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As the first step for revealing potential rules inherent in cities that are closely squeezed in a
sectioned domain, municipalities in the entire prefecture in Japan are considered and their
distributions of the areas are analyzed in details according to a rank-size procedure.
Computed results suggest that among the population, area, and population density, the
last becomes the most important factor in finding the rank-size rule. Indeed, of the 47
Japanese prefectures the Metropolis of Tokyo and Fukuoka Prefecture exhibit the most
typical rank-size rules, where the former possesses the exceptionally high population
density as well as urbanized rate. The underlying mechanism of the rule can be supported
by a toy model with a tournament game using a sequence of random numbers, where
teams (municipalities) are highly competitive in gaining the final wins (broadest territory). A
stability analysis implying perturbations due to global warming allows one to confirm
unexpected robustness of the rank-size relation. Finally, the authenticity of the log-log
relation in the rank-area data of Tokyo Metropolis is tested statistically.

Keywords: rank-size rule, power law, territorial extension, Durbin-Watson d statistics, stretched exponentiality,
squared squares, global warming

INTRODUCTION

Cities, towns, and villages have long been regarded as an attractive object of scientific study [1–3]. In
the context of applied statistical physics, their dynamics, configuration, geography, and population
have been studied from a variety of viewpoints [4–20]. In an effort to reveal implicit rules that govern
the organized whole, the possibility of bearing rank-size rules such as the Zipf’s law and its variants
has been constantly discussed for realistic cities that are scattered all over the world [7, 8, 13, 15, 18,
19]. Besides the conventional approach to cities, in recent years, arguments from a new perspective
have been assembled. The most typical examples can be seen in quantitative studies on the basis of
social interaction, information entropy, environmental change, and sustainability [21–24]. It should
be noted here that in most literature the key term “size” has been employed implicitly as the meaning
of population. One should notice, however, that besides the population there are two meanings in the
term, namely, area and population density. In this paper we focus our principal attention on the
former. Specifically, areas of municipalities (not only cities but towns and villages being included)
that are squeezed in a prefecture of a country are considered. For an example we consider Japan
because this country has been divided into 47 prefectures; in each prefecture, typically tens of
municipalities are closely packed with a unique configuration that has been arranged according to a
self-organized process over a long period. The distributions of the areas are analyzed in detail
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according to a rank-size procedure. Through numerical results,
one can identify, among the populations, areas, and population
densities of prefectures, a key factor in finding the rank-size rule.
Indeed, of the 47 Japanese prefectures, only four (specifically, the
Metropolis of Tokyo; Hiroshima, Shimane, and Fukuoka
Prefectures) are shown to exhibit the typical rank-size rules,
where the first in the parentheses possesses the exceptionally
high population density as well as urbanized rate. The underlying
mechanism of the rule is explained by a toy model with a
tournament game using a sequence of random numbers,
where teams (municipalities) are highly competitive for
gaining the final wins (broadest territory). A stability analysis
implying perturbations due to global warming allows one to
discuss robustness of the rank-size relation. Finally, the
authenticity of the log-log relation in the rank-area data of
Tokyo Metropolis is tested with the Durbin-Watson d statistics.

MOTIVATION AND METHODOLOGY

Suppose that you are an inhabitant in a square-shaped prefecture,
who is asked by the king to divide the land into unequal squares as
few as possible in number. It is assumed further that if the
requirement is met, the king is pleased to give you the entire
land and at the same time to assign you to the governor of the
prefecture. Struggling with the problem for hours or days, finally
you will find it too difficult to solve. Actually, this is termed the
simplest perfect squared square problem, which, along with the
Kepler’s closest packing and the four colors problem, had long
been one of the most difficult problems in geometry. In 1948,
23 years after the first explicit mention of division into unequal
squares by Morón, a compound perfect square with 24 squares
was realized by Willcocks [25] (see Figure 1A). Furthermore,
after 30 years from his finding, in the long run the ultimately
simple perfect squared square with only 21 elements was found by
Duijvestijn [26, 27] (see Figure 1B), Dutch geometrician, who
had devoted himself to solving the extremely hard problem. He
applied Kirchhoff’s laws to polar nets with which the dissection

was obtainable through calculating a current flow [26]. Here we
note that for both squares there are pronounced inequalities in
the areas of the elements, which may remind one of a realistic
division inherent in lands that are constrained with a number of
boundaries. Indeed, in 2003, 25 years after the great achievement
by the Dutch scholar the areas y in the squared squares were
found to obey the statistical rule [5] that corresponds to a
q-extension of the logarithmic distribution

