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Time irreversibility of a time series, which can be defined as the variance of properties under
the time-reversal transformation, is a cardinal property of non-equilibrium systems and is
associated with predictability in the study of financial time series. Recent pieces of literature
have proposed the visibility-graph-based approaches that specifically refer to topological
properties of the network mapped from a time series, with which one can quantify different
degrees of time irreversibility within the sets of statistically time-asymmetric series.
However, all these studies have inadequacies in capturing the time irreversibility of
some important classes of time series. Here, we extend the visibility-graph-based
method by introducing a degree vector associated with network nodes to represent
the characteristic patterns of the index motion. The newly proposed method is parameter-
free and temporally local. The validation to canonical synthetic time series, in the aspect of
time (ir)reversibility, illustrates that our method can differentiate a non-Markovian additive
random walk from an unbiased Markovian walk, as well as a GARCH time series from an
unbiased multiplicative random walk. We further apply the method to the real-world
financial time series and find that the price motions occasionally equip much higher time
irreversibility than the calibrated GARCH model does.
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INTRODUCTION

A time series with N scalar values, S � x1, . . . , xN}{ , is time-reversible if its properties are invariant
under the time-reversal transformation [1, 2]. In other words, if S and its time-reversed version
St.r. � xN, . . . , x1}{ have identical properties, we can assert that the series is time-reversible. Then, the
time irreversibility of time series can be defined as the absence of time reversibility, i.e., S and St.r.
have somewhat different properties. Time irreversibility is a fundamental property of non-
equilibrium systems [3–5] and also a dynamics that is under the influence of non-conservative
forces (e.g., memory effects) [6]. Since the source of the invariance between S and St.r. varies, it is
natural to consider different degrees of time irreversibility within the sets of innately time-
asymmetric time series such as those resulting from non-stationary, non-linear, or non-
Markovian processes [7].

Recently, the time (ir)reversibility of time series obtained in different domains have been
investigated intensively because they provide rich information on the original dynamics
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themselves. For example, in the realm of physiology, it has been
suggested that the time irreversibility in heartbeat weakens with
aging or heart disease, and, therefore, a quantitative measurement
of time (ir)reversibility may provide a way to assess the
functionality of the biological system [8].

Among various application studies, the time irreversibility of
financial time series attracts much interest from researchers for
the following two reasons. First, it can help us to reveal the
mechanisms of stylized facts concerned with the asymmetry of
fluctuations in financial markets, specifically the gain–loss
asymmetry and the leverage effect. Stylized facts of financial
markets are a set of robust empirical patterns or properties
that have been derived from data analytic studies across
different financial markets or assets [9–11] such as fat-tailed
distribution of returns [11–13], volatility clustering [11, 14–18],
and the gain–loss asymmetry [10, 19]. A major research approach
of financial markets is to build theoretical or numerical models
that can reproduce stylized facts, and utilize the models to
investigate their cause, or to predict the outcome of financial
policies [11]. Hence, providing a novel tool for the investigation
of their precise features or for the calibration of the models is of
fundamental importance. The second reason is that one can
estimate the predictability of financial index (e.g., stock price)
from the time irreversibility of the series1. The connection
between the time irreversibility and the predictability of
financial time series is explained via the so-called efficient
market hypothesis (EMH, in its weak form). The efficiency of
a financial market here means that all the publicly available
information is incorporated into the present market price;
hence, a completely efficient market has no residual
information available for predicting the future market prices.
In turn, the existence of the predictability in financial time series
requires a somewhat inefficiency of the market, which
corresponds to the existence of extra information in the past
sequence (i.e., memory). This existence of residual information
implies that the time series should be sensitive to the direction of
time (i.e., the existence of time irreversibility). The link between
inefficiency, predictability, and time irreversibility in a financial
market (or of time series associated with the market) has been
analyzed, tested [20], and even utilized to, for example, rank
different financial markets for constructing a better portfolio
[21, 22].

Borrowing tools from network science, namely, the visibility
graph (VG)-based method [23] and the horizontal visibility graph
(HVG)-based method [24], Lacasa et al. [7, 25] recently
introduced seminal measurement as well as working
definitions for the time-series time reversibility. Employing
these methods, one first transforms time series into a graph
based on certain geometric criteria and then quantifies the
time irreversibility by identifying properties of the graph-

theoretical representations. Lacasa et al. show that time series
derived from irreversible dynamics correspond to an asymmetry
between the degree distribution (i.e., probability distribution of
how many connections a node has) of graphs transformed from S
and that from St.r.. The finding also illustrates the usefulness of
their methods as the working definition of time (ir)reversibility.
Compared to other existing methods, these network-based
approaches present two advantages [7]: 1) they do not require
any ad hoc parameters that can alter the results of measurement;
2) they can quantify different levels of time irreversibility within
the class of innately time-irreversible time series such as those
linked to non-stationary or non-linear dynamics.

Although there are literatures that already applied the visibility
graph to time series in various fields including economics,
physiology, or cultural study (e.g. [26–30]), both the HVG-
based and VG-based measurements of time (ir)reversibility
have critical shortages. The major inadequacy of the HVG-
based method is that it cannot tell the difference in the
geometry of index motion (e.g., whether the trajectory is
concave or convex). This is because the construction criteria
of HVG are only based on ordinal information of the original
series. Hence, it cannot differentiate the accelerated and the
decelerated motions. This shortage is particularly critical if one
wants to use HVG in financial applications, where not only the
trend (whether rising or falling) of the index motion but also the
speed is of interest. In the case of the VG-based method, although
it has the ability to identify the downward convexity of the
motion, it fails to capture some important causes of time
irreversibility, particularly the existence of memory effects.
This is not a trivial deficiency because the presence of memory
is one of the primary sources of the time irreversibility [2, 6] and
needs to be identified accordingly. Although the reason behind
this deficiency of VG is not as clear as that of HVG’s, we
conjecture that it is because too much information is missed
through the transformational process. Indeed, we shall show later
in this paper that we can discriminate the existence of memory
effects by defining a refined version of time irreversibility measure
with the family of visibility algorithms.

