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In this study, as a continuation to the studies of the self-interaction diffusion driven by
subfractional Brownian motion S”, we analyze the asymptotic behavior of the linear self-
attracting diffusion:

t
axi’ =ds’ - 0<J (X - Xj’)ds>dt +ydt, Xi'=0,
0

where 8 > 0 and v € R are two parameters. When 0 < 0, the solution of this equation is
called self-repelling. Our main aim is to show the solution X" converges to a normal random
variable Xg’o with mean zero as t tends to infinity and obtain the speed at which the process
X converges to X7, as t tends to infinity.

Keywords: subfractional Brownian motion, self-attracting diffusion, law of large numbers, Malliavin calculus,
asymptotic distribution

1 INTRODUCTION

In a previous study (I) (see [12]), as an extension to classical result, we considered the linear self-
interacting diffusion as follows:

t s
XM = s - ej j (XY~ XH)duds + 1, £20, (1)
0 Jo
with 6 # 0, where 6 and v are two real numbers, and S” is a sub-fBm with the Hurst parameter
1< H < 1. The solution of Eq. 1 is called self-repelling if 6 < 0 and is called self-attracting if 6 > 0.
When 6 < 0, in a previous study (I), we showed that the solution X" diverges to infinity as ¢ tends to
infinity and

JH(t;0,7):=ter® XI — & _g
and
I (t6,7):= 0t2<],’f_1 (t:0,9) - (2n - 3)!!(.550 - g)) o (@n- 1)"@0 . g)
in L* and almost surely, for all #n = 1, 2, ..., where ( — 1)!! = 1 and
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gl = ro se%GSZde.
0

In the present study, we consider the case 8 > 0 and study its
large time behaviors.

Let us recall the main results concerning the system (Eq. 1).
When H =1, as a special case of path-dependent stochastic
differential equations, in 1995, Cranston and Le Jan [8]
introduced a linear self-attracting diffusion (Eq. 1) with 6 > 0.
They showed that the process X, converges in L> and almost
surely as t tends infinity. This path-dependent stochastic
differential equation was first developed by Durrett and Rogers
[10] introduced in 1992 as a model for the shape of a growing
polymer (Brownian polymer). The general form of this kind of
model can be expressed as follows:

t N
X, =Xo+B + J j f (X5 - X,)duds, (2)
0oJo
where B is a d-dimensional standard Brownian motion and f is
Lipschitz continuity. X; corresponds to the location of the end of
the polymer at time t. Under some conditions, they established
asymptotic behavior of the solution of the stochastic differential
equation. The model is a continuous analog of the notion of edge
(respectively, vertex) self-interacting random walk (see, e.g.,
Pemantle [22]). By using the local time of the solution process
X, we can make it clear how the process X interacts with its own
occupation density. In general, Eq. 2 defines a self-interacting
diffusion without any assumption on f. We call it self-repelling
(respectively, self-attracting) if, for all x e R x - f(x)=0
(respectively, <0). More examples can be found in Benaim
et al. [2, 3], Cranston and Mountford [9], Gan and Yan [11],
Gauthier [13], Herrmann and Roynette [14], Herrmann and
Scheutzow [15], Mountford and Tarr [20], Sun and Yan [26,
271, Yan et al [34], and the references therein.

In this present study, our main aim is to expound and prove

the following statements:

(I) For 6 > 0 and %< H < 1, the random variable

[ee)

X = J hg(s)dSSH + vJ hg (s)ds
0 0
exists as an element in L where the function is defined as follows:

_1g,2
e du, s>0

he(s) = 1 — Bser® J

with 6 > 0.

(I) For 6 > 0 and 1< H <1, we have
Xi = Xg

in L* and almost surely as t — oo.

(IT) For 6 > 0 and { <H <1, we have

tH

VA

(XF-Xx") > N(0,1)
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in distribution as t — oo, where

Aig = %I‘(ZH +1)677,

(IV) For 6 > 0 and 1< H <1, we have

t
Yo = j (X' - XMyds, t>0.
0
Then the convergence

1

T3-2H

JT (YP)dt H 62T (2H)
L H
ot 3_2H

holds in L* as T tends to infinity.

