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Blebbing occurs in cells under high cortical tension when the membrane locally detaches
from the actin cortex, resulting in pressure-driven flow of the cytosol and membrane
expansion. Some cells use blebs as leading edge protrusions during cell migration,
particularly in 3D environments such as a collagen matrix. Blebs can be initiated
through either a localized loss of membrane-cortex adhesion or ablation of the cortex
in a region. Bleb morphologies resulting from different initiation mechanisms have not been
studied in detail, either experimentally or with theoretical models. Additionally, material
properties of the cytoplasm, such as elasticity, have been shown to be important for
limiting bleb size. A 3D dynamic computational model of the cell is presented that includes
mechanics and the interactions of the cytoplasm, the actin cortex, the cell membrane, and
the cytoskeleton. The model is used to quantify bleb expansion dynamics and shapes that
result from simulations using different initiation mechanisms. The cytoplasm is modeled as
a both viscous fluid and as a poroelastic material. Results from model simulations with a
viscous fluid cytoplasmmodel showmuch broader blebs that expand faster when they are
initiated via cortical ablation than when they are initiated by removing only membrane-
cortex adhesion. Simulation results using the poroelastic model of the cytoplasm provide
qualitatively similar bleb morphologies regardless of the initiation mechanism. Parameter
studies on bleb expansion time, cytoplasmic stiffness, and permeability reveal different
scaling properties, namely a smaller power-law exponent, in 3D simulations compared to
2D ones.
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1 INTRODUCTION

Blebs are round membrane protrusions that are used in important cellular processes, such as
migration [1] and cytokinesis [2, 3]. The hallmark of a bleb is a separation of the cell membrane from
the cortex, a thin layer of actin cytoskeleton that is normally attached to the cell membrane by linker
proteins. Cells that bleb typically have high intracellular pressure compared to outside the cell. The
source of this pressure is attributed to cortical tension due to the myosin molecular motors that slide
actin filaments with respect to each other [4]. A bleb is initiated in a localized region by either a loss of
membrane-cortex adhesion or by a defect in the actin cortex caused by laser ablation [5] or myosin-
driven contractility [1]. After a bleb is nucleated, contractile stresses within the cortex are no longer
transmitted to the membrane in this localized region, resulting in a pressure gradient and
cytoplasmic flow that expands the membrane to create a bleb. A bleb is fully expanded after
about 30 s [1], but the timescale is considerably shorter for cells such as Dictyostelium discoideum,
where bleb expansion can occur in as little as 0.2 s [6]. Cortical components such as actin andmyosin
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then diffuse into the bleb, the cortex reforms under the naked
membrane, and the bleb retracts. During cell migration, the bleb
may not retract because adhesion to the substrate (or ECM) may
stabilize the bleb.

Theoreticalmodeling of blebbing has addressed various aspects of
the process including expansion [7–10], retraction [11, 12], and
migration [13–15]. One class of models is based on fluid-structure
interaction, where the elastic membrane and cortex are immersed in
fluid. Deformations of the elastic structures affect the fluid flow, and
the fluid flow in turn influences themotion of the structures. First we
summarize results from this approach using two-dimensional
models. Using the framework of the immersed boundary (IB)
method [16], simulation results from one model showed that
cytoskeletal (cortical) drag, and not the viscosity of the
cytoplasm, determined the timescale of bleb expansion [7]. When
the cytoplasm was modeled as a poroelastic material, two bleb
experiments from [5] were simulated. Results from these
experiments found that the second bleb was approximately 30%
smaller than the first bleb regardless of the location of the second
bleb with respect to the first one. The authors found these
experimental results could be explained by an initial fast time
scale for pressure propagation across the cell combined with a
slow timescale for pressure equilibration [9]. The models from
[13, 17] follow a similar approach from [7, 9], but used a
boundary integral method instead of the immersed boundary
method. The authors simulated cell migration using blebs in
confined and unconfined environments (swimming). A 2D
agent-based model from [14, 18] was used to simulate blebbing-
based migration. This model focused on interactions of the cell with
different environments, and intracellular pressure was constant in
simulations.

Several models consider membrane dynamics in blebbing cells
[19–21]. These models assume a constant or specified
intracellular pressure in the membrane energy. The 1D
membrane model from [19] was used to find minimum
conditions on pressure and membrane length for bleb
nucleation, while the model from [20] found that membrane-
cortex adhesion was critical in determining bleb initiation. The
model from [19] was also used to quantify conditions for “circus”
blebs that travel around the periphery of the cell. The 2D
membrane model from [21] found conditions for circus bleb
velocity in terms of biophysical parameters and was used to
hypothesize that heterogeneity within the cell surface was
necessary to maintain compact circus blebs.