To solve the shortages of the existing network-based
measurement methods for the time (ir)reversibility of a time
series, we start with a hypothesis: All the non-trivial information
of a time series (e.g., the existence of memory effects) is stored in
the topology of its trajectories. Under such a hypothesis, one
needs to capture the topological properties of time series’
trajectories for a sufficient measurement of the degree of the
time-series time irreversibility.

Accordingly, our research questions are set as follows:
Research Question 1.
How can we capture the topological properties of time series?
Research Question 2.
How can we quantitatively measure the time irreversibility

from the topological perspective?
To answer the first question, we use the concept of visibility

and invisibility, a major variety of visibility algorithms, to
differentiate convexity and concavity. We also propose a
parametric “degree vector” to map a trajectory into a vector
with four components that corresponds to a particular geometric

1More precisely, for time series obtained from stochastic processes (e.g., random
walk) to be predictable, at least it must be somewhat time irreversible. In the case of
the deterministic process, on the other hand, the concept of predictability is not
applicable, and the time irreversibility implies the existence of an exact seasonal
cycle in the process
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pattern of the index motion. After this, we answer the second
question by building the degree-vector-based measurement
method of the time irreversibility and by validating it via
comprehensive numerical simulations.

The remainder of the paper is organized as follows. In
Methods, we first review two of the existing network-based
methods and point out their shortages (VG and HVG-Based
Measurement); then, we propose the new method, the degree-
vector-based method, as a refinement of the existing methods
(Refinement of the Method). In Validation of DV-VG, we validate
the degree-vector-based method via numerical simulations of
seven synthetic time series. After that, we employ the new
measurement method to investigate the properties of real-
world financial time series in Demonstrations of Real Stock
Indices. Finally, in Conclusion, we summarize and briefly
discuss possible future applications of the degree-vector-based
method.

METHODS

We first review the existing network-based measurement
methods for time series’ time irreversibility. These methods
include (directed) visibility graph (VG)-based and (directed)
horizontal visibility graph (HVG)-based method.

VG- and HVG-Based Measurement
Network Representations
A directed2 visibility graph (VG) of time series, S � xt

N
t�1}{ , is a

directed graph of N nodes; G(S) � V, E}{ , where V and E stand
for vertices (nodes) and edges, respectively. Each node of the
graph i � 1, . . . , N is labeled by the time order of its
corresponding datum xi. Then, two nodes i and j (assume
i< j without loss of generality) are connected by a directed

edge from i to j; ei,j ∈ E, if all the data between the two
points are below the straight line connecting the pair.
Formally, i and j are connected if and only if

∀k; i< k< j, xk <xi + s(xi, xj) × (k − i), (2.1)

where s(xi, xj) � (xj − xi)/(j − i) is the slope of the line between
node i and j. Equation 2.1 is called the “visibility criterion”. To
understand the analogy of “visibility”, consider each datum of the
time series as a pillar standing at t � i with the height of xi.
Assume that one sat at the top of the pillar at i, if you could see the
top of the pillar at j (i.e., node j), then these two nodes will be
connected because they are visible to each other. See Figure 1A
for a graphical illustration of the visibility criterion.

The horizontal visibility graph (HVG) Gh(S) � V, Eh}{ , has
the same structure as VG except for a different geometric
criterion to decide which pair of nodes should be connected.
According to the “horizontal visibility criterion”, a directed
horizontal edge ehi, j ∈ Eh from node i to j exists if and only if

∀k; i< k< j, xk <min(xi, xj). (2.2)

Note that horizontal visibility criterion is a sufficient condition
for the visibility criterion, i.e., Eh ⊂ E. See Figure 1B for a
graphical illustration of the horizontal visibility criterion.

Notations
After a time series is mapped into a directed network (G or Gh)

3,
we introduce notations for the comparison between the time-
reversed pairs. Let kin(t) N

t�1[G]}{ denote the in-degree sequence
of G where kin(t) is the ingoing degree of node t. Similarly, let
kout(t) N

t�1[G]}{ be the outgoing degree sequence where kout(t) is
the outgoing degree of node t. Note that the ingoing degree kin(t)
is defined as the number of edges that start from the past nodes
and end at node t, and the outgoing degree kout(t) is the number
of edges that start from node t and end at the future nodes.

An important remark here is that an ingoing edge is counted as
an outgoing edge if viewed from the reversed time horizon; thus,

FIGURE 1 |Graphical distinction among subclasses of family of visibility algorithms. (A) The visibility criterion (Eq. 2.1) requires all nodes between the from node and
the to node to stand below the dashed red line. (B) The horizontal visibility criterion (Eq. 2.2) requires all the between nodes to be below the dashed blue line. (C) The
invisibility criterion (Eq. 2.9) requires all the between nodes to be on or above the dashed red line.

2Although the original version of the (horizontal) visibility graph was first
introduced as an undirected graph, later it is extended to a directed graph [25],
in which the direction of nodes is defined according to the direction of time. In the
context of the time irreversibility, we always refer to the directed version of
(horizontal) visibility graphs

3In the following section, we use the notation G also to denote the graph
representation of time series generally
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ingoing and outgoing degree sequences are interchangeable
under the time-reversal transformation:

{kin(t)}Nt�1[G(S)] � {kout(t)}Nt�1[G(St.r.)]. (2.3)

The identity of Eq. 2.3, which is common among the family of
visibility graph algorithms, is crucially important when later we
define the measurement of the time (ir)reversibility.