yq � a − b log x, (1)

where log abbreviates the common logarithm; x represents the
rank in descending order; a, b, and q are positive real constants to
be determined with the least squares fit. The analyzed results for
the squares in Figure 1 are listed in Table 1 [5]. Here n is the
number of elements; the accuracy of the regression model can be
examined by the degree of fit, |r|, namely with the Pearson’s
coefficient (0 < |r| < 1), and with the Durbin-Watson ratio, d (0 <
d < 4) [28]

d � (n − 1)−1∑
i
(εi+1 − εi)2, (2)

for i � 1 to n – 1, where

εi � ei/s, ei � Yi − Y′
i , s

2 � (n − 2)−1∑
i
e2i , (3)

for i � 1 to n; Y � yq; and the prime on Y indicates the point on
the regression line. In Table 1, dU represents the upper critical
value of the ratio (α � 0.01, i.e. level 1% test being implied).
For dU < d ≤ 2, a null hypothesis H: “There is no correlation
between the neighboring residual data.” is not rejected. For a

FIGURE 1 | Two perfect squared squares. (A)Willcock’s compound square of order 24. The sequential lengths of its elements are {81, 64, 56, 55, 51, 43, 39, 38,
35, 33, 31, 30, 29, 20, 18, 16, 14, 9, 8, 5, 4, 3, 2, 1}. (B)Duijvestijn’s simple square of order 21. They are {50, 42, 37, 35, 33, 29, 27, 25, 24, 19, 18, 17, 16, 15, 11, 9, 8, 7,
6, 4, 2}.

TABLE 1 | Comparison of two perfect squared squares.

Configuration n q |r| d dU

(A) Willcocks 24 0.78 0.9945 1.450 1.20
(B) Duijvestijn 21 0.84 0.9977 1.521 1.16
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negative counterpart, i.e., 2 < d ≤ 4, d must be replaced with
4 – d. In contrast to non-ranking as well as rank-rank data
(such as, e.g., Spearman’s and Kendall’s approaches), for the
rank-size analysis, in most cases the positive correlations are
included between the neighboring data. Note that along with

detecting autocorrelations in the time-series data the Durbin-
Watson d statistics was used also in other data; typical
examples are seen in the Rietveld analysis of powder
diffraction data [29–32] and in the Lorentzian fits in the
151Eu Mössbauer spectroscopy of oxide glasses [33]. More

FIGURE 2 | A complete map of (A) Japan, (B) the Metropolis of Tokyo, and (C) Fukuoka Prefecture. The two prefectures are marked with the blue and red ink,
respectively, in (A). The colored dashed lines in (B, C) indicate the boundaries among municipalities in the prefecture.
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recently has the statistics been applied to testing assumptions
of independent residuals in the physics education
research [34].

Besides the science of cities, to date, sustained efforts have been
made to find nontrivial rules in the ranking of a variety of
complex systems, not only in conventional physics but in

FIGURE 3 | Cross-sectional view of the three-dimensional scattergram
of optimal solutions for the entire prefecture in Japan. The purple line in the
individual cross section indicates the regression line. The red crosses that are
superimposed on the dots highlight the four prefectures in Tables 2 and
3. (A) d-|r| plane (R � −0.0020with d � 1.866). (B) q-|r| plane (R � −0.0278with
d � 2.016). (C) q-d plane (R � −0.0187 with d � 1.960).

FIGURE 4 | Dependence of scaling exponent, q, on the geographic data
of the entire prefecture in Japan. The purple line in the individual cross section
indicates the regression line. The red crosses that are superimposed on the
dots highlight the four prefectures in Tables 2 and 3. (A) q vs. common
logarithm of population. (B) q vs. common logarithm of area (km2). (C) q vs.
common logarithm of population density (km−2).
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geometry, geography, demography, linguistics, and sciences on
social phenomena [35–43]. More recently has ranking been
regarded as a tool useful for condensing large-scale data that
have been accumulating in contemporary sciences such as, e.g.,
computational metallurgy [44] and gravitational wave astronomy
[45], though the results are not yet ready for finding a rule.

