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We present a novel deep learning-based quantification pipeline for the analysis of cell
culture images acquired by lens-free microscopy. The image reconstruction part of the
pipeline features a convolutional neural network performing phase unwrapping and
accelerating the inverse problem optimization. It allows phase retrieval at the 4K level
(3,840 × 2,748 pixels) in 3 s. The analysis part of the pipeline features a suite of
convolutional neural networks estimating different cell metrics from the reconstructed
image, that is, cell surface area, cell dry mass, cell length, and cell thickness. The networks
have been trained to predict quantitative representation of the cell measurements that can
be next translated into measurement lists with a local maxima algorithm. In this article, we
discuss the performance and limitations of this novel deep learning-based quantification
pipeline in comparison with a standard image processing solution. The main advantage
brought by this method is the fast processing time, that is, the analysis rate of ∼25.000 cells
measurements per second. Although our proof of principle has been established with lens-
free microscopy, the approach of using quantitative cell representation in a deep learning
framework can be similarly applied to other microscopy techniques.

Keywords: computational microscopy, deep learning, cell culture analysis, quantitative phase imaging, lens-free
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1 INTRODUCTION

Convolutional neural networks (CNNs) have proven to efficiently process microscope images of cell
cultures [1, 2]. CNN can perform image de-noising [3, 4], cell detection [5], cell segmentation [6], cell
virtual staining [7], cell classification [8], cell motility estimation [9], and so on. To date, CNNs
outperform standard image processing algorithms in terms of performance and computation speed.
Thus, a set of CNNs can replace conventional algorithms into image processing pipelines of cell
culture analysis. To go further, we are studying whether the full image processing pipeline could be
efficiently replaced with a single CNN. This implies addressing two major issues. Firstly, the CNN
must be able to perform cell features quantification. As mentioned previously, CNNs are efficient in
conducting image transformation, but the quantification of cell features/cell shapes is not trivial.
Secondly, the output of a CNN is of finite dimensions, whereas the dimensions of a vector list of cell
measurements depend obviously on the number of cells present in the image. To address these issues,
we studied CNNs that map cell culture image into quantitative representations of cell measurements.
Further processing of the representations with a local maxima algorithm provides the lists of cell
measurements. Note that a CNN predicting quantitative cell representations has already been
successfully implemented to compute cell positions and motions [9]. In this work, we study the
possibility to quantify other cell metrics, namely, dry mass, surface area, maximum optical thickness,
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and major axis length. We demonstrate that single CNNs applied
to optical path difference image (OPD) of cell culture obtained
with lens-free microscopy [10, 11] deliver results in agreement
with standard image processing. We found that the CNNs can
generalize well over different conditions of acquisition. They are
robust over noise, can handle the presence of non-uniform
background, and perform well up to a cell concentration of
365 cells/mm2. At this concentration, the OPD image acquired
with lens-free microscopy (29.4 mm2) features ∼11.000 cells. The
application of a single CNN followed by the local maxima
algorithm to this image lasts for 0.44 s on a 16 GB GPU
board. As a result, the obtained analysis rate is as high as
∼25.000 cell measurements per second. In the case of lens-free
microscopy, the time to results is then impaired by the time
needed to reconstruct the OPD image. Therefore, we developed
and tested a CNN-based acceleration of the reconstruction,
reducing the computation time from 200 to 3 s. The CNNs
applied to these fast reconstructions deliver results in
agreement with the reference values.

Overall, we discuss a CNN-based pipeline dedicated to lens-
free microscopy, which allows acquiring and conducting multi-
parameter analysis of ∼10,000 cells in less than 5 s. Although the
proof of principle has been established for lens-free microscopy
images and a given cell line, the proposed approach of CNN-
based quantification can be easily adapted to other samples,
microscope modalities, dataset dimensions, and other cell
measurements. Thus, designing deep learning solutions with
quantitative cell representations forms a novel and efficient
framework for bio-imaging analysis.