Next, let us define the ingoing and outgoing degree
distributions of G (VG or HVG) constructed from S as the
following:

Pin(k)[G] � Prob(kin(t)[G] � k), Pout(k)[G] � Prob(kout(t)[G]
� k).

(2.4)

As a result, the property of Eq. 2.3 can be formulated in terms
of the degree distributions:

Pin(k)[G(S)] � Pout(k)[G(St.r.)]. (2.5)

Quantifying the Time (Ir)reversibility
As stated at the beginning of this paper, the time reversibility of a
time series stands for the invariance of properties under the time-
reversal transformation. Hence, to quantify the time irreversibility,
we need to compare the property of the original series with its time-
reversed counterpart. With the language of VG or HVG, one may
compare ingoing (outgoing) degree distribution of the original
time series S with the corresponding probability distribution in the
time-reversed time series St.r.. As shown in Eq. 2.5, the ingoing
degree distribution of St.r. is equivalent to the outgoing degree
distribution in S. Based on such an identity, we can recast the
definition of the time reversibility of a time series, via VG and
HVG, as the following:

A time series of length N; S � x1, . . . , xN}{ is VG/HVG
reversible if and only if the in-degree and out-degree
distributions are asymptotically equal:

Pin(k)[G(S)] �N→∞Pout(k)[G(S)]. (2.6)

For time series of a finite size, we can assess the degree of time
(ir)reversibility, namely, how much time-(ir)reversible the series is,
by the quantitative measurement of the distance between Pin and
Pout. For this purpose, we use the Kullback–Leibler divergence
(KLD) between ingoing and outgoing degree distributions:

D(S) ≡ KLD(in||out) � ∑
k

Pin(k)log Pin(k)
Pout(k). (2.7)

KLD is defined as a semi-distance that vanishes if and only if
the two probability distributions are identical and has a positive
value otherwise. KLD is not only convenient to quantify the
distance between probabilities but also significant in statistical
mechanics, in such a way that it can be used to estimate the
average entropy production of the associated system [7]. Here,
the measured value is the KLD between probability distributions
associated with observables (e.g., time series, network) obtained
from a certain process and its time reversal.

One additional technical remark is that Eq. 2.7 may diverge
when one or more degree k realizes only within the in-degree
distribution (i.e., ∃k, Pin(k)> 0, Pout(k) � 0). This may
happen especially in the time series with small length. While
this divergence of KLD does indicate that the series is
completely irreversible, the infinite value may make it
difficult to interpret the measured time irreversibility value.
We can practically solve this problem by adding a very small
value to all the probabilities [22]:

D(S) ≡ KLD(in||out) � ∑
k

Pin(k)log Pin(k) + ϵ
Pout(k) + ϵ, (2.8)

Such that ϵ≪ 1
N≤min(Pin(k), Pout(k)).

Since degree distributions derived from an actual time series
would fluctuate with its size, in practice, we will measure the
speed of decay of the measure (D(S) as a function of series size
(N) to qualitatively evaluate the degree of time (ir)reversibility of
the process.

Refinement of the Method
Intuitions
As our refinement of the VG algorithm is based on the hypothesis
made in Introduction that the topology of trajectories stores all
the information of time series, what we need to do is to capture
the topological properties of time series and to effectively quantify
the time (ir)reversibility.

First, let us describe the proposed procedure to capture the
topological properties of a time series:

1. Set a moving time window and divide the whole series into a
sequence of overlapping trajectories with the fixed length of
the time window.

2. Identify the geometric properties of each trajectory of the time
series in the moving windows.

3. Aggregate the geometric properties of each piece to evaluate
the geometric property of the whole series.

The primary issue regards what characteristics we need to tell
apart. Here, we discriminate trajectories based on direction (rise
or fall) as well as the shape (convex, concave, or otherwise). Note
that the shape of a trajectory’s geometry is difficult to define
merely via statistical approaches because realized trajectories are
the convolution of different temporal modes [31]. Hence, we keep
employing the family of visibility algorithms; in the meantime, we
also try to give a remedy to deficiencies of the VG-based or HVG-
based method. Specifically, besides the visibility criterion, we also
employ the invisibility criterion to construct the network from a
time series, because both criteria can reflect the convexity and
concavity of functions in a straightforward manner. Note that the
visibility of two distant data points directly relates to the
convexity of a trajectory, and the invisibility relates to the
concavity.

The invisibility criterion here refers to the algorithm
introduced by Yan et al., named as the “absolute invisibility
algorithm” [27], which is just the opposite of the visibility
criterion (Eq. 2.1).
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A pair of nodes, i and j (> i), in an invisibility graph is formed
by connecting a directed edge from i to j if and only if:

∀k; i< k< j, xk ≥xi + s(xi, xj) × (k − i), (2.9)

where, again, s(xi, xj) indicates the slope of line between data xi

and xj. See Figure 1C for a graphical illustration of the invisibility
criterion.

Visibility Graph With Colored Edges
We construct a new kind of visibility graph, “the degree-vector-
based visibility graph” (DV-VG hereafter), from a time series S as
graph Gd.v.(S) � V, ERV, ERIV, EFV, EFIV}{ with each datum xi in
the series associated to node i of the graph. Indices of edges are
defined as the following: RV for “rise and visible”; RIV for “rise
and invisible”; FV for “fall and visible”; FIV for “fall and
invisible”. Hence, the directed edge from i to j is further
colored with an index θ denoted as eθi,j,
θ ∈ RV, RIV, FV, FIV}{ , and is an instance of Eθ if the
following conditions are satisfied. Criteria for the linkage of
nodes are stated as follows.

1. The neighborhood condition [27]

j − i≤ω, (2.10)

where ω ∈ N is the length of time window, the only parameter of
the DV-VG method.