GEOMETRY OF PROBLEM

In this paper we consider the entire prefecture in Japan, which is
divided into 47 prefectures that include Hokkaido and the
Metropolis of Tokyo. In Figure 2, a complete map of A)
Japan is given along with the ones of B) the Metropolis of
Tokyo (n � 53, excluding remote islands), and C) Fukuoka
Prefecture (n � 60). Here n indicates the number of
municipalities squeezing in a prefecture, which consist of
cities, towns, and villages. The two prefectures are to be cited
in the rank-size analysis, and are marked with the blue and red
ink, respectively, in Figure 2A. The colored dashed lines in
Figures 2B,C indicate the boundaries among municipalities in
the prefecture.

Since the opening of Japan to the West, this country has
experienced three major municipal consolidations [46]: 1)
1888–1889 (in the Meiji era): 71,314→15,859; 2) 1956–1961
(in the Showa era): 9,868→3,472; and 1999–2006 (in the
Heisei era): 3,232→1,821, where arrow indicates the change in
the number of municipalities in the entire country. Specifically,
for Tokyo Metropolis, the historical sequence is 175 (1) in 1889,
121 (2) in 1943, 97 (5) in 1953, 58 (11) in 1961, 63 (27) in 2000,
and 62 (26) in 2001, while for Fukuoka Prefecture it becomes
1,960 (2) in 1888, 386 (2) in 1889, 262 (12) in 1953, 120 (19) in
1956, 101 (16) in 1965, 97 (24) in 2000, and 60 (28) in 2010. Here
the number in the parentheses represents the content of cities.

RESULTS

Below numerical results for the areas in the 47 Japanese
prefectures [46] are given. Note that in Figures 3, 4,
truncation is made for the exceptional datum of Ehime
Prefecture (q � 3.32), but it is included for the calculation of
regression lines. For Fukui Prefecture, because of an ill-posed
nature, there has been no optimal solution available:

# The three frames in Figure 3 show a cross-sectional view of the
three-dimensional scattergram of optimal solutions for the entire
prefecture in Japan. The purple line in each individual cross section
indicates the regression line. It can be seen that for all the cross
sections the aggregation of dots is highly clustered around a “center of
gravity”: specifically,A) 0.96 ≲ |r| ≲ 1.00 and 0.5 ≲ d ≲ 2.0 in the d-|r|
plane, B) 0.96 ≲ |r| ≲ 1.00 and 0.2 ≲ q ≲ 1.5 in the q-|r| plane, and C)
0.5 ≲ d ≲ 2.0 and 0.2 ≲ q ≲ 1.5 in the q-d plane. Correlation analysis
has shown that irrespective of the projective directions the dots are
randomly scattered in each cluster. It can be found in Figure 3A that,
in contrast to the dots’ aggregation in 0.99 < |r|, the d values exhibit
concentrations in the vicinity of unity, indicating that, for reasons
identical to quantifying serial correlations between adjacent least-

squares residuals in Rietveld refinements of step-scan power
diffraction data [29–32], the use of the Durbin-Watson d statistics
is necessary for the rank-size analysis.

# Figure 4 shows the dependence of scaling exponent, q, in
the left-hand side of Eq. 1 on the geographic data of the entire
prefecture in Japan. First, as specific data we consider A) the
population and B) the area (km2). Through correlation
analysis it has been found that for the former, there exists
a negative correlation (R � −0.3833 with d � 2.113), in contrast
to a positive correlation (R � 0.4177 with d � 2.197) for the
latter. Here R represents the correlation coefficient between
the optimal parameters and the geographic data. The results
allow one to expect that there will exist a stronger correlation
between the scaling exponent and the population density
(km−2) that is defined with the population divided by the
area (km2). The plot on Figure 4C indicates that, as has been
expected, there is a negative correlation with the maximum
magnitude in the correlation |R| among the three (R � −0.5522
with d � 2.174).

FIGURE 5 | Dependence of (A) degree of fit, |r|, and (B) Durbin-Watson
ratio, d, on the common logarithm of population density (km−2) for the entire
prefecture in Japan. The purple line in the individual cross section indicates the
regression line. The red crosses that are superimposed on the dots
highlight the four prefectures in Tables 2 and 3.
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# Above we have confirmed the noticeable dependence of the
scaling exponent, q, on the population density. Therefore, it
appears interesting to examine how the other two parameters,
|r| and d, depend on the population density (km−2). Figure 5A
shows the dependence of the degree of fit, |r|. It can be seen that,
although in comparison with Figure 4C the magnitude of the
correlation between |r| and the density reduces substantially, the

parameter is positively correlated with the density (R � 0.2215
with d � 2.528). For the Durbin-Watson ratio, however, as is
apparent in Figure 5B, correlation vanishes (R � -0.0095 with d �
2.206).