2 MATERIALS AND METHODS

2.1 Lens-Free Microscopy
We performed image acquisitions of adherent cells directly into a
cell culture incubator with a lens-free microscope (Iprasense
Cytonote). The microscope features a RGB LED source
spatially filtered with a 50 µm diameter pinhole and located
50 mm away from the sample. A CMOS detector (6.4 ×
4.6 mm2, 3,840 × 2,748 pixels of 1.67 μm pitch) acquires three
diffraction patterns (RGB) of the cell culture at a sample-to-
sensor distance of z ∼ 1 mm with an integration time of 300 ms.
The lens-free setup records only intensity measurements in the
sensor plane. OPD and absorption images in the sample plane are
obtained through a reconstruction algorithm detailed in Section
2.2. OPD is related to phase shift and refractive index according
to the following:

φshift(x, y) � φ(x, y) − φmedium, (1)

OPD(x, y) � λ
φshift(x, y)

2π
� ∫

h

0

[n(x, y, z) − nmedium]dz, (2)

where n is the local sample refractive index, nmedium is the
refractive index of the surrounding medium, h is the thickness
of the sample object, and λ is the illumination wavelength. The
OPD values can be integrated over the total projected area S of the

cell to determine the optical volume difference (OVD, expressed
as a unit of volume in µm3) [12]:

OVD � ∫
S

OPD(x, y)dxdy. (3)

A relationship between the phase shift measurement and the
cell mass has been defined for adherent cell culture in [13, 14] and
can be used to translate OVD into cell dry mass (CDM), the mass
of all cellular content except for water. With our notations, this
relationship is given by

CDM � OVD

α
, (4)

where α is the specific refractive increment, which relates the
refractive index change to an increase in mass density. In
mammalian cells, the specific refractive index of intracellular
components falls with a narrow range, and Barer [14] estimated a
constant α of 0.18 μm3 pg−1.

2.2 Alternation of Deep Learning and
Inverse Problem Optimization for Image
Reconstruction
In lens-free microscopy, a reconstruction process is needed to
retrieve OPD and absorption images from intensity
measurements recorded ∼1 mm away from the sample.
Reconstruction is based on an inverse problem that we tackled
with the method described in [15], where the reconstruction
alternates between two approaches: inverse problem optimization
and deep learning solution (Figure 1). The computation starts
with a first inverse problem optimization processing the RGB
acquisitions (10 iterations, Figures 1E, G). In a second step, a
neural network is applied to improve the reconstruction result
(Figures 1E, H). In the last step (10 iterations), the CNN
prediction is used as the initialization of a second inverse
problem optimization, which ensures data fidelity (Figure 1F,
I, J). We built two different reconstruction algorithms with two
distinct CNNs. In the first reconstruction algorithm, the CNN is
used to correct phase wrapping. It is trained with synthetic pairs
of images, with and without phase wrapping [16]. The inverse
problem optimizations are processed over 153 iterations with
complex regularization criteria. With this algorithm, the
reconstruction of ∼30 mm2 OPD image lasts for 200 s on a
24 GB-GPU board. In the following, we will call this algorithm
the reference reconstruction algorithm. In the second
reconstruction algorithm, the CNN is used to perform phase
unwrapping and accelerate inverse problem optimization. To this
aim, the CNN has been trained with pairs of images being the
results of the inverse problem optimization with low (10) and
high number (153) of iterations. The last step of this algorithm
conducts 10 iterations of inverse problem optimization with
simplified regularization criteria. With this algorithm, the
reconstruction of ∼30 mm2 OPD image lasts for 3 s on a
24 GB-GPU board. In the following, we will call this algorithm
the accelerated reconstruction algorithm. For the two CNNs, we
use the same simple architecture consisting of 20 internal layers
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composed of 16 features. The operations to proceed from one
layer to the next are batch normalization, convolutions with 3 × 3
kernels, and ReLU non-linear function. No down-sampling or
up-sampling processes are involved to maintain (or so as to
maintain) the original dimensions of entry images through layers.
Inputs and outputs of the CNNs are pairs of images, that is, OPD
and absorption images. CNNs are trained with small 128 × 128
pixels images, but they can still be applied to larger size images.
The CNN training was performed with 30,000 pairs of images
over 20 epochs.

