariant
velocity �Ui is expressed as follows:

�Ui � d

dτ
Xi(τ) � 2Z

m
�∇ S( �X1, . . . , �xi, . . . �Xk, τ)∣∣∣∣∣∣∣xi�Xi

(4.20)

The gradient of the phase �∇ S is evaluated at the location of the
ith individual fabric’s centre of density Xi(t). However, the
variation in the centre of density of one individual fabric
affects all other individual fabrics if they are correlated and
has no effect if non-correlated.

Indeed, if the particles are correlated, then any change δXj in
the centre of density Xj of the jth individual fabric changes the
value of the phase S( �X1, . . . , �xi, . . . , �Xj + δ �Xj, . . . �Xk, τ) which
automatically changes the centre of density Xi of the ith
individual fabric according to Eq. 4.20. This variation in the
centre of density describes a non-local inherent transformation
within the individual fabric and does not imply any displacement
of the individual fabric.

However, if the particles are not correlated, the wavefunction
φ( �x, τ) ≡ φ( �x1, . . . , �xi, . . . �xk, τ) factors into a product of
independent wavefunctions:

φ( �x, τ) � φ( �x1, . . . , �xi, . . . �xk, τ)
� φ( �x1, τ) . . . .φ( �xi, τ) . . . .φ( �xk, τ) (4.21)

The above relation (4.21) can also be expressed in polar form:

φ( �x1, . . . , �xk, τ) � R( �x1, . . . , �xk, τ)eiS( �x1 ,..., �xk,τ)

� R( �x1, τ)eiS( �x1 ,τ) . . .R( �xk, τ)eiS( �xk ,τ) (4.22)

Such that;

S( �x1, . . . , �xi, . . . �xk, τ) � ∑ k
i�1 S( �xi, τ) (4.23)

R( �x1, . . . , �xk, τ) � ∏ k
i�1 Ri(xi, t) (4.24)
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In this case, for any i, the velocity �Ui depends only on the phase
relative to its own individual fabric, as follows:

�Ui � d

dτ
Xi(τ) � 2Z

m
�∇ S( �xi, τ)

∣∣∣∣∣∣∣xi�Xi

(4.25)

In view of the above, it can be concluded that the global fabric
should be represented by the multi-particle invariant
wavefunction φ( �x1, . . . , �xi, . . . �xk, τ) which is an abstract
mathematical representation that defines the individual
identities of all individual fabrics as well as, though indirectly,
the global density ρ(τ, x, y, z) as derived above. In other words,
the multi-particle invariant wavefunction φ( �x1, . . . , �xi, . . . �xk, τ)
provides a consistent definition of the global fabric as it
determines the global density ρ(τ, x, y, z) according to
Schrodinger’s summing operation on all individual fabric
densities while conserving their individual identities.

Moreover, as seen above, the multi-particle invariant
wavefunction φ( �x1, . . . , �xi, . . . �xk, τ) determines whether the
merging according to the above Schrodinger’s summing
operation is a simple “juxtaposition” or a “combination” of the
different density distributions.

A non-factorable invariant wavefunction means that the
individual fabrics are “combined” together; that is, they are
intermingled or entangled with each other as if formed of a
single fabric (having a common global identity) representing a
single quantum event. On the other hand, a factorable invariant
wavefunction means that the individual fabrics are only
“juxtaposed” to each other without being entangled,
representing simultaneous quantum events with respect to the
proper time.

CONTRACTING FUNCTION

The invariant wavefunction φ(τ, x) representing a free particle
corresponds to an individual fabric that evolves according to the
invariant equation of motion (3.14) as an indivisible holistic
bloc within the upper (or lower) light cone; thus, its evolution is
local and consistent with special relativity. During this
evolution, the invariant wavefunction spreads out in the
standard space in a smooth manner as a consequence of its
passage from one slice Sτ1 into a subsequent slice Sτ2. This
spreading out suggests that the individual fabric’s density
should be stretched out (i.e. becoming more diluted) while
evolving through proper time.

However, the introduction of an external potential such as a
confining potential V(τ, x) modifies the form of the invariant
equation of motion (15). The confining potential V(τ, x) acts on
the useful part of the individual fabric which in turn reacts by
undergoing an abrupt redistribution and, more precisely, an
abrupt contraction of its density in compliance with the newly
introduced potential.