Blebbing dynamics have been modeled in 3D for some simplified
cases. The models in [8, 12, 15, 22] assume the cell is axisymmetric
and intracellular pressure is constant. In the continuum mechanics
model from [8], the membrane reference configuration was
dynamically updated to maintain small increases in the area of
the cell membrane. A similar approach that involved updating the
membrane and cortical reference configuration to model bleb
retraction was presented in [12]. In order to produce “small-
necked” blebs observed in experiments, the authors in [22]
needed to include either localized membrane growth or global
cortical contraction. In a different approach, molecular dynamics
simulations of a surface particle-based model were used to simulate
bleb expansion in [23]. The authors determined that bleb formation

is energetically favorable when the membrane area is larger than its
attached cortical area. A membrane model of bleb expansion was
simulated with a boundary integral method in [10]. Simulations
showed conditions where either no bleb was nucleated, a bleb was
nucleated without membrane peeling, and a bleb was nucleated with
additional membrane peeling. Although this model included
membrane-cortex adhesion dynamics, the membrane was
assumed to be axisymmetric and the cortex was fixed in space. A
model of bleb expansion that included reaction-diffusion of
membrane-cortex adhesion proteins with limited membrane
deformation was presented in [24]. Lastly, a full 3D model of
bleb expansion with a viscous fluid cytoplasm (an extension of
the model in [7]) was presented in [25] to illustrate a numerical
method for computing forces on an elastic shell using the immersed
boundary method [26].

All of the aforementioned studies highlight the importance of
intracellular pressure and mechanics of different cellular
components in blebbing dynamics. I consider blebs similar to
those in experiments from [5], namely a single cell with one bleb
without interactions to an extracellular matrix. These blebs expand
on the order of 10 s. The contribution of this paper is a 3D dynamic
model of bleb expansion that includes the mechanics of the
membrane, cortex, and cytoplasm. In particular, the model
presented here includes a dynamic cortex, different cytoplasmic
models (viscous fluid and poroelastic material), and makes no a
priori axisymmetric assumptions. I then use the model to simulate
different bleb initiation using two different mechanisms: cortical
ablation and loss of membrane-cortex adhesion. The 3Dmodel with
a poroelastic cytoplasm is then simulated to determine whether
pressure dynamics follow the same behavior and scaling as described
models in 1D [27] and 2D [9].

2 MATERIALS AND METHODS

2.1 Overview of Model
The mathematical model of the cell consists of the membrane,
cortex, membrane-cortex adhesion, and cytoplasm (see Figure 1).

FIGURE 1 | Bleb model schematic. Circles indicate the discretized
membrane and cortex. The triangular grid represents the discretized
cytoskeletal network (cortex/cytoskeletal adhesion not shown).
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In particular, I consider two models of the cytoplasm: a viscous
fluid model and a poroelastic model. In the poroelastic model, the
cytoplasm includes a permeable elastic cytoskeleton. Detailed
descriptions of the 2D models can be found in [7, 9]. The models
are summarized here with detailed descriptions of notable
differences between the 2D and 3D models.

The cell membrane is modeled as an impermeable elastic
structure that moves with the velocity of the cytosol (fluid portion
of the cytoplasm) while the cortex and the cytoskeleton (in the
case of the poroelastic model) are modeled as permeable elastic
materials. The model equations consist of force balances on the
liquid cytosol, cell cortex, and cytoskeleton, constitutive
equations, and equations of motion for the structures. The
membrane and cortex are represented by continuous 2D
infinitely thin shells immersed in a 3D fluid domain. The
cytoskeleton is represented by a 3D structure immersed in
the fluid.

The immersed boundary (IB) method is used to account for
the interactions between the components of the cell and cytosol/
cytoplasm [16]. In the IB method, structures such as the
membrane are represented in a moving, Lagrangian coordinate
system, while fluid variables such as cytosolic velocity and
pressure are located on a fixed, Eulerian coordinate system. A
surface force density on an immersed structure is communicated
to the fluid coordinates as follows,

f � SF � ∫
Γ
F(s, t)δ(x − X(s, t)) ds, (1)

where s ∈ Γ is the material coordinate and X (s, t) denotes the
physical position of material point s at time t. The interpolation
operator is given by

U � S*u � ∫
Ω
u(x, t)δ(x − X(s, t))dx, (2)

where Ω represents the fluid domain. In this paper, capitalized
letters represent Lagrangian variables and lower case letters
indicate Eulerian variables.

2.1.1 Viscous Fluid Cytoplasm Model
The model of bleb expansion in [7] consisted of the cell
membrane modeled as an impermeable elastic stucture, the
actin cortex treated as a one-dimensional poroelastic structure
attached to the membrane, and the cytoplasm modeled as a
viscous fluid. A 3D extension of this model was published in [25]
to demonstrate different methods for computing forces on a
deforming surface. In this paper, I use the approach from [28] to
compute forces due to elasticity on the cortex instead of the
method in [25]. The fluid equation includes terms from the elastic
membrane, membrane-cortex adhesion, and drag with cortex:

μΔu − ∇p + f mem
elastic + f mem/cortex

adh + f cortex
drag � 0, (3)

∇ · u � 0, (4)

where u represents fluid velocity, p pressure, and fi denotes force
density on the fluid grid. Force densities due to membrane
elasticity, membrane-cortex adhesion, and cortical drag are

computed on their respective Lagrangian structures, then are
spread onto the fluid grid using Eq. 1.