2.3 Convolutional Neural Networks Training
With Quantitative Cell Representation
The analysis part of the pipeline is a set of CNNs predicting
quantitative cell representations from the reconstructed cell
OPD image (Figure 2). The CNN prediction is then a heat
map image representing each cell with a 6 pixels (10 µm)
diameter disc, with pixel intensity corresponding to the cell
measurement of interest. The structure used for the CNN is
similar to that used for image reconstruction, with 20 layers and
32 features. To train the CNNs and evaluate their performances,
we used an experimental dataset built upon 234 OPD images of
30 mm2 featuring ∼2 million cells. To gather the ground truth
dataset, we applied a standard image processing pipeline to the
lens-free acquisitions (Figure 2A). Cell detection was obtained
with the FIJI TrackMate plugin [17] (Figure 2B). Cell
segmentation was achieved with a seeded growing
segmentation algorithm controlled by a threshold value
delineating the separation between background and cell area
(Figure 2C). With this image processing pipeline, we processed

the following metrics (Figures 2B–E): the cell position in pixels,
the cell surface area in µm2, the maximum OPD in nm (Eq. 2),
the cell dry mass in pg (Eq. 4), and the cell length along the
principal axis in µm. The results of the image processing
pipeline were used to generate ground truth quantitative cell
representations used as a target for CNNs training (Figures
2F–I). CNNs training was performed with 50,000 pairs of
images (128 × 128 pixels of 1.67 µm pitch) over 100 epochs.
CNNs were trained with about 10% of the ∼2.106 acquired cell
images.

2.4 Results Analysis
To measure the discrepancies between the quantitative
representation predicted by a CNN and the reference, we
calculated the structural similarity index (SSIM). To assess the
detection performances of the CNN-based pipeline, we calculated
precision and recall values considering a maximum pairing
distance of 10 µm. To assess the performance of the CNN-
based quantification pipeline, the estimated cell measurement
values were compared to the values obtained with the standard
image processing pipeline. We performed linear regression fits to
obtain the coefficient of determination R2, slope, and intercept.
The root mean square deviation (RMSD) is frequently used to
measure the error between ground truth and estimated values.
However, it is strongly influenced by the presence of outliers.
Therefore, we have calculated the absolute deviation from the
median (MAD) [18]:

errori � Cellestimated value i − Cellvalue i

errorMAD � bM(∣∣∣∣∣errori −M(errorj)
∣∣∣∣∣), (6)

FIGURE 1 | Alternation of deep learning and inverse problem optimization for OPD image reconstruction. (A,B,C) RGB lens-free acquisitions of a fibroblast adherent cell
culture. These are cropped images of a large field of view acquisition (29.4 mm2). (D-I)Details of the reconstructedOPDmap at different steps of the reconstruction (see red box in
(J)). (G,H,I) Details of (D,E,F), respectively (see red boxes in (D,E,F)). (D,G) Reconstructed OPDs after the first reconstruction step were obtained with the inverse problem
approach. (E,H) The CNN is applied to perform phase unwrapping and estimate the result of an inverse problem optimization with many iterations. The red asterisk in (G)
points to a cell undergoingmitosis that has been incorrectly reconstructedwith a lowOPD. This error is well corrected by theCNNprediction as pointed in (H)with a green asterisk.
(F,I) The last reconstruction step relies on an inverse problem optimization initialized with (E,H). (J) Full field of view showing the final reconstruction of the OPD image (∼30 mm2).
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where M is the median of a series and b � 1.4826 is a constant
linked to the assumption of data abnormality [19]. All analysis
calculations have been performed with MATLAB® libraries.