# As has been seen in Figure 3A, there are four prefectures
that meet the requirement: 0.99 < |r| and dU < d. The
geographic data of the four prefectures are listed in Table 2.
Figure 6A plots the rank dependence of the areas (km2) of
municipalities on the main land in the Metropolis of Tokyo.
The purple declining line indicates the optimized fit (|r| �
0.9961 with d � 1.861 > dU for q � 0.21 and n � 53). As is found
in Figures 3B,C, the prefecture shows minimum in the scaling
exponent. The entire Metropolis includes nine outlying
municipalities on islets in the Pacific Ocean [46]. Analysis
of the extended region (n � 62) has yielded the optimal

TABLE 2 | Demographic and geographic data of the Metropolis of Tokyo,
Fukuoka, Hiroshima, and Shimane Prefectures.

Prefecture Population Area (km2) Density (km–2)

Tokyo 14,064,696 2,194.03 6,410.44
Fukuoka 5,138,891 4,986.51 1,030.56
Hiroshima 2,801,388 8,479.65 330.37
Shimane 671,602 6,077.89 100.12

FIGURE 6 | (A) Rank dependence of the areas (km2) of municipalities in
the Metropolis of Tokyo. The purple declining line indicates the optimized fit (|r|
� 0.9961 with d � 1.861 for q � 0.21 and n � 53). (B) Rank dependence of the
areas (km2) of municipalities in Fukuoka Prefecture. The purple declining
line indicates the optimized fit (|r| � 0.9942 with d � 1.493 for q � 0.53 and
n � 60).

TABLE 3 | Comparison of optimal solutions (q, |r|, d) for the four prefectures in
Table 2.

Prefecture n q |r| d dU

Tokyo 53 0.21 0.9961 1.861 1.42
Fukuoka 60 0.53 0.9942 1.493 1.45
Hiroshima 23 1.27 0.9922 1.233 1.19
Shimane 19 2.04 0.9908 1.786 1.13

FIGURE 7 | Final results of an artificial rugby with 64 teams. (A)
Tournament diagram. (B) Rank dependence of the q-th power of cumulative
score. The purple declining line indicates the optimized fit (|r| � 0.9963 with d �
1.477 for n � 57, with 7 ties being included). The ties are processed
according to a standard procedure.
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solution: (q, |r|, d) � (0.44, 0.9936, 1.267); d < dU (� 1.46),
which is consistent with our expectations that expanding
territories give rise to the reduction of competitions.

# Figure 6B plots the rank dependence of the areas (km2) of
municipalities in Fukuoka Prefecture. The purple declining line
indicates the optimized fit (|r| � 0.9942 with d � 1.493 > dU for q �
0.53 and n � 60). In both plots (Figures 6A,B) the dots are found
to be hierarchically clustered along the regression line, the feature
of which will be reviewed in performing a modeling. It has been
found empirically that without the hierarchy the positive
correlation arises in the alignment of dots, which results in
d < dU. Note again that in the rank-size analysis the serial
correlation analysis is indispensable. In summary, along with
the other two prefectures (Hiroshima and Shimane Prefectures)
the numerical results are given in Table 3.

DISCUSSION

Constructing a Toy Model
Along with data on Tables 2, 3, the results of Figure 6 suggest
that municipalities in a prefecture are in intense competition
for the extension of their areas, which might remind one
inevitably of the tournament game in sports. Indeed, in recent
years sports games have become one of the fascinating topics
in applied statistical physics [40, 47–51]. As a specific sport,
here we consider a virtual rugby with 64 teams competing on
the tournament diagram as depicted in Figure 7A. Because the
sport is chosen solely as an easy example for finding an
analogy to the territory expansion, one may arbitrarily
replace this with another such as basketball, bowling,
cricket, soccer, or cycle race. For the entire team, according
to a Monte Carlo procedure, wins and losses of each game are
determined stochastically by the use of two-digit random
numbers. After the 62 games being finished the cumulative
scores of the 64 teams are recorded. Subsequently, to enhance
the success-breeds-success effect the scores are modified by
calculating the (1/q)-th power of them. For instance, for a
team (assuming team #i) that has survived till the final, the
modified cumulative score, Si, can be written as