The abrupt redistribution of the individual fabric’s density due
to the abrupt introduction of the external potential may be
formalised by multiplying the invariant wavefunction by a
contracting function c(τ, x) whose form depends on the
external potential, as follows:

φ+(τ, x) � c(τ, x)φ−(τ, x) (5.1)

Where φ+(τ, x) and φ−(τ, x) represent the subsequent and
antecedent invariant wavefunctions for all observers,
respectively. Indeed, the proper time instant τ is invariant for
all observers, and it is the instant at which the external potential
V(τ, x) acts on the antecedent wavefunction φ−(τ, x) to
instantaneously produce the subsequent wavefunction φ+(τ, x).

Equation 5.1 implies that at a proper time instant τ − δτ, just
before the action of the external potential V(τ, x), the invariant
wavefunction is in an antecedent state φ−(τ − δτ, x) and that at a
proper time instant τ + δτ, just after the action of the external
potential V(τ, x), the invariant wavefunction is in a subsequent
state φ+(τ + δτ, x).

In general, the contracting function c(τ, x) can be defined by a
contracting Gaussian g(τ, x) applied to the zone of interaction of
the invariant wavefunction and whose dispersion depends on the
form of the external confining potential. The narrower the
confinement potential, the smaller the wavefunction
dispersion, and thus, the more concentrated the dense region
of the fabric.

However, in accordance with the uncertainty principle, the
density of the individual fabric cannot be concentrated beyond an
infinitesimally small minimal localised region. In the latter case,
the contracting Gaussian g(τ, x) becomes a localising Gaussian
gX(τ, x) similar to that in the GRW theory, except that it is not a
random spontaneous collapse but rather a deterministic response
to the external potential, as will be described in more detail in
Measurement, Discussion. The localising Gaussian gX(τ, x) has a
minimal dispersion ε consistent with the uncertainty principle
and is centred at a point xτ � (τ, X) around which the
contraction takes place. Thus, unlike the GRW theory, the
point (τ, X) is not random and depends on the region of
interaction between the wavefunction and the external
potential that triggers the contraction. On the other hand,
point (τ, X) is not necessarily the centre of density.

APPLICATION: EVOLUTION OF A
PARTICLE THROUGH A SLIT

Let a particle exit from a source, travel towards a barrier with a
slit, and pass through the slit before impacting the screen. Let the
source be at the origin O of a standard spatial coordinate system
(O;x, y, z ) such that the particle travels in the y-direction toward
the barrier, the screen and the barrier being both parallel to the
(x, z) plane, and the barrier slit is along the z-direction. For
simplicity, we neglect the z-direction and restrict the analysis to a
two-dimensional space with respect to system (O;x, y ).

A family of slices Sτ(τ, x, y) composed of two-dimensional
hyperboloids are generated by “proper time vectors” �τ arising
from the origin O. This family of slices (Sτ)τ∈R forms a three-
dimensional spacetime coordinate system (O; τ, x, y ) in which
the evolution of an invariant wavefunction representing the free
particle can be studied.

The evolution of the particle through the proper time τ is
decomposed into three periods. The first period was from the
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source to the barrier, a second period through the slit, and a third
period from the slit to the screen.

First Period From the Source to the Barrier
Suppose that initially, at τ � 0, just downstream from the source,
the particle corresponds to a free particle represented by a
Gaussian wavefunction. In particular, the wavefunction’s
transverse profile (i.e. in the x-direction) can be defined by a
Gaussian with a dispersion σ, as follows:

φ(0, x) � 1

(2πσ2)1/4 e
− x2

4σ2 (6.1)

At a later proper time instant τ and by using the same analysis
as that of the standard wavefunction’s transverse profile [1, 18],
the transverse profile of the invariant wavefunction φ(τ, x) can be
expressed by the following Gaussian wavefunction:

φ(τ, x) ≈ A(τ)e− x2

4σ2(τ) (6.2)

Where A(τ) is the amplitude, σ(τ) is the dispersion, and both
depend on the proper time τ.