2.5 Culture of Adherent Cells
A wild-type lung mouse fibroblasts cell line was generated from
C57BL/6 mice. Cells were cultured and serially passaged in
Dulbecco’s Modified Eagle’s Medium-high glucose (Sigma-
Aldrich) supplemented with 10% fetal calf serum (FCS,
Thermo Fisher), penicillin (25 units/mL, Thermo Fisher), and
streptomycin (25 units/mL, Thermo Fisher). For lens-free
imaging, 104 cells were plated on 35 mm dishes and
subsequently imaged every 10 min.

3 RESULTS OF CONVOLUTIONAL NEURAL
NETWORK-BASED QUANTIFICATION
OBTAINED ON EXPERIMENTAL DATA
Our CNN pipeline was trained on an experimental dataset
featuring 234 OPD images of adherent fibroblast cells obtained
with lens-free microscopy. The reconstruction of ∼30 mm2 OPD
images (see Supplementary Figure S1 for OPD value
distribution) was performed with our reference algorithm,
which consists of 153 iterations of inverse problem

optimization and lasts for 200 s on a 24 GB-GPU board. We
established ground truth quantitative representations with the
results of a conventional image-processing pipeline applied to the
reconstructed OPD images. With this ground truth dataset, four
different CNNs have been trained to quantify cell dry mass, cell
surface area, cell maximum optical thickness, and cell major axis
length, respectively. Test images are taken from the same dataset
but were not used during CNNs training. Figure 3 depicts the
results obtained with different CNNs on a test image featuring
7,568 fibroblasts (density of ∼255 cells/mm2, Figure 3A). The
CNN predicted quantitative representations and ground truths
for the four different cell measurements are shown in Figures 3C,
F, I, L and Figures 3D, G, J, M, respectively. CNN predictions are
close to the ground truth, with SSIMs larger than 0.93 (Table 1).
The application of local maxima algorithm to the CNN
predictions allows cell detection with precision and recall
greater than 0.99. Pair-wise comparisons between predicted
and ground truth measurements show that the CNN
predictions of cell dry mass, cell area, maximum OPD, and
cell major axis length correlate well with the ground truth
(Figures 3 E, H, K, N, R2 ≥ 0.82 at density of ∼255 cells/mm2;
see Table 1). These good correlations demonstrate the ability of
CNNs to quantify cell measurements. The CNN applied to single
value measurements (e.g., maximum OPD) shows the best
correlation with ground truth values (R2 � 0.944), but the

FIGURE 2 | Quantitative representation for CNN training. (B,C,E) Results of a standard imaging processing pipeline applied to (A), a reconstructed OPD image of
fibroblast cells acquired by lens-free microscopy. (B)Cell detection obtained with the detectionmodule of FIJI TrackMate plugin [18]. (C)Cell segmentation obtained with
a seeded growing algorithm. (D-E) Details of the red box in (C) showing an OPDmap (D) and corresponding cell measurements calculated for the cell depicted in purple
(E). The cell segmentation in (C) allows the calculation of the cell area, the cell dry mass (Eq. 4). These measurements can next be translated into quantitative cell
representations (F,G), where each cell is represented by a six-pixel (10 µm) diameter disc with pixel intensity corresponding to individual cell measurements. (H) A CNN
can be trained to translate OPD map (A) into quantitative cell representation, here that of cell area (F). (I) A CNN can be trained to predict multiple quantitative cell
representations, here that of cell area (F) and cell dry mass (G).
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correlation is not fully linear (Figure 3H). The CNNs applied to
integral calculation (e.g., area and dry mass) perform well (R2 ≥
0.87), and the comparison with ground values is linear. However,
the CNN presents a difficulty in quantifying a geometrical feature
(e.g., major axis length, Figure 3N, SSIM � 0.89, R2 ≤ 0.85). Thus,
these results indicate a hierarchical complexity for the CNN to
perform the different cell quantification tasks.