The drag force on the cortex is balanced by elastic forces
within the cortex and adhesion to the membrane:

F cortex
drag + F cortex

elastic + F cortex
adh � 0. (5)

The drag force density from the cortex moving through the fluid
is explicitly given by

F cortex
drag � ξ S*u − U cortex( ), (6)

and the drag force density on the fluid is related to the cortex drag
force density by

f cortex
drag � −SF cortex

drag . (7)

The membrane and cortex are each modeled as a hyperelastic
shell that experiences forces due to surface tension and stretching.
This model is consistent with [29], where the surface area of
membrane on a bleb was shown to increase during expansion. A
hyperelastic material is characterized by an energy functional
E � ∫Γ0

Wdq, where W is a given strain energy density and Γ0
represents the reference configuration of the surface. In our
model, the total membrane energy density is EdENH + EST,
where ENH represents the neo-Hookean strain energy density and
EST represents the surface tension strain energy density. Bending
forces are neglected because several studies have shown that they
do not contribute significantly to blebbing mechanics [10, 30].
Following the formulation from [28], the neo-Hookean surface
strain energy density is given by

ENHd
kE
2
∫

s
(J − 1)2(detG0)1/2 ds

+ μE
2
∫

s
tr(GG0)−1J−1 − 2( ) detG0)( )1/2 ds, (8)

where kE is the bulk modulus, μE is the shear modulus and s � (s1, s2)
represents the surface material coordinates. The following tensors G
and G0 are defined as

G: � zX
zs

( )T
zX
zs

( ) G0d
zZ
zs

( )T
zZ
zs

( ), (9)

where X(s) denotes the current surface position, Z(s) denotes the
reference membrane position, and the scalar J � (det(GG−1

0 ))−1.
Energy due to surface tension is

ESTdci∫
s
(detG)1/2 ds, (10)

where ci represents the parameter for surface tension on the
membrane or cortex. The force density per unit reference
configuration is then computed by

Fi
elastic � −δE

δX
(s, t), (11)

where i indicates either the membrane or the cortex.
Membrane-cortex adhesion is modeled by elastic springs

attaching the membrane to the cortex with force density
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F mem/cortex
adh � kmem/cortex

adh |Xmem − Xcortex|( ) Xmem − Xcortex

|Xmem − Xcortex|. (12)

The membrane-cortex adhesion stiffness coefficient kmem/cortex
adh

was chosen so that the cortex and membrane are within a
computational grid cube of each other and velocity of the
cortex is close to zero if no bleb is initiated. The adhesion
force density on the membrane is the opposite of the
corresponding force density on the cortex. The adhesion force
densities satisfy the equation

∫
Ω

SF mem/cortex
adh dx + ∫

Ω

SF cortex/mem
adh dx � 0. (13)

Given the stiffness coefficient kmem/cortex
adh , the corresponding

stiffness coefficient for the cortex is obtained by
kcortex/mem
adh � kmem/cortex

adh dAmem
j /dAcortex

j , where dAi
j represents

the surface area differential of the jth triangle of the
membrane or cortex in reference coordinates.

Given a configuration of the membrane and cortex, the forces
are computed, and the velocities of the fluid and cortex are
obtained by solving Eq. 3 and Eq. 5 as described in Section
2.2. Then, the positions of the membrane and cortex are updated
with their respective velocities.

dXmem

dt
� S*u � U , (14)

dXcortex

dt
� 1
ξ

F cortex
elastic + F cortex/mem

attach( ) + U � U cortex. (15)

Table 1 lists the default parameters for blebbing simulations.
The values for membrane and cortex surface tension were
decreased by 50% compared to the values in [9] so that the
initial pressure difference across the membrane matches the
difference in the 2D model. The bulk modulus of the cortex
was taken to be several orders of magnitude higher than the

membrane to reflect stiffness due to the cross-linked cortical actin
network.

2.1.2 Poroelastic Cytoplasm Model
Themodel formulation is the same as above with the addition of a
poroelastic cytoplasm throughout the cell interior (a 2D version
of the model is described in [9, 32]). The cytoskeleton is
represented by a porous elastic network in Figure 1). The
fluid equations have an additional term for cytoskeletal drag.

μΔu − ∇p + f mem
elastic + f mem/cortex

adh + f cortex
drag + f cyto

drag � 0, (16)

∇ · u � 0. (17)

The force density balance on the cortex includes an additional
adhesion term to link the cortex to the cytoskeleton,

F cortex
drag + F cortex

elastic + F cortex/mem
adh + F cortex/cyto

adh � 0. (18)

Similarly, the force density balance on the cytoskeleton is

F cyto
drag + F cyto

elastic + F cyto/cortex
adh � 0, (19)

where cytoskeletal drag is defined as

F cyto
drag � μ

κ
U cyto − S*u( ), (20)

where κ is the permeability of the cytoskeleton. In this
formulation of poroelasticity, the volume fraction of the
network (cytoskeleton) is negligible [32].

The cytoskeleton is modeled as a porous, neo-Hookean elastic
structure. Elastic forces are computed using the energy
functional-based version of the IB method proposed in [33].
The neo-Hookean strain energy is the same as given in Eq. 8, but
the 2 × 2 tensors G and G0 now have dimensions 3 × 3 for the
solid cytoskeleton. The equivalence of the solid and surface neo-
Hookean energy formulas is described in [28].

The force density for cortex-cytoskeleton adhesion is
computed similarly to cortex-membrane adhesion in Eq. 12
with the appropriate scaling of the force densities. Given the
stiffness coefficient for cortex-cytoskeleton adhesion kcortex/cytoadh ,
we have kcyto/cortexadh � kcortex/cytoadh dAcortex

i /dVcyto
i , where dVcyto

i

represents the reference volume differential of the cytoskeleton
at the ith point of a tetrahedron.