Second Period at the Barrier and Through
the Slit
Suppose that the invariant wavefunction of the free particle
interacts with the barrier at a certain proper time instant τs.
The slit potential can be regarded as an abrupt square potential,
whose transverse profile is defined as follows:

V(x) � { ε ∼ 0 for |x|< a
V0 otherwise

(6.3)

Where a is the width of the slit, and V0 ≫ 1. That is, the slit
potential is almost equal to zero within a small diameter a and
almost infinite elsewhere.

The slit potential acts as a contracting function c(x) at the
proper time instant τs, concentrating the density of the
wavefunction within the width of the slit and diluting it
outside the slit. To be consistent with the principle that a
wavefunction should vanish at the edges of regions of infinite
potential energy [33], the transverse contracting function c(x)
should be a quasi-symmetrical image S(V) of the transverse
potential V(x) with a normalising factor 1/M, defined as follows:

c(x) ∼ {V0/M for |x|< a
ε/M for |x|> a (6.4)

On the other hand, to avoid the discontinuity at the sharp
edges (i.e. at |x| � a), the transverse contracting function c(x)
can be approximated by a transverse normalised contracting
Gaussian g(x) centred at x � 0, with a dispersion equal to the
slit width a, and with a normalising factor G:

g(x) ≈ Ge−
x2

4a2 (6.5)

Suppose that the useful part (i.e. dense region) of the
individual fabric comes into contact with the slit barrier at an

instant τs, where according to Eq. 6.2, the transverse profile of its
wavefunction is defined by a normalised Gaussian φ−(τs, x, y)
having a dispersion σ much larger than the slit width a, as follows:

φ−(τs, x, y) � A(ts)e−
x2

4σ2(τs ) (6.6)

The interaction of the individual fabric with the slit barrier
instantaneously transforms the normalised Gaussian φ−(τs, x, y)
into another normalised Gaussian φ+(τs, x, y) presenting a
dispersion equal to the slit width a, as follows:

φ+(τs, x, y) � g(x)φ−(τs, x, y)
� Ge−

x2

4a2A(τs)e−
x2

4σ2(τs ) ≈ B(τs)e−
x2

4a2(τs ) (6.7)

Where B(τs) � G × A(τs) and σ≫ a.
The multiplication of the invariant wavefunction φ−(τs, x, y)

by the normalised contracting Gaussian g(x) concentrates most
of its density within a certain region whose extension depends on
the barrier potential. Indeed, when we describe, for example, a
particle in a box with a square potential or a harmonic oscillator
representing a particle in a quadratic potential, we consider that
the wavefunction vanishes at the edges. In other words, we
implicitly multiply the wavefunction of a free particle by a
contracting function that limits its extension to a region
within the barrier potential. Moreover, if the width of the box
continues to decrease, the contracting function limits the
dispersion of the wavefunction until it reaches an
infinitesimally small minimal localised region.

However, it should be noted that the entire individual fabric
represented by the invariant wavefunction crosses the slit barrier.
The useful part of the individual fabric passes through the slit,
while the remaining part is so rarified that it does not interact
with its environment; thus, it passes through the barrier itself.

Third Period From the Slit to the Screen
Downstream from the slit, the invariant wavefunction starts at a
proper time instant τd, as in the first step by having a Gaussian
transverse profile given by

φ(τd, x) � B(τd)e
− x2

4a2(τd) (6.8)

It evolves by spreading out according to the invariant
Schrodinger’s equation such that its dispersion increases
which, at any instant τ, between the slit and the screen, shall
be noted b(τ), where b2(τ)> a2(τd).

Suppose that at a proper time instant τm, the useful part of the
individual fabric reaches the screen. At this instant τm, the
transverse profile of the wavefunction is a normalised
Gaussian φ−(τm, x, y) presenting a dispersion b(τm), and has
the following form:

φ−(τm, x, y) � C(τm)e−
x2

4b2(τm ) (6.9)

The screen is a barrier that can be assimilated to a constant
potential V(x, y) � V0 ≫ 1 whereas, the zone of impact on the
screen can be assimilated to an infinitesimal well. Then, at the
proper instant τm of impact, the potential of the screen is equal
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to V0 everywhere except within the zone of contact with the
useful part of the wavefunction. This zone of contact can be
represented by an infinitesimal Gaussian well of width Δx ≈ 2ε
such that its associated contracting function is a localising Gaussian
with an infinitesimally small and minimal dispersion ε around a
certain spatial point (X0, Z0) within the zone of contact.