In terms of computation time, the activation of one CNN
applied to a full field of view OPD image (∼30 mm2) lasts for
0.21 s on a 16 GB GPU board. The implementation of the CNN
was done under a C++ environment using TensorRT® librairies.
The application of the local maxima detection algorithm needed
to extract the cell measurements list from the CNN prediction
lasts for 0.23 s. On the test image featuring ∼7,500 cells, the total
analysis time is thus 0.44 s yielding an analysis rate of 17,000 cell
measurements per second. The rate can be further increased
using a CNN quantifying two cell measurements at once. We
trained such a CNN, predicting simultaneously cell dry mass and
cell area quantitative representations (see Figure 2I). The two-
task CNN is not larger in size than a single task CNN, and its
activation lasts similarly for 0.21 s on the 16 GB GPU board. The

time to results is then impaired by applying the local maxima
algorithm lasting for 0.46 s to process the two quantitative
representations. It follows that the two-task CNN analysis rate
increases up to ∼23,000 cell measurements per second without
impairing the comparison with ground truth (Supplementary
Table S1). Thus, the analysis process becomes much faster than
the image reconstruction, namely, 200 s for the reference
reconstruction algorithm. To obtain with lens-free microscopy
a total time to results in the order of seconds, we then developed
an accelerated version of the lens-free reconstruction algorithm
delivering 30 mm2 OPD image in 3 s. Comparison between the
OPD images reconstructed with reference and the fast algorithm
is shown in Supplementary Figure S2. Although the reference
and fast reconstruction are similar (SSIM ∼0.99, difference<6 nm
spatial variation SD; see Supplementary Figure S2), it was
necessary to train novel quantitative CNNs with fast image
reconstructions to optimize the overall performances.
Comparison of fast reconstruction CNNs predictions with
ground truths are detailed in Supplementary Table S2. There
is a slight degradation in comparison with the results obtained
with the reference reconstructions (see Table 1). On the test

FIGURE3 |Results of CNN-based quantifications compared with ground obtainedwith standard image processing (A)OPD test image featuring 7,568 fibroblasts.
(B)CNN prediction of a cell dry mass quantitative representation. For better visualization, discs have been dilated in (B). (C, F, I, L)Quantitative representations predicted
by the CNN on the OPD cropped image (red box in (A)) for cell dry mass, cell maximum OPD value, cell area, and cell major axis length. Corresponding ground truth
representations are depicted in (D, G, J, M), respectively. (E, H, K, N, S) Pair-wise comparisons between predicted and ground truth values for the four cell metrics
over N � 7,450 cells. The results of the linear regressions and the error MAD calculation (Eq. 6) are indicated in the figures.
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dataset, the fast reconstruction CNNs yield R2 of 0.83 ± 0.08 to be
compared with R2 of 0.86 ± 0.07 obtained with the reference
reconstructions. As the performance degradation is low and still
quite close to the ground truth (see Supplementary Table S2), it
is thus pertinent to couple CNN cell quantification with an
accelerated version of the image reconstruction. Thus, it allows
imaging and analyzing ∼10.000 cells in less than 5 seconds.

Further, we have tested the influence of the cell concentration
on the performances of the CNNs (see Table 1). Test images at
different cell concentrations are shown in Supplementary Figure
S3. We found that the detection ability of the different CNNs is
not influenced by the cell concentration, up to a concentration of
530 cells/mm2 (N � 15,500 cells per 29.4 mm2 OPD image) and
precision and recall yield values larger than 0.98 (see Table 1).
Similarly, CNN quantification of the maximum OPD value is not
influenced by cell concentration. Up to 530 cells/mm2, we
measured R2 larger than 0.93 and constant error MAD of
∼7 µm in comparison with reference values. The performance
of CNNs quantifying cell area and cell dry mass remains constant
up to 365 cells/mm2 (SSIM >0.85, R2 ≥ 0.85; see Table 1) and
starts to deviate from the ground truth values at the cell
concentration of 530 cells/mm2 (SSIM ≤0.85, R2 ≥ 0.85; see
Table 1). The performance of the CNN quantifying the cell
major axis length appears to be influenced by cell
concentration. The SSIM values and the coefficient of
determination R2 both decrease linearly with the cell
concentration, down to, respectively, 0.77 and 0.71 for a cell
concentration of 530 cells/mm2 (see Table 1). The error MAD
increases from 3 to 3.3 µm for cell concentration increasing from
180 to 530 cells/mm2 (see Table 1). CNN quantification of major
axis cell length remains a difficult task.