2. The direction and shape condition

• Rise and Visible (RV) (for eRVi,j )

{ xi < xj

xk < s(i, j) × (k − i), ∀k; i< k< j , (2.11)

where s(xi, xj) � xj−xi
j−i is the slope between node i and j.

• Rise and Invisible (RIV) (for eRIVi,j )

{ xi <xj

xk ≥ s(i, j) × (k − i), ∀k; i< k< j (2.12)

• Fall and Visible (FV) (for eFVi,j )

{ xi >xj

xk < s(i, j) × (k − i), ∀k; i< k< j (2.13)

• Fall and Invisible (FIV) (for eFIVi,j )

{ xi >xj

xk ≥ s(i, j) × (k − i), ∀k; i< k< j (2.14)

To summarize, the neighborhood condition, Eq. 2.10, should
be satisfied for all types of edges, while one of the four conditions
for direction and shape (i.e., Eqs 2.11.14.–.Eqs 2.2.14) needs to be
satisfied depending on the color of edges. See Figure 2 for a
graphical illustration of the distinction among the criteria for
different θ.

Owing to the neighborhood condition, a node in DV-VG can
at most have 2ω degrees; thus, DV-VG associated with a time

series of lengthN contains at most ωN edges. To check whether a
pair of nodes i and j(> i) are connected by an edge of any color,
in the simplest case, one needs to consider the values of slopes
between i and all the following nodes until j; xi+1, . . . , xj}{ .
Again, the neighborhood condition assures us that the length of
xi+1, . . . , xj}{ does not exceed ω. Hence, the worst-case
computational cost for constructing DV-VG is O(ω2N). Since
we regard ω to be a negligibly small number compared to N, the
cost reduces to O(N).

The Degree Vector
Let us prepare some notations for the description of properties of
DV-VG.

First, let kθin(t) N
t�1[Gd.v.]}{ denote the four in-degree sequences

of Gd.v., where kθin(t) is the ingoing degree of node t for different
color indices. Next, let vin(t) N

t�1[Gd.v.]}{ be the ingoing degree
vector sequence of Gd.v., in which vin(t) is the ingoing degree
vector of node t, whose components read as the following,

vin(t) ≡ (kRVin (t), kRIVin (t), kFVin (t), kFIVin (t)). (2.15)

Similarly, we can define vout(t) N
t�1[Gd.v.]}{ as the outgoing

degree vector sequence with vout(t) being the outgoing degree
vector of node t.

To define time reversibility with the use of ingoing and
outgoing degree vectors of the DV-VG representations, we
need to hold the symmetry between the ingoing and the
outgoing degree vector under the time-reversal transformation,
namely,

vout(t)[Gd. v.(S)] � vin(t)[Gd. v.(St.r.)],
vin(t)[Gd. v.(S)] � vout(t)[Gd. v.(St.r.)].

(2.16)

Among the three conditions for the construction of DV-VG
described in Visibility Graph With Colored Edges, the
neighborhood criterion and the shape (visibility/invisibility)
criteria are not altered through the time-reversal
transformation. In contrast, as shown in Figure 3, the upward
trend along with the original time direction would become a
downward trend when viewed from the opposite time horizon. In
other words, the direction criterion for of DV-VG is reversed
under the time-reversal transformation. Thus, to keep the time-
reversal property (Eq. 2.16), components of the outgoing degree
vector need to be permuted as:

vout(t) ≡ (kFVout(t), kFIVout (t), kRVout(t), kRIVout (t)). (2.17)

The difference in the order of four elements composing vin(t)
in Eq. 2.15 and vout(t) in Eq. 2.17 requires extra caution.

Interpretations of the Degree Vector
The ingoing degree vector at time t, namely, vin(t), represents the
topological property of the index trajectory consisting of the last
ω + 1 data points, i.e., xt−ω, xt−(ω−1), . . . , xt}{ . Analogously, the
outgoing degree vector vout(t) is the representation of the
geometric property of the local trajectory consisting of next ω +
1 data points xt, xt+1, . . . , xt+ω}{ . Indeed, we can regard the new
graph representation as a mapping of time series from a sequence
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of scalar values to a sequence of geometric patterns of (ω + 1)
length:

{xt}Nt�1 → {({xt−ω, xt−(ω−1), . . . , xt}, {xt, xt+1, . . . , xt+ω})}Nt�1
→ {(vin(t), vout(t))}Nt�1.
As a concrete example, Figure 4 shows the relationship

between the ingoing degree vectors and the corresponding
geometric patterns in the case of ω � 2. We have totally six
possible degree vectors for ω � 2. Each degree vector has a
definite correspondence to a geometric pattern, which can be
characterized as accelerated/decelerated rise/fall, or otherwise
zigzag motion. For instance, vin � (2, 0, 0, 0) corresponds to a

monotonically accelerated rise motion (i.e., a convex uptrend),
and vin � (1, 1, 0, 0) corresponds to a monotonically decelerated
rise motion (i.e., a concave uptrend).

Quantifying the Time (ir)reversibility
As we have converted the time series into a sequence of degree
vectors that correspond to specific geometric patterns for each
piece of the local trajectories of index motion, let us define the
distributions of ingoing or outgoing degree vectors for DV-VG
constructed from S as follows:

Pin(v)[Gd.v.] ≡ Prob(vin(t)[Gd.v.(S)] � v), (2.18)

Pout(v)[Gd.v.] ≡ Prob(vout(t)[Gd.v.(S)] � v). (2.19)

FIGURE 2 | Graphical illustration of the edge criteria to construct the degree-vector-based visibility graph (DV-VG). Any pair of nodes, i and j, is classified into at
most one of the four kinds of edges: Rise-Visible (RV), Rise-Invisible (RIV), Fall-Visible (FV), and Fall-Invisible (FIV). Note that RV corresponds to the accelerated rise
motion, RIV to the decelerated rise, FV to the decelerated fall, and FIV to the accelerated fall.
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Note that the property indicated in Eq. 2.16 shall be inherited
to the degree vector distributions. Hence, DG-VG, by definition
[i.e., regardless of the existence of the time (ir)reversibility], holds
the following equality properties:

Pin(v)[Gd.v.(S)] � Pout(v)[Gd.v.(St.r.)],
Pout(v)[Gd.v.(S)] � Pin(v)[Gd.v.(St.r.)].