In particular, the transverse profile of the contracting function
at the transverse point X0 within the zone of contact can be
expressed by a localising Gaussian, as follows:

gX0(x) �
1

(2πε2)1/4 e
−(x−X0)2

4ε2 (6.10)

Where the dispersion ε of the localising Gaussian is much smaller
than the dispersion b(τm) of the invariant wavefunction
φ−(τm, x, y).

The localising Gaussian instantaneously reduces the
dispersion of the invariant wavefunction to ε. Indeed, the
transverse profile of the antecedent invariant wavefunction
φ−(τm, x, y) having a dispersion b(τm) much larger than the
zone of contact 2ε, is instantaneously transformed into a
subsequent normalised Gaussian φ+(τm, x, y) presenting a
dispersion equal to the radius ε of the zone of contact, as follows:

φ+(τm, x, y) � D(τm)e−
(x−X0)2

4ε2 (6.11)

Thus, the impact of the useful part of the invariant
wavefunction on the screen contracts this useful region to a
localised condensed extension 2ε, making it behave as a corpuscle
and, in particular, as a particle in an extremely narrow well.

The impact of the useful part of the individual fabric with the
screen produces a complete transition of the density of the
wavefunction from a stretched state to a localised state. This is
similar to the localising function in the GRW theory, except that it
is not a random spontaneous collapse but rather a response to the
interaction between the wavefunction and the screen.

To estimate the localised condensed extension 2ε, it is known
[33] in standard quantum mechanics that for a non-relativistic
particle within a well of width Δx ≈ 2ε, its momentum in the
ground state (n � 1) is of the order:

Zk � Zπ/2ε (6.12)

Where

k �
����
2mE

Z2

√
(6.13)

Therefore, the radius of the well or the dispersion ε of the
contracting Gaussian should be of the order:

ε ∼
πZ����
8mE

√ � h����
2mE

√ (6.14)

We note that the uncertainty in momentum is Δp ≈ Zπ/ε and
the uncertainty in position is Δx ≈ 2ε and thus, their product
ΔxΔp ≈ 2Zπ is consistent with the uncertainty principle.

By injecting the parameters relative to an electron having, for
example, an energy E of 600 eV in Equation (50), we obtain a
dispersion ε of the order of 10−11 m.

It should be noted that if the barrier in the second period had
two slits centred at x � a and x � −a, forming a transverse
double-square potential, then the induced contracting function
c(x) would have concentrated the density of the wavefunction
within the widths of both slits. The transverse contracting
function c(x) can be approximated by a double-Gaussian
centred at x � a and x � −a, each of which presents a
dispersion equal to the slit width a. The transverse profile of
the wavefunction just downstream of the double-slit screen would
thus be a superposition of two Gaussians centred at x � a and
x � −a. As the two Gaussians representing the distribution of the
fabric’s density spread out and overlap, an interference pattern
would be created.

MEASUREMENT

In view of the above, measurement may not be the right term to
use because the outcome of a measurement is not a pre-existing
value. In particular, the measurement of the position of a physical
system is a transformation like all others; the only special thing is
that it transforms a pre-existing fabric having a stretched density
into a fabric that has a highly localised density. This
transformation is triggered by the introduction of a confining
potential. Measurement can thus be formalised by multiplying
the wavefunction φ−(τ, r) with a localising Gaussian gr0(τ, r), as
follows:

φ+(τ, r) � gr0(τ, r)φ−(τ, r) (7.1)

Consequently, the individual fabric exhibits a wave-like
behaviour when most of its density is in a stretched state and
a particle-like behaviour when most of its density is in a
minimally contracted or localised state.

Moreover, the invariant Schrodinger’s equation is always
applicable, and discontinuity arises only because the process of
interaction or measurement modifies the potential in the equation.

In general, the wavefunction φ(τ, r1, r2, . . . rk) of a set of k
particles represents a global fabric composed of a combination
(i.e. entanglement) or a juxtaposition (i.e. non-entanglement) of
the individual fabrics corresponding to the different particles.