The structures are updated with their respective velocities.

dXmem

dt
� S*u � U , (21)

dXcortex

dt
� 1
ξ

F cortex
elastic + F cortex/mem

adh + F cortex/cyto
adh( ) + U � U cortex,

(22)
dXcyto

dt
� κ

μ
F cyto
elastic + F cyto/cortex

adh( ) + U � U cyto. (23)

Table 1 lists the values of parameters for blebbing simulations.
Most simulations in the Results section use a value of 20 pN/μm for
membrane stiffness, 500 Pa for kcyto, and 1 · 10–2 µm2 for permeabilty.

TABLE 1 | Default model parameters for the blebbing model. Values for the shear
modulus were taken to be the same value as those listed for the bulk modulus
for the membrane, cortex, and cytoskeleton, respectively.

Symbol Quantity Value Source

rmem Cell radius 10 μm [5]
rcortex Cortex radius 9.99 μm [9]
cmem Membrane surface tension 20 pN/μm [5]
kmem Membrane bulk modulus 20–40 pN/μm [9]
ccortex Cortical tension 200 pN/μm [5]
kcortex Cortical bulk modulus 1,000 pN/μm
kcyto Cytoskeletal bulk modulus 2.5–10 · 102 Pa [4, 9]

kmem/cortex
adh

Membrane/cortex adhesion 4 · 103 pN/μm3

stiffness coefficient

kcortex/cytoadh
Cortex-cytoskeleton adhesion 1 · 104 pN/μm3

μ Cytosolic viscosity 0.01 Pa-s [4, 5, 31]
ξ Cortical drag coefficient 10 pN-s/μm3 [7]
κ Cytoskeletal permeability 0.5–2 · 10–3 μm2 [4, 9]
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2.2 Numerical Formulation
Fluid variables (components of velocity and pressure) are discretized
on an Eulerian grid of size [0, 30] × [0, 30] × [0, 35] μm and spacing
h � 30/32. The cytoskeleton is represented by an adaptive
unstructured tetrahedral mesh with radius 9.99 μm. The mesh is
more refined near the cortex with approximately two Lagrangian
points per Eulerian grid cell and one Lagrangian point per Eulerian
grid cell in the interior. The mesh consists of 28,153 points and
153,202 tetrahedra. The cortex is taken to be the boundary of the
cytoskeleton, and membrane points are initialized to be the same as
cortical points, except adjusted to have a radius of 10 μm. The
membrane and cortex each consisted of 5,018 points and 10,032
triangles. The unstructured meshes were generated using
distmesh [34].

To compute elastic forces on the membrane, cortex, and
cytoskeleton, methods from [28, 33] are implemented. Elastic
forces are computed directly from an energy functional
without the use of stress tensors by taking the variational
derivative of the energy (see Eq. 11). I assume the deformation
map X (s, t) is a piecewise linear function on each triangle of a
discretized surface (tetrahedron in the cytoskeleton) so that
the deformation gradient tensor and strain energy are
constant on each triangle (or tetrahedron). This simplifies
the integral of the strain energy density in Eq. 8 and Eq. 10.
The variational derivative in Eq. 11 can then be computed
analytically on each discretized element, and the force at each
vertex i is the sum of all elements that contain i. Details for
computing forces due to shell elasticity can be found in [28],
and details for computing the forces due to the elasticity of a
solid are located in [32, 33].

The time update follows [9, 32]. Given the current position of
the structures (membrane, cortex, and cytoskeleton):

1. Compute elastic forces based on the current membrane,
cortex, and cytoskeleton configuration (Xn

i � Xi(s, tn),
where i denotes the structure: membrane, cortex, or
cytoskeleton) using the constitutive laws described in
Section 2.1.

2. Spread the force densities onto nearby Eulerian points
using Eq. 1.

3. Solve the forced Stokes equations to obtain the fluid velocity u.
4. Interpolate the fluid velocity to the structure using Eq. 2 to

obtain U.
5. Compute the porous structure velocities by Eq. 15 and Eq. 23,

and update the structure by

X n+1
i � X n

i + Δt 1
ζ i

∑
j

F j
i + U⎛⎝ ⎞⎠, (24)

where ζ i indicates the drag coefficient of the cortex or
cytoskeleton, and the forces acting on the respective structure
denoted by ∑ F j

i are in Eq. 15 and Eq. 23. The membrane is
updated by the fluid velocity.

The time step for simulations using a pure fluid cytoplasm is
Δt � 1 · 10–4 (seconds). Cytoplasmic elasticity introduces
significant stiffness in the model, and the time step is reduced
to Δt � 7.5 · 10–6 − 3 · 10–5. Small time steps are required for

numerical stability when cytoplasmic permeability and/or elastic
moduli are relatively large.

Velocity and pressure satisfy periodic boundary conditions on
the Eulerian (fluid) domain. A Fourier-spectral method is used to
solve the Stokes equations (Eq. 3 and Eq. 4) for the viscous fluid
model, Eq. 16 and Eq. 17 for the poroelastic fluid model).