This article is organized as follows. In Section 2, we present
some preliminaries for sub-fBm and Malliavin calculus. In
Section 3, we obtain some lemmas. In Section 4, we prove the
main results given as before. In Section 5, we give some numerical
results.

2 PRELIMINARIES

In this section, we briefly recall the definition and properties of
stochastic integral with respect to sub-fBm. We refer to Alos et al
[1], Nualart [21], and Tudor [31] for a complete description of
stochastic calculus with respect to Gaussian processes.

As we pointed out in the previous study (I) (see [12]), the sub-
fBm S™ is a rather special class of self-similar Gaussian processes
such that S’ = 0 and

1
R (t,5)=E[S{'S]'] = s + 2 - = [+ +1e=s] (3)

for all s, t > 0. For H = 1/2, S" coincides with the standard
Brownian motion B. S is neither a semimartingale nor a
Markov process unless H = 1/2, so many of the powerful
techniques from stochastic analysis are not available when
dealing with S". As a Gaussian process, it is possible to
construct a stochastic calculus of variations with respect to
S". The sub-fBm appeared in Bojdecki et al [4] in a limit of
occupation time fluctuations of a system of independent
particles moving in R according a symmetric a-stable Lévy
process. More examples for sub-fBm and related processes can
be found in Bojdecki et al. [4-7], Li [16-19], Shen and Yan [23,
24], Sun and Yan [25], C. A. Tudor [32], Tudor [28-31], C. A.
Tudor [33], Yan et al [33, 35, 36], and the references therein.

The normality and Hélder continuity of the sub-fBm S" imply
that ¢+ S admits a bounded py; variation on any finite interval
with pg > . As an immediate result, one can define the Young
integral of a process u = {u;, t > 0} with respect to a sub-fBm sH

t
J ust?
0

as the limit in probability of a Riemann sum. Clearly, when u is of
bounded g variation on any finite interval with g > 1 and

L+ L1, the integral is well-defined and
pu - qu
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FIGURE 1 | Path of X with 6 = 1 and H = 0.7.
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FIGURE 2 | Path of X" with § = 10 and H = 0.7.
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u,Sr

t t
H = J ustf + J SSHduS
0 0

for all £ > 0.

Let H be the completion of the linear space £ generated by the
indicator functions 1o, t € [0, T] with respect to the inner
product:

Loy Loy = R7(t,s)

fors, t € [0, T]. For every ¢ € H, we can define the Wiener integral
with respect to ", denoted by

T
SH((p) = JO (p(s)de

as a linear (isometric) mapping from H onto S¥ by using the limit
in probability of a Riemann sum, where S is the Gaussian
Hilbert space generating by S* and

T 2
oI, = E( jo ¢ (s)ds! ) @)

for any ¢ € H. In particular, when § < H < 1, we can show that

T T
Ioli = [ [ oot 9dsar, vo e

0
where

2
vy (ts) = %RH(L s) = HQH - 1) (|t = s — |t + s %)
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FIGURE 3 | Path of X" with = 100 and H = 0.7.

0.5 0.6 0.7 0.8 0.9 1

FIGURE 4 | Path of X with = 1 and H = 0.5.
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foTr s, t € [0, T]. Thus, when } < H < 1 if for every T > 0, the integral
I 0 (p(s)de exists in L? and

J:o .[:O e (g (s)yy, (£, s)dsdt < oo,

we can define the integral as follows:

| ptoast

and

E(J:O ¢ (s)ds" )2 - j:o J:O 0 (D9 (), (1, s)dsdt.

Let now D and § be the (Malliavin) derivative and divergence
operators associated with the sub-fBm S. And let D"? denote the
Hilbert space with respect to the norm as follows:

IFll,2:=EIF|* + EIDFI5,.
Then the duality relationship
E[F&(u)] = E(DF,u) (5)

holds for any F € D*? and D"* ¢ Dom (8). Moreover, for any
u € D2, we have

E[8(u)*] = Ellull}, + E{Du, (Du) Y3e
= E||u||§{ + EJ[O T]4DE“an”‘S‘/’H (1, ")y, (&, s)dsdrdédn,
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FIGURE 5 | Path of X7 with 6 = 10 and H = 0.5.
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FIGURE 6 | Path of X" with § = 100 and H = 0.5.
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where (Du)” is the adjoint of Du in the Hilbert space given as
follows: H ® H. We denote