(2.20)

Based on this symmetry between ingoing and outgoing degree
distributions under time-reversal transformation, we generalize a
new working definition of time reversibility:

A time series S � x1, . . . , xN}{ is topologically time-reversible if
and only if the distributions of ingoing and outgoing degree
vectors are asymptotically identical, namely,

Pin(v)[Gd.v.(S)] �N→∞Pout(v)[Gd.v.(S)]. (2.21)

For the time series with a finite size, however, we can assess
how much the time series is time-(ir)reversible through
quantifying the distance between distribution Pin and
distribution Pout. To this end, again, we may apply the KLD
between the ingoing degree vector and the outgoing degree vector
distributions with a small perturbation parameter:

D(S) ≡ D(in||out) � ∑
v
Pin(v)log Pin(v) + ϵ

Pout(v) + ϵ. (2.22)

On the specific meaning of KLD, seeQuantifying the Time-(Ir)
reversibility. As is the case with previous methods, since degree

vector distributions derived from an actual time series fluctuate
with its size, we measure the speed of decay of the measure
(D(S)) as a function of series size (N) for evaluating the degree of
time (ir)reversibility of the process.

Discussions on DV-VG
The proposed working definition of time reversibility with the use
of DV-VG is essentially a topological description such that it
quantifies the similarity between the original and reversed time
series in terms of the occurrence distributions of short-length
geometric patterns. The topological time reversibility does not
necessarily require the identical joint distribution for S and St.r.,
which in turn enables us to differentiate the existence of memory
effects, linear trends, or volatility clustering within the class of
non-stationary or even non-ergodic processes as will be shown in
Validation of DV-VG. This characteristic is useful especially for
the application to financial time series, where we need to examine
the asymmetric properties of non-stationary series.

The distinctive aspects of DV-VG compared to the original
visibility graph (VG) method lie in twofold:locality and
detailedness.

As the first characteristic, DV-VG uses local rather than global
information. In contrast, the VG mapping from a time series to
network is done by using the whole series [25]. We propose this
division of the whole series into a sequence of the local subseries
based on the fact that the aggregation of local trajectories should
certainly include the information of the whole series. This
locality, as we will show in Section 3.1.3, enables us to

FIGURE 3 | Graphical confirmation of the definition of vout(t). (A) Plot of a sample time series S. (B) Plot of the time-reversed version of it, St.r.. The red rectangle in
(C) denotes the local trajectory that should be represented as vin(i)[Gd.v.(S)] (the ingoing degree vector at i of DV-VG constructed from S). Analogously, the blue
rectangle in (D) denotes the local trajectory that should be represented as vout(i)[Gd.v.(St.r.)] (the outgoing degree vector at i of DV-VG constructed from St.r. ). The
downward trend according to the original time direction would be seen as the upward trend if it were viewed from the end point.
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preclude the effect of non-ergodicity when analyzing
multiplicative random walks. Additionally, the idea of focusing
on local information when coarse graining the series provides us
some conveniences. First, it requires a much lower computational
cost. The computational cost for the construction of VG with a
naïve algorithm increases as O(N3). Although a faster algorithm
employing the so-called divide-and-conquer approach has been
recently proposed, which does reduce the average-case time
complexity to O(N logN)[32], the computational cost can still
be O(N2) for some unfavorable cases. What is worse is that the
nearly worst case could be encountered rather frequently if one
had to tackle time series similar to the multiplicative random
walks. On the other hand, the computational cost for DV-VG
increases always (i.e., for any inputs) as O(N), because we only
need to check a finite size (ω) data for each time step. One more
notable advantage of keeping the construction criteria local is that
it makes the method well suited for analyzing the so-called online
time series (i.e., the system keeps producing new data points). As
VG needs to take the whole series into account, adding extra data
points xN+1, . . .}{ can always change the degree k(t) for nodes at
any past time t, results of the analysis always need to be updated
whenever new data arrives. For DV-VG, the degree vector at twill
never be altered once that the ω-length time step has passed
from t.

The second characteristic of DV-VG is that it contains more
detailed information about the topological properties of trajectories.
When mapping a data point xt in the time series into ingoing and
outgoing degree vectors (vin(t), vout(t)), DV-VG discriminates on

both the direction (rise/fall) and the shape (convexity/concavity) of
the local trajectory around xt. In contrast, VG ignores the direction
and only partially examines the shape in the mapping process.

VALIDATION OF DV-VG

In this section, we first validate DV-VG via the measurement of
time irreversibility for time series generated by numerical
simulations. Furthermore, we shall employ DV-VG to
investigate the properties of real-world financial time series.

As is explained inDiscussions on DV-VG, the distinctive features
of DV-VG refer to both locality and detailedness of the mapping
procedure. The effectiveness of DV-VG needs to be demonstrated
through comparisons of different methods. To ensure the fairness of
such comparisons, besides VG, we further employed a modified VG
equipped with the locality of DV-VG. In particular, a localized VG;
Glocal(S) � V,Elocal}{ is employed, which builds its edge with both
the visibility and the neighborhood criteria. Hereafter, the localized
VG shall be referred to as LVG. Note that the set of edges built in
LVG is a subset of that in VG (i.e., Elocal ⊂ E) corresponding to the
same time series.