The IBmethod involves approximate δ functions for the spreading
and interpolating operators in Eq. 1 and Eq. 2 . Here, I use spectral
delta functions as described in the Supporting Material of [9] to avoid
unphysical velocities that occur in regions with a large pressure jump,
such as across the cell membrane. The discretized spreading and
interpolation integrals are approximated in Fourier space by a
nonuniform fast Fourier transform (NUFFT) described in [35].
The result yields obtain a computationally efficient approximation
of the Fourier transformof the spread force density. I use anmth order
cardinal B-spline with compact support over m + 1 mesh points as a
smoothing kernel [36]. In this paper, the oversampling factor is r � 1.5
andm� 6. The Fourier transform of the spread forces are filteredwith
a second-order raised cosine filter [37],

σ(k) � 1
2

1 + cos
2πk
N

( )( ), (25)

to remove the Gibbs phenomenon in the numerical solution to
the pressure field.

3 RESULTS

At the beginning of a simulation, the cell is pressurized due to
membrane and cortical tension. According to Laplace’s law, the
change in pressure ΔP across a spherical membrane satisfies ΔP �
c/(2R), where c represents surface tension and R is the radius of
the cell. Here, ΔP ≈ (cmem + ccortex)/(2 rmem) � 44 Pa.

A bleb is initiated by either removing membrane-cortex
adhesion in a circular region at the top of the cell or by cortical
ablation (see Figure 2). The initial radius of the circle is
approximately 2.5 μm and centered at the point on the
membrane with the highest z-coordinate. Numerically,
kmem/cortex
adh � kcortex/mem

adh � 0 on surface triangles inside the
region. The boundary between adjacent triangles on the
surface where the membrane-cortex adhesion parameters
change from nonzero to zero forms a round circular ring
around the cell, referred to as the bleb ring. Figure 2C) shows
a top down view of the cell with a dashed line indicating the
bleb ring. When the cortex is ablated, the additional
parameters kcortex � 0, kcortex/cytoadh , and kcyto/cortexadh are set to
zero on triangles within the bleb ring.

For both initiation mechanisms, when cortical tension is no
longer transmitted to the membrane, the resulting pressure
gradient leads to fluid flow and membrane expansion in the
localized region. Bleb expansion ceases when membrane tension
balances intracellular pressure.

Parameter values for simulations are located in Table 1.
Unless otherwise indicate, all simulations with a fluid
cytoplasm use a value of 20 pN/μm for the membrane bulk
modulus. Likewise, all simulations with a poroelastic
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cytoplasm use a value of 500 Pa for the bulk modulus of the
cytoplasm and 1 · 10–3 for the cytoskeletal permeability unless
otherwise stated.

3.1 Bleb Initiation Dynamics
I begin by simulating bleb expansion by removing only
membrane-cortex adhesion within the bleb ring region.

FIGURE 2 | A bleb is initiated by either (A) loss of membrane-cortex adhesion or (B) cortical ablation. (C) Top down view of the cell. For (A), membrane-cortex
adhesion parameters are set to zero within the bleb ring region, whereas for (B) cortical stiffness and cortex-cytoskeleton adhesion parameters are also set to zero within
the bleb region (inside the dashed-line circle). The two red points are used to compute the relative change in bleb ring diameter. The blue circle shows the point with the
largest z-coordinate on the cell that is used to compute bleb height.

FIGURE 3 | A bleb is initiated by a loss of membrane-cortex adhesion within the bleb ring region using (A) a pure fluid cytoplasm and (B) a poroelastic cytoplasm.
The colorbar indicates the speed of the cell membrane in μm/s. The white ring at the top of the cell at 0.3 s indicates the initial location of the bleb ring. The red curve
indicates the xz-plane that intersects the cell membrane to generate 2D slices of the pressure field. The red point in (A) is used to define bleb height.

FIGURE 4 | (A–B) Intracellular pressure in the xz-plane (y � 15) for the simulations from Figure 3. The scale bar denotes 5 μm. (C–D) Pressure along the line z � 0 to
30 for x, y � 15. The intermediate time denotes pressure at t � 2 s.
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Figure 3 shows the cell membrane position and speed
(magnitude of the velocity on the cell membrane) at several
time values during bleb expansion. The speed is highest after
removing membrane-cortex adhesion and decreases over time.
Similar to 2D simulations from [9], the bleb appears smaller in
simulations using a poroelastic cytoplasmmodel compared to the
pure fluid model.

Intracellular pressure dynamics are shown in Figure 4 for bleb
simulations using fluid and poroelastic cytoplasm models.
Intracellular pressure appears spatially uniform inside the cell
body (outside of the bleb) for the simulation with a fluid
cytoplasm (Figures 4A,C). The maximum pressure inside the
cell decreases by about 4 Pa over 40 s of simulation time. For the
poroelastic cytoplasm, a pressure gradient extends across the
entire cell (Figures 4B,D). Pressure also equilibrates to a smaller
value: 34 Pa for the poroelastic cytoplasm model compared to
41 Pa for the fluid cytoplasm model. Maximum pressure inside
the cell decreases by approximately 10 Pa over 40 s of simulation
time. The decrease in intracellular pressure results in decreased
fluid speed and bleb size.