Si � (si1 + si2 +/ + si6)1/q, (4)

while for a team (assuming team #k) that has lost in the first
round, the counterpart, Sk, can be given as

Sk � s1/qk1 . (5)

Here sij represents the score for team i (i � 1–64) at round j (j �
1–6). Consequently a non-square 64 × 6 matrix is generated. In
comparison of the two teams in the scores it is apparent that for
0 < q < 1 the team (team #i) that has survived the final gains far
greater advantage than the one (team #k) that has lost in the first
round. Note that in the context of economics the effect due to a
positive feedback mechanism is equivalent to the so-called rich-
get-richer effect, and in the context of sociology it corresponds to
the Mathew effect [51–55]. Besides, our model could be
consistent with the one that was once portrayed by Calderón

(1847–94), who modeled society as a thermodynamic machine
[56]. There the temperature gradient was represented by the gap
between rich and poor.

Figure 7B shows a typical example of the rank dependence of
the q-th power of cumulative scores of the entire team for a
tournament using a sequence of two-digit random numbers. The
purple declining line indicates the optimized fit (|r| � 0.9963 with
d � 1.477 > dU with n � 57; n < 64 because of 7 ties being
included). In the plots the relation of Eq. 1 is found to be
reproduced.

In recent years, efforts have been made to establish an
analytical methodology for deriving stationary distributions of
complex systems with unidirectional random growth with
resetting [57–59]. To date the method using master equations
has succeeded in finding extensive applications such as degree
distributions in networks [60, 61], distributions in citations [62],
and income distributions [63, 64]. It seems, however, that the
possibility of application of the analytical approach to our case
remains pending, because the highly complex morphologies
(Figures 2B,C) in the present system have been organized
through a long-term blend of spontaneousness and
intermittent stimulations by the administration. Moreover,
even if the unidirectional requirement can be met, the
interference based on an administrative law might be
capricious, sporadic, and far from periodic.

Analyzing History of theMetropolis of Tokyo
To examine the formation of the complicated geometrical
configuration we consider the history of the Metropolis of
Tokyo. Computed results from 1955 to 2005 are given in
Table 4. Here dL denotes the lower critical value in the
Durbin-Watson d statistics [28]; note that with d < dL the null
hypothesis is unconditionally rejected (α � 0.01). It can be seen
that the two parameters, |r| and d, increase constantly over the
entire period. It should be noted here that the prefecture (the
Metropolis of Tokyo) is a very rare exception in the entire
Japanese prefecture, because of the absence of large-scale
municipal consolidations [37].

Examining Effects Due to Global Warming:
A Stability Analysis
Not to mention islets in oceans, a number of cities on the globe
are now confronting a sign of the inundation crisis due to
global warming [65–68]. As is well known, the Japanese
Islands (see Figure 2A) are surrounded by the four seas:
the Sea of Okhotsk, Pacific Ocean, East China Sea, and
Japan Sea, indicating that along with Dhaka, Jakarta, and
Miami, coastal megacities in Japan are far from exceptional in

TABLE 4 | History of the metropolis of Tokyo.

Year n q |r| d dL dU

1955 62 0.12 0.9937 0.828 1.39 1.46
1975 55 0.18 0.9947 1.428 1.36 1.43
1990 55 0.21 0.9951 1.454 1.36 1.43
2005 53 0.21 0.9960 1.863 1.34 1.42
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the susceptibility to the forthcoming aqua-disaster caused by
the climate crisis [69]. Figure 8 shows the dependence of
optimal parameters on the inundated rate on the supposition
that effects due to global warming will get more and more
inevitable in the future. In the Metropolis of Tokyo and

Fukuoka Prefecture, respectively, there are 6 and 14
municipalities that are located along the coast. Here it is
assumed that these are uniformly inundated. It is
surprising to note that both the scaling exponent
(Figure 8A) and the degree of fit (Figure 8B) preserve
stabilities against the large-scale perturbation. The results
of the Durbin-Watson ratio (Figure 8C), however, exhibit
a sharp contrast. Namely, for the Metropolis of Tokyo the
value of d experiences a substantial reduction with increasing
the inundated rate, whereas for Fukuoka Prefecture a phase
transition occurs just in front of the 50% inundation, and the
new phase is maintained to the complete inundation. Note
that for the Metropolis of Tokyo the phase transition that
occurs just in front of the complete inundation is due to the
simultaneous vanishment of the 6 coastal cities (i.e., n �
53 → n � 47).