In the following section, we shall apply three methods, i.e., VG,
LVG, and DV-VG, to measure time irreversibility of a set of
synthetic time series. Note that we set ω � 100 for LVG4, and ω �
2 for DV-VG5. In total, we have investigated eight synthetic time
series. Seven of these time series are selected following Lacasa and
Flanagan [7] for comparison. The eighth time series is generated by
the GARCH process, which is an important subclass of
multiplicative random walks for modeling financial time series.
The tested series are listed as follows.

1. White Noise: xt ∼ U[0, 1].
2. Chaotic logistic map: xt+1 � 4xt(1 − xt), where x0 ∼ U[0, 1].
3. Unbiased additive random walk: xt+1 � xt + ξt, where ξ is an

unbiased random variable; E[ξt] � 0(e.g. ξt ∼ U[−0.5, 0.5 )] .
4. Additive randomwalk with positive drift: xt+1 � xt + ξt, where

E[ξt]> 0(e.g. ξt ∼ U[−0.4, 0.6 )] .
5. Additive random walk with memory effect (non-Markovian

random walk):

xt+1 � xt + ξt p< r
xt−τ p≥ r{ , where E[ξt] � 0, τ ∈ N and

r ∈ [0, 1 (e.g. ξt ∼ U[−0.5, 0.5 τ � 6 and r � 0.3)]] .

6. Unbiased multiplicative random walk: xt+1 � ξt+1xt, where
E[log ξt] � 0(e.g. log ξt ∼ U[−0.5, 0.5 )] .

7. Multiplicative random walk with negative drift: xt+1 � ξt+1xt,
where E[log ξt]< 0(e.g. ξt ∼ U[0.9, 1.1 )] .

FIGURE 4 | The relationship between ingoing degree vectors, examples
of corresponding realizations of trajectories, and the corresponding geometric
patterns (in the case with ω � 2). Dotted lines in examples indicate the original
shape of the trajectory, red arrows indicate edges linked with the visibility
criteria, and blue arrows indicate edges linked with the invisibility criteria. Each
degree vector corresponds to a specific geometric pattern either accelerated/
decelerated × rise/fall, or otherwise (zigzag).

4We chose comparatively large ω � 100 for the LVG because large (although finite)
ω is necessary to get meaningful degree distributions if we only consider edges of a
single kind
5We checked the results with ω � 5, 10 apart from the results with ω � 2. See
SupplementaryMaterial for the detailed results. In all eight example time series, the
behavior and the speed of convergence of time (ir)reversibility value are
qualitatively similar regardless of the choice of ω, suggesting that (1) our
method is robust against ω, and (2) small ω contain rich enough information
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8. GARCH (1, 1) process:
xt+1 � xte

yt+1

yt+1 �



ht

√
zt,

ht+1 � c + βht + αy2
t

⎧⎪⎨⎪⎩ where zt ∼ N(0, 1).6

Stationary Processes
We first consider two canonical stationary processes: White noise
and Chaotic logistic map. Figure 5 shows the time irreversibility of
(A) White noise and (B) Chaotic logistic map as a function of the
time series lengthN. In each plot, blue, cyan, and red lines stand for
results obtained viaVG, LVG, and DV-VG, respectively. Each data
point is the average over 10 times realizations and the error bars
indicate 10 and 90% quantiles. Same quantiles are used for all the
following log–log plots in the paper unless otherwise stated.
Comments on the time (ir)reversibility of the two kinds of time
series are provided as follows.

(A) White noise

In all the three results, the measured KLD decays
asymptotically as 1/N, indicating that the time irreversibility
due to the finite size of time series will vanish rapidly with the
increase of N. Hence, time series obtained from white noise can
be categorized as time-reversible.

(B) Chaotic logistic map

Via all the three measurement methods, the convergence of
KLD to a finite and positive value is shown as the size of the time
series increases, thus the process is categorized as time-
irreversible. Note that measurement by DV-VG is insensitive
to the size of time series.

To summarize, our results are in good agreement with
previous theory, in which the white noise is, by definition,
time-reversible, and the chaotic map is, also by definition as a
dissipative chaotic process, time-irreversible.

Additive Random Walks
Figure 6 shows the time irreversibility of (A) Unbiased Additive
Random Walks (ARW), (B) ARW with positive drift, and (C)
Unbiased ARW with memory effects as a function of the time
series length. Comments are provided as follows.

(A) Unbiased ARW

In all the three cases, KLD vanishes asymptotically as ∼ N−α,
with 1

2< α< 1, indicating that the unbiased ARW is time-reversible.

(B) ARW with positive drift

For VG and LVG, the measured KLD vanishes asymptotically,
implying that the process is time-reversible. This erroneous result
owes to the visibility criterion (not the trend condition) being
invariant under the addition of linear trends [7]. In contrast, the
measured KLD via DV-VG converges to a finite value
manifesting that the trending motion of the time series brings
about the time irreversibility. The reason for DV-VG to
distinguish a trend is clear: the differentiation of rising
(uptrend) and falling (downtrend) trajectories have been taken
into account when constructing the degree vectors.

(C) Unbiased ARW with memory effect

Similar to case (B), the measurement via VG or LVG breeds a
decreasing KLD as the series size gets larger, while the
measurement via DV-VG results in the KLD converging to a
finite positive value. By differentiating geometric patterns more
precisely, our new method alone can successfully distinguish the

FIGURE 5 | Log–log plot of the time irreversibility, KLD, of (A) white noise and (B) chaotic logistic map as a function of the time series length N. Each measure is
computed via the original VG (blue), LVG (cyan), and DV-VG (red). Each dot is an average over 10 realizations and error bars account for 10 and 90% quantiles.

6Here, we set α � 0.3, β � 0.6, c � 0.1, following the example in [33] (p. 157), and
investigate properties of raw index values (xt) instead of their log-returns (yt)
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existence of memory effects on additive random walk as a source
of the time irreversibility.