Decreased intracellular pressure in the poroelastic cytoplasm
is a result of compression of the cytoskeleton as the bleb expands.
The total volume of the cell is conserved so that as the bleb
expands, the main cell body is compressed. In [9], the cytoskeletal
pressure that acts against compressive stresses was given as − kcyto
(J − 1), where J − 1 is the strain in Eq. 11. Cytoskeletal pressure at
several time values is shown in Supplementary Figure S1 when
kcyto � 500 Pa. Data show the cytoskeletal network is compressed
near the nucleation site, and cytoskeletal pressure approaches a
spatially nonuniform profile. Cytoskeletal pressure over time
when kcyto � 250, 500, and 1,000 Pa at the center of the cell is
shown in Supplementary Figure S2. The pressure approaches a
steady state value and increases with kcyto.

Bleb size is quantified two ways, depending on how the bleb is
initiated. When a bleb is initiated through a loss of membrane-
cortex adhesion, I measure the relative bleb volume over time.
The volume of the cortex is subtracted from the volume of the
membrane, then divided by the initial volume of the membrane.
Since there is an initial small volume between the membrane and
cortex, this small initial volume is subtracted from the relative
bleb volume equation, given by

Volbleb(t) � Volmem(t) − Volcortex(t) − Volmem(0) − Volcortex(0)( )
Volmem(0) .

(26)

Note that the volume of the membrane is approximately the same
value over time due to incompressibility of the fluid.

When a bleb is initiated through cortical ablation, the cortex is
no longer a closed surface. I use bleb height as a measurement of
bleb size and is defined as follows. The point on the membrane
with the largest z-coordinate (see Figure 3A) and the point with
the smallest z coordinate are identified. Initially, the difference
between these z coordinates is the diameter of the cell, 20 μm. The
difference between these z coordinates is measured over time. The
initial distance is then subtracted from the difference between the
z values,

Heightbleb(t) � zmem
top (t) − zmem

bottom(t) − zmem
top (0) − zmem

bottom(0)( ).
(27)

Bleb height, relative bleb volume, and maximum
intracellular pressure over time are shown in Figure 5 for
blebbing simulations using the viscous fluid and poroelastic
cytoplasm models. Bleb height and volume initially increase
after bleb nucleation, then approach a steady state value. In
this paper, steady state is defined as a quantity having less than
5% relative change over 10 s of simulation time. Following [9],
bleb expansion time is defined as 90% of the steady state value.
White circles in Figure 5A indicate bleb expansion time using
bleb height, and black circles in Figure 5B denote bleb
expansion time defined as 90% of steady state relative bleb
volume. Bleb height and volume are larger for the viscous fluid
cytoplasm model compared to the poroelastic one. Bleb
expansion time is also faster in simulations using the
viscous fluid cytoplasm model.

Maximum intracellular pressure decreases over time as the
bleb expands for simulations with fluid and poroelastic
cytoplasm models, but significantly more pressure is relieved
when bleb expansion is simulated using a poroelastic cytoplasm
model (Figures 4, 5C). To determine the time scale of pressure
equilibration, the change in pressure from its initial value over
40 s is measured (approximately 4 Pa for a simulation with a
fluid cytoplasm and 10 Pa for a simulation with a poroelastic
cytoplasm). Pressure equilibration time is computed as the time
when the maximum intracellular pressure equals the initial
value minus 90% of the change in pressure over 40 s.
Figure 5C) shows maximum intracellular pressure evaluated
at pressure equilibration time, bleb expansion time using bleb
height, and bleb expansion time using relative bleb volume. The
data show close agreement between pressure equilibration time
and bleb expansion time using relative bleb volume. Although
bleb expansion time using bleb height is about 5 s faster than
pressure equilibration time, 80% of the change in pressure is
achieved by this time for simulations with both the fluid
cytoplasm and poroelastic cytoplasm models. Therefore, bleb
expansion time measured by using height or relative volume
approximately correspond to pressure equilibration time.

3.2 Cortical Ablation
Bleb initiation by cortical ablation is simulated for several values
of cortical elastic modulus, kcortex � 100, 500, and 1,000 with both
the fluid and poroelastic cytoplasm models. Figure 6B shows
steady state membrane shape and mean curvature for simulations
with cortical ablation. Membrane shape and curvature for bleb
expansion by a loss of membrane-cortex adhesion with cortical
elastic modulus kcortex � 1,000 is shown in Figure 6A for
comparison. The magnitude of mean curvature is computed
along edges of triangles and assigned to vertices as described
in [28, 38]. Following [25], the convex hull of the membrane is
computed to determine the sign of mean curvature; points on the
convex part of the surface are assigned negative mean curvature
values, and other points on the membrane maintain their
positive sign.
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Data in Figure 6 I show that steady state bleb shape is very
sensitive to changes in cortical elastic modulus in the fluid
cytoplasm model. As the values of cortical elastic modulus
decrease, the bleb becomes more broad with a decrease in
positive mean curvature near the bleb neck as compared to

data when the bleb is initiated by only a loss in membrane-
cortex adhesion (Figure 6IA). When blebbing is simulated using
the poroelastic model, membrane shape and curvature do not
change significantly as the cortical elastic modulus decreases.
Data in Figure 6IIB show slightly broader blebs with a small

FIGURE 5 | Bleb height (A), relative bleb volume (B), and maximum pressure inside the cell (C) over time for a simulation using a fluid cytoplasm (solid lines) and
poroelastic cytoplasm (dashed lines). The open circle, filled circle, and × denote the time value when bleb height, relative bleb volume, and maximum pressure,
respectively, achieve 90% of their steady state values.