T
o(u) = J uS(SSf
0
for an adapted process u, and it is called the Skorohod integral. By

using Alos et al [1], we can obtain the relationship between the
Skorohod and the Young integral as follows:

T T T T
j uSdSSH = j uS(SSf +J j Dsuyy, (t, s)dsdt,
0 0 0o Jo

provided u has a bounded g variation with 1 <g < and u € D*?
such that

T T
J J Dgu,yry, (t, s)dsdt < co.
o Jo

3 SOME BASIC ESTIMATES

For simplicity, we throughout let C stand for a positive constant which
depends only on its superscripts, and its value may be different in
different appearances, and this assumption is also suitable to c. Recall
that the linear self-attracting diffusion with sub-fBm S is defined by
the following stochastic differential equation:

t s
X" =" g jo JO (X~ XM)duds + o1, t20  (6)
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TABLE 1 | Data of Xf with # =1 and H = 0.7

t xH t xH t xH
0.0000 0.0000 0.3438 -0.1216 0.6875 -0.0979
0.0156 0.0087 0.3594 -0.1290 0.703 1 -0.0968
0.0313 0.0113 0.3750 -0.1406 0.7188 -0.1017
0.0469 0.0039 0.3906 -0.1467 0.7344 -0.1090
0.0625 -0.0153 0.4063 -0.1459 0.7500 -0.1088
0.0781 -0.0238 0.4219 -0.1579 0.7656 -0.1188
0.0938 -0.0229 0.4375 -0.1624 0.7813 -0.1163
0.1094 -0.0270 0.453 1 -0.1666 0.7969 -0.1125
0.1250 -0.0335 0.4688 -0.1701 0.8125 -0.1231
0.1406 -0.0353 0.4844 -0.1717 0.8281 -0.1400
0.1563 -0.0370 0.5000 -0.1738 0.8438 -0.1465
01719 -0.0498 0.5156 -0.1774 0.8594 -0.1554
0.1875 -0.0544 0.5313 -0.1766 0.8750 -0.1604
0.203 1 -0.0593 0.5469 -0.1713 0.8906 -0.1709
0.2188 -0.0765 0.5625 -0.1667 0.9063 -0.1743
0.2344 -0.0850 0.5781 -0.1664 0.9219 -0.1781
0.2500 -0.098 1 0.5938 -0.15211 09375 -0.1794
0.2656 -0.1062 0.6094 -0.1422 0.953 1 -0.1803
0.2813 -0.1127 0.6250 -0.1395 0.9688 -0.1758
0.2969 -0.1132 0.6406 -0.1282 0.9844 -0.1935
0.3125 -0.1140 0.6563 -0.1234 1.0000 -0.1980
0.3281 -0.1214 0.6719 -0.1054

Self-Interacting Diffusions Driven by SubfBm ||

TABLE 3 | Data of Xf with 6 = 100 and H = 0.7

t xH t xH t xH
0.0000 0.0000 0.3438 0.0153 0.6875 0.0015
0.0156 -0.0047 0.3594 0.0135 0.703 1 0.0116
0.0313 -0.0210 0.3750 0.0005 0.7188 0.0148
0.0469 -0.024 1 0.3906 -0.0020 0.7344 0.0027
0.0625 -0.0290 0.4063 0.0025 0.7500 -0.0008
0.0781 -0.0200 0.4219 0.0023 0.7656 -0.0086
0.0938 -0.0143 0.4375 0.0116 0.7813 -0.0069
0.1094 -0.0129 0.4531 0.0038 0.7969 0.0001
0.1250 -0.0206 0.4688 -0.007 4 0.8125 0.0060
0.1406 -0.0157 0.4844 -0.0105 0.8281 0.0160
0.1563 0.0047 0.5000 -0.0124 0.8438 0.0062
0.1719 0.0136 05156 -0.0090 0.8594 0.0111
0.1875 0.0110 05313 -0.0094 0.8750 0.0090
0.203 1 0.0067 0.5469 -0.0160 0.8906 0.0003
0.2188 0.0200 0.5625 -0.0114 0.9063 -0.0032
0.2344 0.0162 0.5781 -0.0087 09219 0.0105
0.2500 0.0024 0.5938 -0.0028 09375 -0.001 1
0.2656 0.0025 0.6094 0.0028 0.953 1 0.0010
0.2813 0.0082 0.6250 0.0009 0.9688 0.0056
0.2969 0.0076 0.6406 -0.0062 0.9844 0.0019
0.3125 0.0083 0.6563 -0.0158 1.0000 -0.004 6
0.3281 0.0086 0.6719 -0.0051