Multiplicative Random Walks
Figure 7 shows the time irreversibility of (A) Unbiased
Multiplicative Random Walks (MRW), (B) MRW with
negative drift, and (C) GARCH (Generalized auto-regressive
conditional heteroscedasticity), i.e., unbiased MRW with
volatility clustering, as a function of the time series length.

(A) Unbiased MRW

In the case of the VG, the measured KLD does not vanish
along with the increase of series length, indicating the time-
irreversible nature. In contrast, in the cases of the LVG and DV-
VG, as KLD vanishes asymptotically, the process is judged as
time-reversible. Here, the result differs depending on the
measurement methods employed. The multiplicative random
walk is known to have a non-ergodic nature and contains

extremely rare but extremely different events. In the case of
the original VG, a node will be connected to all the visible
nodes no matter how far away they are. As the non-ergodicity
of MRW is inherited, the degree distribution will be dominated by
extreme events. In other words, the degree distribution has a fat
tail resulting from the large fluctuation over realizations [7]. If we
add the neighborhood condition, thus cut off the impact of
extreme events, the non-ergodicity of MRW itself shall not be
inherited to the degree distribution or degree vector distribution
of its graph representations. As a result, the time irreversibility
measure vanishes with N−1 in case of LVG and DV-VG, judging
the unbiased MRW as time-reversible.

(B) MRW with negative drift

The KLD value computed via the VG does not vanish with the
series length as is the case in the unbiased MRW. In contrast, the
KLD value computed via LVG vanishes asymptotically as about
1/N. Most interestingly, the KLD value computed via DV-VG

FIGURE 6 | Log–log plot of the time irreversibility, KLD, of (A) unbiased, (B) positively biased, and (C) non-Markovian additive randomwalk as a function of the time
series length N. Each measure is computed via the original VG (blue), LVG (cyan), and DV-VG (red).

FIGURE 7 | Log–log plot of the time irreversibility, KLD, of (A) unbiased, (B) negatively biased multiplicative random walk, and (C) GARCH as a function of the time
series length N. Each measure is computed via the original VG (blue), LVG (cyan), and DV-VG (red).
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converges to a finite positive value at around N � 103, clearly
differentiating unbiased and biased (in logarithmic space)
MRWs.

(C) GARCH

The GARCHmodel is a typical extension of theMRW that can
model the tendency of large changes to cluster in log-returns of
index [16], which is typically called volatility clustering and is
known as one of the stylized facts of financial time series. Since
the process contains additional directional information, GARCH
should be more time-irreversible than the unbiased MRW. First,
in the case of VG, themeasured KLD does not decrease and rather
starts fluctuating strongly as the series’ length gets longer.
Although it seems that VG is capable of capturing the time
irreversibility of the GARCH model, it is not clear whether the
measure captures the time-irreversible nature, which is rooted in
the volatility clustering since VG has produced an erroneous non-
vanishing KLD in the unbiased MRW. Second, in the case of
LVG, the KLD vanishes asymptotically, suggesting that the
method fails to detect GARCH’s time irreversibility. Finally,
the KLD obtained through DV-VG does not vanish and
converges to a finite value with a large N(> 104), suggesting
that the method can capture the time-irreversible nature
originated from the volatility clustering and discriminate the
GARCH time series from the unbiased MRW.

DISCUSSION

As shown in the previous subsections, we have tested the capability
of different methods for the measurement of time reversibility for a
set of synthetic time series that are generated from eight canonical
processes. Among these test cases, the newly proposed DV-VG
method can yield a renormalized time irreversibility measure, which
vanishes asymptotically if the process is unbiased (in the logarithmic
space for the multiplicative random walks) or converges to a finitely
positive value if the process contains linear trend, memory effect, or
volatility clustering. Note that the previous method (i.e., VG) fails in
detecting non-Markovianity within the class of additive random
walk. Again, the reason why DV-VG is superior to its original
version is that one can examine in detail whether certain geometric
patterns occur more/less frequently in the forward series; Gd. v.(S),
than they do in the backward series, Gd. v.(St.r.). Let us emphasize
that the higher detectability of DV-VG is realized through the
following: 1) focusing on local information, and 2) differentiating
geometric patterns more precisely.

DEMONSTRATIONS OF REAL STOCK
INDICES

In this section, we further demonstrate the capability of DV-VG
by exploratorily analyzing the time (ir)reversibility of financial
time series generated from real markets. Specifically, we have
investigated time (ir)reversibility of stock indices of six
representative financial markets:

1. Japanese Nikkei 225 (N225)
2. Indian Bombay Stock Exchange Sensitive Index (SENSEX)
3. Hong Kong Hang Seng Index (HSI)
4. French CAC 40 (CAC 40)
5. Dow Jones Industrial Average (DJI)
6. German DAX (DAX)

We use the daily closing price during the period from June 28,
1999 to June 28, 2019, which yields around 5 × 103 data points for
each index.

One important note here is that raw values [i.e., x(t)] instead
of log-returns [i.e., r(t) � log(xt/xt−1)] of the stock prices are
analyzed in our study. Log-returns are the most prevalent form
used in the analyses of financial time series mainly because they
are known to be closer to the stationarity and can be well
approximated by multiplicative random walk processes [21,
33]. However, as we have validated that DV-VG works well
for the non-stationary processes (as VG does [7]), we no longer
need to consider the stationarity of the series.

The precise methodology (for the analysis of each index price)
is described as follows.

1) We construct a working time window of n � 103 data points
and divide the original time series xt}{ of N( ≈ 5 × 103) data
into a sequence of (N − n + 1) overlapping sub-series with n
data in each. We chose n � 103 since it is the minimum size of
the time series to sufficiently detect the time irreversibility
rooted in trends and memory effects.

2) For each of these sub-series, we construct the associated DV-
VG and compute the KLD via its degree vector distributions.