So far, CNNs were trained and tested on experimental OPD images
presenting uniform background and low noise.Wemeasured a 1.2 nm
spatial variation SD in a background area of 130× 130 µm2. To evaluate
the robustness of the CNNs over larger noise and/or the presence non-
uniform background, we have conducted an evaluation task with test
OPD images degraded with simulated noise (10 nm SD and 20 nm SD
spatial variation) and/or simulated non-uniform background (15 and
30 nm maximum amplitude). The simulated test OPD images are
shown in Supplementary Figure S4. Figure 4 shows the results of this
evaluation task for CNNs quantifying cell dry mass. The CNN-A,
trained with the experimental OPD images discussed previously (see
Table 1), performs poorly on the evaluation task. On the pair-wise
comparisonswith the reference values, theCNN-Aquantification yields
R2 of 0.73 ± 0.15 and error MAD of 21.6 ± 8.5 pg depending on the
image quality (see Supplementary Table S3). In order to improve the
robustness over image quality, we trained CNN-B with input OPD
images degraded with noise (20 nm spatial variation SD) and non-
uniform background (30 nmmaximum amplitude). Consequently, the
CNN-B presents good robustness over different levels of image quality.
On the test dataset, it yields R2 of 0.86 ± 0.02 and error MAD of 17.7 ±
3.6 pg depending on the level of image quality (see Figures 4G, H,
Supplementary Table S3).

4 DISCUSSION

In this article, we compare the results of CNN cell quantifications
with the results obtained with a standard image processing
pipeline. The latter are not precise enough to serve as an
absolute reference for a metrology study. To conduct a
metrology study, additional cell measurements obtained with

TABLE 1 | Results of CNN-based quantifications obtained on OPD test images reconstructed with the reference reconstruction algorithm (200 s computation time).

No.
of cells

Cell
conc.

Mean SD SSIM Prec. Recall Slope Intercept R2 Error
MAD

Cell area [µm2] 5,381 183 584.8 157.9 0.93 0.99 0.99 0.96 108.5 0.898 32.0
7,490 255 641.3 175.5 0.90 0.99 0.99 0.98 99.9 0.889 36.3
10,714 364 673.7 175.9 0.86 0.98 0.99 0.93 132.2 0.850 39.9
15,500 527 655.0 166.4 0.80 0.98 0.99 0.85 180.4 0.763 46.9

Cell dry mass [pg] 5,381 183 184.9 44.7 0.94 0.99 1.00 0.81 62.1 0.873 9.1
7,490 255 194.9 49.7 0.92 0.99 0.99 0.80 63.3 0.871 10.7
10,714 364 209.0 55.3 0.88 0.99 0.99 0.80 64.1 0.850 12.9
15,500 527 203.4 55.8 0.83 0.99 0.99 0.77 70.6 0.815 13.7

Cell max. OPD [nm] 5,381 183 79.4 20.8 0.94 0.99 1.00 1.05 8.22 0.942 6.9
7,490 255 75.5 17.0 0.92 0.99 1.00 1.03 7.09 0.931 7.4
10,714 364 76.8 16.5 0.96 0.99 0.99 1.03 10.09 0.944 6.5
15,500 527 74.7 15.9 0.83 0.98 0.99 1.03 7.65 0.930 7.4

Cell major axis length [µm] 5,381 183 40.4 11.2 0.92 0.99 1.00 1.00 6.3 0.840 3.0
7,490 255 42.3 11.5 0.89 0.99 1.00 0.97 7.8 0.817 3.3
10,714 364 42.9 11.2 0.84 0.99 0.99 0.90 10.1 0.784 3.3
15,500 527 40.0 9.4 0.77 0.98 0.99 0.85 11.7 0.707 3.3