TABLE 2 | Data of X}’ with § = 10 and H = 0.7

t xH t Xt t xt!
0.0000 0.0000 0.3438 -0.0983 0.6875 -0.1109
0.0156 -0.006 4 0.3594 -0.1104 0.703 1 -0.1121
0.0313 -0.0104 0.3750 -0.1108 0.7188 -0.1126
0.0469 -0.0101 0.3906 -0.1098 0.7344 -0.1034
0.0625 -0.0179 0.4063 -0.1119 0.7500 -0.0991
0.0781 -0.0177 0.4219 -0.1106 0.7656 -0.0901
0.0938 -0.0242 0.4375 -0.1126 0.7813 -0.0890
0.1094 -0.0319 0.453 1 -0.1170 0.7969 -0.0894
0.1250 -0.0306 0.4688 -0.1185 0.8125 -0.0909
0.1406 -0.0416 0.4844 -0.1205 0.828 1 -0.0857
0.1563 -0.0523 0.5000 -0.1131 0.8438 -0.0851
0.1719 -0.0577 0.5156 -0.1068 0.8594 -0.0951
0.1875 -0.0637 0.5313 -0.1067 0.8750 -0.0909
0.203 1 -0.0690 0.5469 -0.1137 0.8906 -0.0890
0.2188 -0.0708 0.5625 -0.1105 0.9063 -0.0940
0.2344 -0.0670 0.5781 -0.1101 0.9219 -0.0976
0.2500 -0.0630 0.5938 -0.1078 0.9375 -0.1006
0.2656 -0.0744 0.6094 -0.1078 0.9531 -0.0998
0.2813 -0.0831 0.6250 -0.1069 0.9688 -0.0941
0.2969 -0.0865 0.6406 -0.1059 0.9844 -0.0933
0.3125 -0.0881 0.6563 -0.1085 1.0000 -0.0928
0.3281 -0.0962 0.6719 -0.1107

with 8 > 0. The kernel (¢, s)— hy(t, s) is defined as follows:

t
1p2 _1p,2
1 - fsex% J e dy, t>s,

s (7)
0) t<s

hg (t, S) =

for s, t > 0. By the variation of constants method (see, Cranston
and Le Jan [8]) or It6’s formula, we may introduce the following
representation:

TABLE 4 | Data of Xf with 6 = 1 and H = 0.5

t xH t xH t xH
0.0000 0.0000 0.3438 0.9393 0.6875 1.1883
0.0156 -0.1761 0.3594 0.9913 0.7031 0.992 1
0.0313 0.0099 0.3750 1.0363 0.7188 0.9564
0.0469 -0.0400 0.3906 1.2180 0.7344 0.9943
0.0625 0.0190 0.4063 1.2042 0.7500 0.8852
0.0781 0.0883 0.4219 1.1229 0.7656 0.8611
0.0938 0.0200 0.4375 1.1110 0.7813 0.6886
0.1094 0.2744 0.4531 1.0211 0.7969 0.6538
0.1250 0.2317 0.4688 1.0660 0.8125 0.7312
0.1406 0.246 1 0.4844 1.0070 0.8281 0.7508
0.1563 0.2004 0.5000 1.0995 0.8438 0.8663
0.1719 01723 05156 1.1497 0.8594 0.7469
0.1875 0.2332 0.5313 1.1620 0.8750 0.6080
0.2031 0.4859 0.5469 1.2229 0.8906 0.6184
0.2188 0.697 4 0.5625 1.4350 0.9063 0.6550
0.2344 0.6848 0.5781 1.447 4 0.9219 0.6321
0.2500 06275 0.5938 1.4535 09375 0.6101
0.2656 0.777 4 0.6094 1.4794 0.9531 0.6238
0.2813 0.8250 0.6250 1.276 4 0.9688 0.4066
0.2969 0.7754 0.6406 1.2814 0.9844 0.3893
0.3125 0.8783 0.6563 1.2848 1.0000 0.2345
0.3281 0.8380 0.6719 1.1689
t t
X = J ho (t,s)dS” + vJ hy (8, s)ds (8)
0 0

for t > 0.