Testing Stretched Exponentiality
For the value of q much smaller than unity, Eq. 1 becomes
compatible with its dual counterpart

FIGURE 8 |Dependence of optimal parameters on the inundated rate on
the supposition that effects due to global warming will get more and more
inevitable in the future. (A) Scaling exponent. (B) Degree of fit. (C) Durbin-
Watson ratio. The horizontal bar shows d � dU.

FIGURE 9 | Stretched exponentiality for the Metropolis of Tokyo (n � 53).
(A)Mode #1 (q � 0.09; |r| � 0.9948 with d � 2.002). (B)Mode #2 (q � 0.23; |r| �
0.9953 with d � 2.046).
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logy � a − bxq. (6)

Here, for 0 < q < 1 the exponential decay is stretched along the
x axis. The qualitative difference from Eq. 1 is seen in the
appearance of a rank that characterizes the decay along the axis,

ρ � [(log e)/b]1/q, (7)

where e is the Napier’s constant.
Figure 9 shows the stretched exponentiality for the

Metropolis of Tokyo (n � 53). Here we note that there are
two solutions: A) Mode #1 (q � 0.09; |r| � 0.9948 with d �
2.002), and B) Mode #2 (q � 0.23; |r| � 0.9953 with d � 2.046).
The reason why the bimodal solutions are possible can be
explained as follows: because the dependence of d against q
exhibits a convex curve, there exists a single maximum,
assuming here (q0, d0). If d0 exceeds 2, the curve crosses
the q axis twice (assuming qL and qU) across the center q � q0
(i.e., qL < q0 < qU). Namely, at q � q0

zd/zq � 0, z2d/zq2 < 0, and d> 2. (8)

Hence one obtains two solutions: (qL, 2) and (qU, 2), for which
all the blue dots in Figure 9 are randomly distributed on the
regression line (log y versus xq). Along with the characteristic
rank ρ, comparison of the two stretched exponential modes is
given in Table 5.

Testing Power Law
To comprehend the link with the power law (i.e., log-log) relation
[70], with the use of the Box-Cox transformation [71], Eq. 1 will
be rewritten as

(log e)(yq − 1)/q � a′ − b′ log x, (9)

a′ � (log e)(a − 1)/q, b′ � (log e)b/q. (10)

In the derivation of Eq. 9 the formula

(log e)ln1−q(y) → logy as q → 0, (11)

has been implied, where ln q (y) � – (1 – y1 – q)/(1 – q) [72].
In Figure 10 the log-log plot is given for rank dependence of

the areas of municipalities in the Metropolis of Tokyo (n � 53).
The purple declining line indicates the optimized fit (|r| �
0.9912 with d � 0.792 < dL � 1.34). Because the Durbin-Watson
ratio is much smaller than the lower critical value dL, it is
judged that the resemblance to Figure 6A is solely apparent
and therefore the pseudo-power law is far from authentic.

CONCLUSION

As the first step for revealing potential rules inherent in cities,
towns, and villages that are closely squeezed in a sectioned
domain, municipalities in the entire prefecture in Japan have
been considered and their highly squeezed distributions of the
areas have been analyzed according to a rank-size procedure.
Through computed results it has been confirmed that among the
population, area, and population density, the last becomes the
most important factor in finding the rank-size rule. Indeed, of the
47 Japanese prefectures the Metropolis of Tokyo exhibits the
exceptionally high density. The remark can be supported by the
model using a tournament game, where teams (municipalities)
are highly competitive for gaining the final wins (broadest
territory). Finally, the study of this paper remains open. To
seek all over the world for prefectures (including their
analogs) bearing the authentic power law, international co-
operations are needed. The most likely candidates are the ones
with population densities comparable to or higher than the one of
Tokyo Metropolis. If on the globe there is no prefecture that
passes the statistical testing, the proposition on the interrogative
subtitle of this paper will be truly turned down.
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TABLE 5 | Comparison of two stretched exponential modes for the Metropolis of
Tokyo (n � 53).

Mode q |r| d ρ

#1 0.09 0.9948 2.002 1.0 × 10–10

#2 0.23 0.9953 2.046 3.5 × 10–2

FIGURE 10 | Log-log plot for rank dependence of the areas of
municipalities in the Metropolis of Tokyo (n � 53). The purple declining line
indicates the optimized fit (|r| � 0.9912 with d � 0.792 < dL).
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