FIGURE 6 | Steady state bleb shapes and mean curvature when a bleb is initiated by (A) loss of membrane-cortex adhesion and (B) cortical ablation for different
values of cortical elastic modulus kcortex. Row I shows results from the fluid cytoplasm, and row II results are from simulations with a poroelastic cytoplasm. For the fluid
cytoplasm model, the bulk modulus of the membrane was set to kmem � 40 pN/μm. For the poroelastic cytoplasm model, kmem � 20 pN/μm, kcyto � 500 Pa, and κ � 1 ·
10–3 μm3. Other parameters are listed in Table 1. The scale bar has dimensions 5 × 1 × 1 μm. The colorbar indicates the value of mean curvatureH over the surface
of the membrane.
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decrease in positive mean curvature near the bleb neck as
compared to membrane shape and mean curvature in
Figure 6IIA.

To quantity the broadness of the bleb, bleb ring diameter,
defined as the distance between the point on the bleb ring closest
to origin (in Euclidean distance) and the point furthest away from
the origin as illustrated in Figure 2C, is computed. The change in
bleb ring diameter for cortical ablation simulations is graphed in
Figure 7 for values of cortical elastic modulus, kcortex � 100, 500,
and 1,000 with both the fluid and poroelastic cytoplasm models.
The change in bleb ring diameter is defined as steady state bleb
ring diameter minus the steady state bleb ring diameter for a
simulation when a bleb is initiated by a loss of membrane-cortex
adhesion with cortical elastic modulus kcortex � 1,000. Data in
Figure 7 show the diameter of the bleb ring increases as the
cortical elastic modulus decreases, but the increase is relatively
much larger for simulations with the fluid cytoplasm model than
for simulations with the poroelastic model.

Bleb expansion time decreases when a bleb is initiated by
cortical ablation compared to a loss of membrane-cortex
adhesion. Expansion time is calculated by computing the time
value when 90% of the steady state value of bleb height is reached.
When blebbing is simulated with a fluid cytoplasm and a loss in
membrane-cortex adhesion (Figure 6IA), bleb expansion time is
1.95 s. In comparison, bleb expansion time from cortical ablation
simulations (Figure 6IB) is 0.016, 0.023, and 0.028 s for kcortex �
100, 500, and 1,000 pN/μm, respectively. Bleb expansion time for
the simulation with a poroelastic cytoplasm model initiated with
loss of membrane-cortex adhesion (Figure 6IIA) is 10 s. When a
bleb is initiated with cortical ablation, bleb expansion time
decreases to 7.37, 6.96, and 6.60 s for kcortex � 100, 500, and
1,000 pN/μm, respectively. Data from bleb simulations with a
fluid cytoplasm show expansion time decreases by two orders of
magnitude compared to simulations when blebbing is initiated by
a loss in membrane-cortex adhesion. Simulations from the

poroelastic cytoplasm model with cortical ablation show a
decrease in bleb expansion time compared to initiation by a
loss in membrane-cortex adhesion, but the relative decrease is
approximately 30%.

3.3 Effect of Poroelasticity on Bleb
Expansion Time
This section focuses on bleb expansion dynamics when the
cytoplasm is modeled by poroelastic material, and a bleb is
initiated by a loss in membrane-cortex adhesion. Several
studies have used a poroelastic model of the cytoplasm to
interpret experimental results. For example, when blebbing
was locally inhibited by myosin-II-inhibiting drugs, blebbing
was unaffected in other parts of the cell, suggesting that
intracellular pressure is not equilibrated on the time scale of
bleb expansion [27]. Using a simple 1Dmodel, the authors in [27]
showed that pressure diffuses over a length x ∼

���
Dt

√
, where x is a

characteristic length (10 μm, the radius of the cell), D is a
diffusion coefficient proportional to both cytoplasmic
permeability and stiffness. This scaling law can be expressed
equivalently as bleb expansion time t ∼ x2/D. Since D is
proportional to κ G, bleb expansion time is expected to scale
like κ−1. Simulations from the 2D version of the blebbing model
with a poroelastic cytoplasm presented are in approximate
agreement with the scaling t ∼ κ−1 [9].

Figure 8 shows bleb expansion time as a function of
cytoplasmic permeability κ and bulk elastic modulus G.
Expansion time is computed by both relative bleb volume
using Eq. 26 (Figure 8A) and bleb height Eq. 27 (Figure 8B).
The data show qualitative agreement with results from the 2D
model in [9]. Expansion time decreases as cytoplasmic
permeability and stiffness increase. Bleb height (and volume)
decrease as cytoplasmic stiffness increase. Note that bleb height
and volume each maintain the same value for different values of
permeability, but change as a function of elastic modulus. One
difference from 2D model results is that data in Figure 8 show
bleb expansion time scales slower than κ−1. When relative bleb
volume is the metric, expansion time scales like ∼ κ−0.65. If bleb
height is used, the scaling is slightly larger, ∼ κ−0.69. These results
suggest the cytoskeletal network does not obey a simple diffusion
equation in 3D as described in [9, 27].