The kernel function (¢, s)— hg(t, s) with 8 > 0 admits the
following properties (these properties are proved partly in
Cranston and Le Jan [8]):

e For all s > 0, the limit
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TABLE 5 | Data of Xf with # = 10 and H = 0.5

t xH t xH t xH
0.0000 0.0000 0.3438 -0.0247 0.6875 -0.4927
0.0156 -0.0548 0.3594 -0.3666 0.703 1 -0.5894
0.0313 0.1227 0.3750 -0.4522 0.7188 -0.6890
0.0469 0.1679 0.3906 -0.6907 0.7344 -0.5079
0.0625 0.1515 0.4063 -0.9154 0.7500 -0.3703
0.0781 -0.2177 0.4219 -0.9541 0.7656 -0.2832
0.0938 0.0411 0.4375 -1.0205 07813 -0.4455
0.1094 -0.0617 0.453 1 -0.9069 0.7969 -0.5515
0.1250 -0.0697 0.4688 -0.8553 0.8125 -0.5799
0.1406 -0.3592 0.4844 -0.8201 0.8281 -0.5093
0.1563 -0.3489 0.5000 -0.7357 0.8438 -0.5561
01719 -0.4818 0.5156 -0.8220 0.8594 -0.5892
0.1875 -0.2966 0.5313 -0.7852 0.8750 -0.5017
0.2031 -0.4717 0.5469 -0.8146 0.8906 -0.4580
0.2188 -0.4175 0.5625 -0.8239 0.9063 -0.6895
0.2344 -0.1693 0.5781 -0.8337 09219 -0.7846
0.2500 -0.1265 0.5938 -0.7353 09375 -0.8257
0.2656 -0.0178 0.6094 -0.5397 0.953 1 -0.9034
0.2813 -0.0536 0.6250 -0.5152 0.9688 -0.7364
0.2969 -0.0714 0.6406 -0.5245 0.9844 -0.6692
0.3125 -0.1158 0.6563 -0.4899 1.0000 -0.5061
0.3281 -0.1322 0.6719 -0.5258

he(s):= lim hy (£, s) = 1 — Oser® J e 1% dy 9)
t—00

N

exists.

e For all t > s > 0, we have hg(s) < hy(t, s), and

1
0<hy(s)<Co min{l, 7}, HED cp <1, (10)
S

e Forall t>s,r>0and 6 # 0, we have

t

he(t,0) = hy(t,t) =1, J

and

t
he (t,u)du = e’ J e dy
S

N

1 1 2,2 2
lho (t,5) = ho (s)llhg (£,7) = ho (r)] < tgsrefe(s et (1)

e For all £ > 0, we have

9— (12)

jo[hm, 9 — ho())ds| <

Lemma 3.1. Let % <H<1 and 0 > 0. Then the random variable

X1 = j ho (5)dS! + vJ ho (s)ds
0 0

. .12
exists as an element in L°.