The results of a standard image processing pipeline are the reference. We used four test images taken at different time points of the cell culture. They contain, respectively, 5,381, 7,490,
10,714, and 15,500 fibroblast cells. Corresponding cell concentrations are given in cells/mm2. The cell measurements obtained with the standard image processing follow normal
distributions of whichmeans and standard deviations are listed. SSIM is calculated between the CNN predictions and ground truth quantitative representations. SSIM values below 0.9 are
overlaid in orange. The detection ability of the CNN solution is assessed with precision and recall value. To estimate the discrepancies between the cell measurements obtained with the
CNN prediction and the reference values, we performed linear regression fits to obtain the coefficient of determination R2, the slope, and the intercept. Slope and R2 values below 0.85 are
overlaid in orange. Error MAD refers to the absolute deviation from the median of the error (Eq. 6).
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FIGURE 4 | Results of CNN-based quantification of cell dry mass applied to a test OPD image featuring 7,490 cells with and without numerical degradations. (A)
Detail of the test experimental OPD image. (B) OPD profile along yellow line in (A). (C) Test OPD image degraded with simulated noise (20 nm spatial variation SD) and
non-uniform background (30 nm maximum amplitude). (D) OPD profile along yellow line in (C). (E) CNN-A trained with images free of simulated degradation applied to
the image numerically degraded (see (C, D)), pair-wise comparison with the ground truth results over N � 7,450 cells. (F) CNN-B trained with degraded images
applied to the degraded image, pair-wise comparison with the ground truth results overN � 7,450 cells. (G) and (H)Results of the evaluation task conducted with CNN-A
and CNN-B over different levels of image quality (x7, see Supplementary Figure S3). R2 and error MAD (Eq. 6) are calculated on the pair-wise comparison with ground

(Continued )
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quantitative phase imaging technique surpassing lens-free
microscopy in terms of spatial resolution, spatial noise, and
phase sensitivity are needed. This goes beyond the scope of
the present article, and for this reason, the present work
cannot assess the precision and accuracy of the CNN
quantification in an absolute manner.

Nevertheless, the results discussed in this article allow concluding
the first proof of principle. Results obtained on experimental data
demonstrate that CNNs trained with quantitative cell
representations can estimate different cell measurements: area,
dry mass, maximum OPD value, and major axis length. When
applied to lens-free microscopy acquisitions, the cell measurements
correlate well with the results of a standard image processing
solution. We observed a hierarchical complexity for the CNN
quantification tasks. Measurements involving quantification of
single values and integral calculations (e.g., cell area, cell dry
mass, and maximum OPD value) were found to be in good
agreement with the ground truth. Conversely, the quantification
of geometrical features needed to determine cell length deviates from
the ground truth. At this stage, we do not have any explanation for
this observation. For dry mass measurements, we trained a CNN
that performed well on different levels of image quality, yielding
predictions in good agreement with the ground truth. Here, we are
emphasizing that a single CNN without parameters tuning can thus
reproduce the results of a standard processing pipeline that conducts
a sequence of many different tasks: de-noising, baseline subtraction,
cell detection, cell segmentation, and cell dry mass calculation.

We found a good correlation with ground truth values up to a cell
density of 365 cells/mm2. This corresponds to the presence of 11.000
cells per image and about ∼40% of the confluence stage. An image
being processed for 0.44 s yields a fast analysis rate of ∼25.000 cell
measurements per second. These results set an upper limit for the
method in terms of analysis rate, cell density, and confluency. To cope
with the high analysis rate, we had to develop an accelerated version
of our lens-free reconstruction algorithm delivering now 30mm2

OPD image in 3 s instead of 200 s for the reference reconstruction
algorithm. It thus allows phase retrieval at the 4K level (3,840 × 2,748
pixels) in a few seconds. This fast computation time compares well
with the recent achievement of a phase retrieval at 8K level (7,680 ×
4,320 pixels) in minute-level time [20]. The results of CNNs trained
with these fast reconstructions remain in line with the ground truth.
Overall, we have developed a CNN-based pipeline dedicated to lens-
free microscopy conducting multi-parameters analysis of ∼10,000
cells in ∼10 s. The detailed time to results is as follows:

(A) Multi-wavelength acquisition 7 s,
(B) First inverse problem optimization 0.7 s,
(C) CNN phase unwrapping, acceleration of the inverse problem

optimization 0.4 s,
(D) Second inverse problem optimization 0.7 s,
(E) CNN cell dry mass quantification 0.21 s,

(F) Local maximum algorithm 0.23 s,
(G) CNN cell area quantification 0.21 s,
(H) Local maximum algorithm 0.23 s,
(I) CNN cell maximum OPD quantification 0.21 s,
(J) Local maximum algorithm 0.23 s,
(K) CNN major axis length quantification 0.21 s,
(L) local maximum algorithm 0.23 s.

To date, with lens-free microscopy, imaging and analysis were
performed sequentially, with a total time to results in the order of
several minutes. Here, imaging and analysis of a large dataset
(>10,000 cells) can only last for a few seconds. It is a leap forward
in microscopy. With our approach, we can envisage a microscope
capable of decision and action. A consequence of great
significance is that decision can be supported by CNNs that
integrate past analysis to perform time predictions. The resulting
actions of CNNs analyzing and predicting cellular behavior in
real time, for example, could be direct interactions with the cells
in active culture, such as selecting individual cells or clusters of
interest for further exploration or biochemical analysis.

Although the proof of principle has been established for lens-free
microscopy for a given set of cell features, the approach of using
quantitative cell representations in a deep learning framework can be
further developed in multiple directions. First, the obtained CNNs can
bemodified through transfer learning to address other cell types and/or
other cell culture conditions, for example, cells cultured in suspensions
or Matrigel®. Next, the proposed pipeline could be applied to other
microscope modalities, for example, other quantitative phase imaging
techniques or epi-fluorescence microscopy. Further, the methodology
could be applied to quantify cell changes by encoding the time
dimension into the quantitative representation to measure, for
example, cell elongation, cell motility, and cell growth rate. Finally,
the technique could be applied to the quantitative analysis of 3D
cellular structures and their changes over time.

Themethodology is a deep learning solution formicroscopy studies.
Hence, it falls within the framework of the recommendations discussed
in [21]. It follows that users of this approach that would train CNN
with quantitative representation must validate the CNN predictions
against a well-established ground truth. For the present case study, the
validation consisted in calculating precision and recall for cell detection
and establishing the level of linear correlation between the predicted cell
metrics values and corresponding ground truth values. If the approach
is applied to othermodalities or other cell quantifications, other quality
metrics should be considered [21].

5 CONCLUSION

In summary, we introduced a novel cell quantitative representation
into the deep learning framework.We demonstrated that it is possible
to train a single CNNperforming quantification of cellmeasurements

FIGURE 4 | truth values. Test image 1 is the experimental OPD image (N � 7,450 cells) without simulated degradation. Test images 2 and 3 are the OPD image degraded
with noise of 10 nm SD and 20 nm SD, respectively. Test images 4 and 5 are the OPD image degraded with non-uniform background of 15 and 30 nm maximum
amplitude, respectively. Test images 6 and 7 are the OPD image degraded with noise and non-uniform background, that is, noise of 10 nm SD with non-uniform
background of 15 nm maximum amplitude and noise of 20 nm SD with non-uniform background of 30 nm maximum amplitude, respectively.
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to replace a full image processing pipeline. We have shown that
CNNs can address different types of cell measurements over a wide
range of cell images varying in cell concentration and image quality.
As an advantage, theCNNquantification approach benefits from fast
computation time. Here, we have demonstrated that this framework
allows performing multi-parameters analysis of ∼10,000 cells in a
few seconds. As such, CNN quantification can be a leading solution
to develop the next event-driven microscopy techniques.
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