4 DISCUSSION

In this work, fully 3D simulations of bleb expansion with two
different rheological descriptions of the cytoplasm, purely viscous
fluid and poroelastic material, are presented. Themodel formulation
follows [9], with significant extensions to model the elasticity of the
membrane and cytoskeleton. It should be noted that no geometric
simplifications, such as axisymmetry, were made. 3D models allow
quantitative comparision to experimental data. For example, values
for relative bleb volume reported in Figure 5match those computed
from experimental data in [5].

3D simulations are necessary to simulate the dynamics of cortical
ablation, rupturing the cortical actin shell, which has been performed

FIGURE 7 | Steady state change in bleb ring diameter for simulations
with the fluid cytoplasm model and poroelastic cytoplasm model. Change in
bleb ring diameter is defined as bleb ring diameter minus the steady state bleb
ring diameter for simulations where blebs were initiated by removing only
membrane-cortex adhesion. The bleb ring diameter for the fluid cytoplasm
simulation where a bleb is initated by removing only membrane-cortex
adhesion is 0.75 μm. The corresponding value for the poroelastic cytoplasm
simulation is 0.97 μm. The parameters for the simulations are the same as
described in the caption for Figure 6.
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in experiments and has been hypothesized to occur due to localized
regions of myosin-driven contractility. In a 2D model, the cortex can
be thought of as a rubber band that quickly recoils after being cut. In
the full 3D model, an additional line tension helps to maintain the
structure of the elastic cortical shell. Simulations with a viscous fluid
cytoplasm show much broader blebs that expand several orders of
magnitude faster than expansion times from experiments. Bleb shape
and expansion times in simulations with a poroelastic cytoplasm are
qualitatively similar to those when blebbing was initiated with only
removing membrane-cortex adhesion. It is energetically unfavorable
for the membrane to maintain regions of high curvature, such as
those observed in blebs, and these results suggest that the internal
cytoskeleton along with attachments from the membrane to the
cytoskeleton help maintain the shape of bleb-like protrusions.

In cortical ablation simulations with a viscous fluid cytoplasm, the
timescale of bleb expansion is determined primarily by fluid viscosity
in the absence of cortical drag [7]. Cytoplasm drag is still present
during simulations with a poroelastic cytoplasm when blebs are
initiated with cortical ablation. Although bleb expansion is slightly
faster compared to the case when blebs are initiated by a loss of
membrane-cortex adhesion, cytoplasmic drag dominates the timescale
of bleb expansion, and biologically relevant values are obtained from
these simulations. The decrease in bleb expansion time can be
explained by a loss of cortical drag within the bleb ring region.

Pressure dynamics are quantified for both models of the
cytoplasm with qualitatively similar behavior to 2D model
simulations results from [9]. Pressure in the main cell body, i.e.
the cell except the bleb, is approximately uniform for simulations
with a viscous fluid cytoplasm, and diffuses across the cell body in
simulations with a poroelastic cytoplasm. Instances of uncontrolled
bleb growth for soft membranes were reported in [9] for simulations
with a purely viscous cytoplasm. Although I observed large blebs in
3D simulations with a softmembrane (data not shown), I was unable
to confirm the growth was actually uncontrolled. As the bleb
expands, the spacing between the discretized nodes became too
large to obtain reliable results from the simulation. Extending the

numerical method to include mesh refinement within the bleb
would be necessary to ascertain whether uncontrolled bleb
growth can occur in 3D.

In a parameter study where bleb expansion is simulated with
different values of permeability and cytoplasmic stiffness, I found
that bleb expansion time follows a power law, where t ∼ κ−p, where
p� 0.65, 0.69, depending onwhether bleb volume or height was used
to compute expansion time. These results are in contrast to the
scaling law calculated from analyzing 2D simulations in [9] and 1D
model analysis in [27]. If poroelasticity alone determines the time
scale of bleb expansion, it can be shown that cytoskeletal
displacement follows a diffusion equation after some simplifying
model assumptions, i.e., deformation only in the radial direction and
applying a small displacement in the radial direction (a reduced
model in polar coordinates is located in [32]). Because the scaling of
the diffusion equation remains the same in any dimension, my
results point to the influence of other important contributing factors
to limiting bleb expansion, such as stiffness of the cortex and
membrane, and cortical permeability. The influence of these
factors is a subject of future work.

The model presented here is limited in that I consider one cell
and focus on the expansion of one bleb to focus on intracellular
pressure dynamics with different models of the cytoplasm. Recent
work on modeling blebbing-based migration involves simulations
with multiple blebs and cycles of bleb expansion and retraction, but
assume uniform cytoplasmic pressure [14, 15]. I have also neglected
to include membrane-cortex adhesion dynamics [10, 19, 21]. Model
extensions are currently underway to include these important effects
into the current modeling framework.

Finally, I note that simulations of fully 3D models are
computationally expensive; some simulations in this paper took
weeks to run using parallelized C++ code on a cluster. Numerical
methods for stiff fluid-structure interaction systems will need to be
investigated and implemented in order to simulatemultiple blebs and
cell migration in 3D environments, particularly with an internal
elastic cytoskeletal network.

FIGURE 8 | Bleb expansion time in seconds as a function of cytoplasmic bulk modulus G and permeability κ. Bleb expansion is computed using relative bleb
volume in (A) and bleb height in (B). For both figures, the expansion time is 90% of the steady state value listed in the legend.
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