Proof. This is a simple calculus exercise. In fact, we have

Self-Interacting Diffusions Driven by SubfBm ||

TABLE 6 | Data of Xf with 6 = 100 and H = 0.5

t xH t xH t xH
0.0000 0.0000 0.3438 -0.207 4 0.6875 -0.1493
0.0156 -0.0129 0.3594 -0.3732 0.703 1 -0.2308
0.0313 -0.1348 0.3750 -0.4649 0.7188 0.164 4
0.0469 0.0697 0.3906 -0.2925 0.7344 -0.0500
0.0625 01115 0.4063 -0.2445 0.7500 -0.1317
0.0781 0.0029 0.4219 -0.2467 0.7656 -0.2182
0.0938 -0.0589 0.4375 0.0628 0.7813 -0.3137
0.1094 -0.2888 0.453 1 -0.0917 0.7969 ~0.069 1
01250 -0.1956 0.4688 -0.3072 0.8125 -0.2391
0.1406 -0.0469 0.4844 -0.2162 0.8281 -0.3062
0.1563 -0.1391 0.5000 -0.2418 0.8438 -0.1478
01719 -0.1833 05156 -0.1593 0.8594 -0.2034
0.1875 -0.1175 05313 -0.2509 0.8750 -0.2193
0.2031 -0.2616 0.5469 -0.3442 0.8906 -0.3769
02188 -0.1568 05625 -0.1295 0.9063 0.0515
0.2344 -0.2215 0.5781 -0.1130 0.9219 -0.1076
02500 -0.1736 05938 -0.1915 0.9375 -0.1173
0.2656 -0.1985 0.6094 -0.1313 0.9531 -0.2746
0.2813 0.067 4 0.6250 -0.1758 0.9688 -0.1556
0.2969 -0.1633 0.6406 -0.1008 0.9844 -0.2232
0.3125 -0.1219 0.6563 -0.1049 1.0000 -0.2320
0.3281 -0.1610 06719 -0.2703

o 2 00 0O
E(I hy (s)de’) = J J ho (s)hg () yy (s,r)dsdr
0 0 0
=2H(2H - 1) Jm J B ($)ho (1) (s =) = P = (r + ) 7)drds

=2H(H-1) (Yo (r)((s =172 = (r + )77 )drds

s

+2H(2H - 1) ho ()ho (M) (s = 1) = (r + )7 )drds

I
+2H( 2H—1)J
I,

j hg (s)hy (r (s=r) - (r+ s)ZH’Z)drds
,

for all 6 > 0 and { < H < 1. Clearly, Eq. 10 implies that

J; jo o (sYho (1) (s = 1?2 = (v + 572 )drds

IN

(Co) L JO( (s = )2 = (r + 9)2)drds

(Co)® Jl Jl S =22 = (14 )72 )dxds < oo,
0Jo

and
[ jl o (s)ho () (s = )2 = (v + 572 ) drds
1 0
< (Cp)? ro Jl s’z( (s=r)"2 - (r+ s)ZH’Z)drds
1 0
< (Co)’ ro s2((s =17 = 2 ds < 0.
and
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[ ] Bt (s =2 = 592

< (Co)’ ro j (rs)2((s =" = (r + )7 drds
1 1

< (Cp)’ JOO JOO (rs)’z( (s=r)"2 - (r+ s)ZH’Z)drds

= (Cp)’ j?o J?O s ’2((x ¥ -1+ x)ZH_Z)dxdr< 0

for all 8 > 0 and %< H < 1. These show that the random variable
Xglo exists as an element in L2

Lemma 3.2. Let 6 > 0. We then have

t 00
lim te%"fz(J he (t, s)ds — J he (s)d5> ! (13)
t—00 0 0 0

Proof. This is a simple calculus exercise. In fact, we have

JO ho (£, s)ds — J:o ho (5)ds = JO o (£, 5) — ho (5)]ds — ro ho (s)ds

t 00 t 00
= J Bsers’ (j e 1% dy — J e%"”zdu>d5 - j hy (s)ds
0 s s t

= (e%f)t2 - 1) J e 1% gy — J hg (s)ds.
t t
for all £ > 0 and 0 > 0. Noting that

. %Gtz _ «© Bu _
lim t(e 1) jt du = lim

t—00 t—oo - lg‘lefz

and

lim tj hg(s)ds = lim %J hg(s)ds
t—00 t t—oo ¢
= lim *hg (¢) = lim t2<1 — Oter® J e%e“zdu> = 1,
t—00 t—00 t 6
(14)

we see that

t 0
tlim ter® (J ho (t, s)ds — J- hg (S)ds)

1 Lor ® e « 1
= }i‘l’o W{(el " 1) Jt e 2" du — Jz h@(S)dS} =g

by L’Hopital’s rule.
Lemma 3.3. Let 6 > 0. We then have

d . 1
‘Ehe(t) SCG mm{l, E} (15)

for all t > 0.

Lemma 3.4. Let 8 > 0 and %< H < 1. We then have

Self-Interacting Diffusions Driven by SubfBm ||

1 5 (! 1
lim pr 2He‘9t J I srerf )1// (s,r)dsdr = ZG’ZHF(ZH +1).