3) We also calibrate7 the parameter of GARCH (1, 1) by fitting
the model to the log-return (i.e., logxt − logxt−1) series.

4) Using calibrated parameters and GARCH (1, 1) model, we
regenerate a sample price time series with the length n � 103

and compute its time irreversibility.
5) We compute the mean level time irreversibility of the

associated GARCH (1, 1) process via a Monte Carlo
simulation, by repeating 4) 50 times and calculating the
mean and the standard deviation of the aggregated results.

6) Finally, we compare the level of time irreversibility obtained
from the real data with the associated GARCH (1, 1) model.

Figure 8 shows the degree-vector-based time irreversibility
plotted as a function of date. Each data point of thick red lines
denotes the time irreversibility of last 103 business days counted
from that date.

Overall, three observations should be noted: 1) all the index
series can be judged as time-irreversible as a whole, but 2) the
degree of the time irreversibility varies across indices and 3) the
degree of time irreversibility also varies over time, which are in
good accordance with the previous research [21]. Besides these
observations, there are several findings from our results. First, the
KLD values from any indices are significantly larger than those

7“Arch” package [34] (https://arch.readthedocs.io/en/latest/) in python is
employed to estimate the three parameters of GARCH (1, 1).
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constructed from the unbiased multiplicative random walk (with
the same length: N ≈ 5 × 103). Second, although the degree of
time irreversibility varies across indices, all the indices but DJI
have similar temporal trajectories. Specifically, two big peaks of
time irreversibility emerge in the most indices during
approximately the same periods. The cross-correlation between
every pair of indices except DJI is essentially positive. Thirdly,
what is particularly interesting to us is that, if we compare the
degree of time irreversibility of each stock index with that of the
calibrated GARCH (1,1) model, we find that there are some
periods during which they are similar, and there are other periods
during which the former becomes much higher. This result
suggests that the GARCH model may deviate from the real
markets in terms of the time irreversibility, which has never
been seriously investigated in previous studies. These deviations
may be caused by time-irreversible effects other than volatility
clustering. Although we are not able not clarify what exactly these
effects are in the current study, we are almost sure that the main
reason would be the emergence of a trend. Also note that the
trendingmotionmay not be captured once the log-return data are
used, just as what we would do in the conventional analysis of
financial data.

CONCLUSION

Let us remind readers that the main objective of our study is to
answer the following two questions:

Research Question 1.
How can we capture the topological properties of time series?
Research Question 2.
How can we quantitatively measure the time irreversibility

from the topological perspective?

As for the answer to the first question, the newly defined
“degree vector” has enabled us to characterize the topological
property of each piece of the local (short) trajectories. The
degree vector can be determined with three different
geometrical criteria, namely, 1) the neighborhood
condition, 2) the trend condition, and 3) the shape
condition. With respect to the shape condition, we utilized
visibility and invisibility algorithms for the classification of
different kinds of edges. In summary, our answer to the RQ1 is
that the proposed degree vector at t has the definite
correspondence to the topological property of trajectory
adjacent to t, and by aggregating the sequence of degree
vectors into the occurrence frequency distribution, we can,
in a qualitative sense, capture the topological property of the
whole series.

Regarding the second question, a new measurement method
for the time irreversibility of time series is proposed based on the
degree vector representation, i.e., DV-VG. To validate the new
measurement method, the results of the measurement of the
numerical simulation of eight classes of synthetic time series are
compared with those of the other measurement methods, that is,
VG and LVG. By using DV-VG, we successfully detect the time-
irreversible nature rooted in 1) linear trends and 2) memory
effects (i.e., non-Markov property), which are not detectable via
the other two methods. Hence, although we are not yet able to
provide exact mathematical proofs, we may answer RQ2 as “yes”
with the current numerical evidence. Furthermore, we have
applied DV-VG to time series generated from the GARCH
model, which is a basic extension of the unbiased
multiplicative random walk to model financial time series. The
degree-vector-based time irreversibility does not vanish and
converges to a finite value with large enough N(> 104),
suggesting that the time-irreversible nature of the GARCH

FIGURE 8 | The index motion and the measured time irreversibility via DV-VG, as a function of date. The blue line denotes price of the index. The red solid line
denotes KLD associated with the real data. The pink shaded area denotes KLD from the GARCH (1, 1) model (mean±std over fifty realizations) with the estimated
parameters. Panels (A–F) each shows the result from a different index time series.
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models comes from the phenomenon that large volatility is likely
to be followed by large volatility.

As a preliminary study, we further applied DV-VG to six stock
index time series from canonical real markets and compared the
results with the calibrated GARCH (1, 1) model in terms of the time
irreversibility. Interestingly, we found that the GARCH (1,1) model
can reproduce the time irreversibility only during certain periods; the
degree of time irreversibility of the real stock indices measured by
DV-VG ismuch higher out of these periods. This result suggests that
though the GARCH model has become a mature model of real-
world stock indices in general, it still lacks the capability in capturing
the time irreversibility of financial time series.

As the final remark, we propose three possible applications of
our method (i.e., the degree vector) for the future investigation.
First, we can search specific geometric patterns from time series
by employing the degree vector. For example, if the accelerated
rise in a time series is of interest, one can search the degree
vectors with large kRVin [e.g., vin � (7, 0, 0, 0)] within DV-VG
associated with the time series. This application may be useful
for practical use, such as automated rule-based monitoring or
anomaly detection. Second, because our method can quantify
the topological property of a time series, we can compare the
property between multiple different time series. We may be able
to apply this comparability to the context of model selection or
machine learning-based reproduction of similar time series.

Finally, we may be able to employ the degree vector to measure
other mathematical concepts that are important but are also
difficult to define precisely, such as self-similarity, as we did for
the concept of time (ir)reversibility of time series.
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