Similar to the GRW theorem [14] and as explained in detail for
a two-particle system in [1], if the wavefunction is in the non-
entangled (i.e. factorizable) state, the localisation of a particular
dense region of an individual fabric does not affect the other
dense regions. A localising Gaussian gr0(τ, r) acts only on a
corresponding individual wavefunction φ(τ, rj) without affecting
the other individual wavefunctions. However, if the wavefunction
is in the entangled (i.e. non-factorizable) state, the localisation of
a particular dense region within the global fabric affects all other
dense regions. A localising Gaussian gr0(τ, rj) relative to any
dense region acts holistically on the global fabric and thus on all
its dense regions.

In a macroscopic object, each particle’s individual fabric is
subject to a confining potential corresponding to a resultant
action created by all the other individual fabrics. Indeed, the
interaction between the different particles confines the dense part
of each fabric (represented by its wavefunction) within the
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confining potential; thus, a macroscopic object is always in a
localised state.

DISCUSSION

Each individual fabric extends throughout the entire space; thus,
all the individual fabrics in the universe may be represented by a
single universal wavefunction φ(τ,X) ≡ φ(τ, x1, x2, . . .xk, . . .).
The universal wavefunction φ(τ,X) corresponds to a universal
spacetime fabric over a set of points Xτ ≡ (τ,X) in a four-
dimensional spacetime R × R3 where each point Xτ represents
a common position of all the corresponding individual positions.
The combination and/or juxtaposition of all the individual fabrics
defines a universal density distribution ρ(Xτ) over these points
(τ,X). Indeed, spacetime is shaped by all the density distributions
of all the individual fabrics composing the Universe.

Each individual fabric may be considered as a cosmological
continuum, such that the global fabric represents the universe
with all its constituents (matter, energy, dark matter, dark energy,
and vacuum). The book edited by Valeri Dvoeglazov [34] gives
particular attention to the concept of vacuum or ether, and hints at
an obvious relation between the ether and dark matter or dark
energy. Indeed, as the density distribution of free particles continues
to stretch, it may be speculated that dark matter is composed of
completely free individual fabrics (i.e. free particles) such that the
density distribution of each individual fabric is so rarefied that it does
not interact with its environment, while the global distribution of all
the individual fabrics still has a gravitational effect.

We note that there is a different promising approach based on
process algebra. Sulis [35, 36] proposed a descriptive theory by
assuming a generated reality followingWhitehead’s process theory
[37]. Whitehead [37] considered a process to be a sequence of
events having a coherent temporal structure in which relations
between events are more fundamental than the events themselves.
The process algebra model posits a fundamental level of finite,
discrete events upon which the usual entities of quantum
mechanics supervene. It is argued that information and
information flow provide an ontology of this fundamental level.
Higher level constructs such as energy, momentum, mass, and
spacetime are all emergent from this fundamental level. The model
is compatible with both quantum mechanics and special relativity.
It produces the results of quantum mechanics while still
maintaining causally local realism.

However, in this study, we adhere to a more classical approach
where the wavefunction is considered to represent the real
physical features of a physical system.

CONCLUSION

Thequantumstate of a physical systemcanbe describedby an invariant
wavefunction φ(τ, x) corresponding to a single quantum event at a
specific proper time τ which is invariant for all observers. This single
quantum event short-circuits the spacetime intervals between different
arguments. In particular, the invariant wavefunction represents an
ontological object consisting of an individual fabric that has its
proper individuality and a finite density amplitude that vanishes at
infinity. More generally, the invariant wavefunction of a set of physical
systems is defined in a high-dimensional configuration space. However,
the density distributions of all these individual fabrics form a global
fabric defined in four-dimensional physical spacetime. The global fabric
is composed of a combination or juxtaposition of individual fabrics,
each of which is also defined in the four-dimensional physical space
time, and its identity is conserved.

Quantum measurement of the position of a physical system is
a transformation caused by the introduction of a confining
potential that triggers an instantaneous contraction of the
dense region of the individual (or global) fabric. It is an
inherent non-local transformation within the fabric itself,
whereas the movement of the fabric relative to all others (i.e.
with respect to the spacetime fabric) is local.
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