(16)

Proof. By L'Hopital’s rule and the change of variable
10(¢* —r?) = x, it follows that

1 t
}mejoj sre Ny (s, )dsdr

t
= lim ;J 200 Yy (t,)rdr

t—00 gg22H e% or?

1 HQRH-1)
=m 201221

t

J e_%g(tz_,z)( -2 -+ r)ZH_Z)rdr
0
1

HQH - 1) (1% 2%\
= lim ¥J e"‘<t— tz——x> dx
0

inco 2P 2H
H(2H - 1) (3% __/2x\2H2 S\
LooZ@ZTJOe <?> t+ A\t —? dx
1
6*"H(H- 1T (2H -1) = i 62T (2H + 1),
where we have used the equation

t
lim 1 e’ (t+7)2rdr=0
t>c0 f2-2H 360 0

This completes the proof.

Lemma 3.5. Let 6 > 0 and < H <1. We then have
c(t-s" <E[(X!' - X)) <C(t- 9" (17)

for all 0 < s < t < T, where C and ¢ are two positive constants
depending only on H, 6, v and T.

Proof. The lemma is similar to Lemma 3.5 in the previous
study (I).

Lemma 3.6. Let 6 > 0 and 5 < H < 1. Then the convergence
J he (s)dS? — 0 (18)
t
holds in L* and almost surely as ¢ tends to infinity.

Proof. Convergence (18) in L? follows from Lemma (3.1). In fact,
by Eq. 10, we have

Ej ho(9ds?| < jw jw g (g (Plly (s, )l dsdr
SCJTO fo min{l siz]»mln{ R 2]»Il//(s r)|dsdr
—CH(2H - 1)J J P2 s 4 P 2)?5‘1; 0,

as t tends to infinity.
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On theH other hand, by Lemma (3.5), 3.3 and the
equation Sf—>0 almost surely as f tends to infinity, we
find that

J SHdhy (s)

<[ Tisis —o
as t tends to infinity. It follows from the integration by parts that
j o ()dS" = —hg (£)SH J S dhy(s) — 0
t t

almost surely as ¢ tends to infinity.

4 SOME LARGE TIME BEHAVIORS

In this section, we consider the long time behaviors for X' with
1<H<1 and 6 > and our objects are to prove the statements
given in Section 1.

Theorem 4.1. Let 6 > 0 and < H < 1. Then the convergence
XA xH (19)
holds in L* and almost surely as ¢ tends to infinity.

Proof. When H = 1, the convergence is obtained in Cranston-Le
Jan [8]. Consider the decomposition

t (o)
XH - x1 = JO g (t,5) = ho (1dS! + | hs(s)aS]!

+v< Jt hg(t,s)ds — J’OO hg (s)ds) (20)

=YH 4+ j he (s)dS? + vAl (6)

t
t

for all £ > 0.

We first check that Eq. 19 holds in L>. By Lemma 3.6 and
Lemma 3.2, we only need to prove Yf{ converges to zero in L1t
follows from the equation

ro ~lgy? L 1ge
e 2™du~—e2
¢ ot
for all 8 > 0 as ¢ tends to infinity and Lemma 3.4 that

E|Yf|2 = jo JO |ho (¢, s) = ho ()Ilhg (t,7) — ho ()Y (s, r)dsdr

) 2 ot oot
=<J e'%e"zdu> J J streg(sz”z)l//H(s,r)dsdr
t 0Jo

1 t s
~ t—ze*(it2 J J sret (4 V/H (s,r)dsdr
0Jo

HQ2H -1 Es _ _
_ ( tl )e-erz J J sref(52+’z)(|s _ rle 2 |s + r|2H 2)
0Jo

dsdr — 0

forall > 0 and 1 < H <1 as t tends to infinity, which implies that
Eq. 19 holds in L*.

Self-Interacting Diffusions Driven by SubfBm ||

We now check that Eq. 19 holds almost surely as t tends to
infinity. By Lemma 3.6, we only need check that Y'** converges to
zero almost surely as ¢ tends to infinity. We have

7 = [ o0, - ho(91ds?
0

e8] t
= <J e'éeuzdu) J fse2® dsH ~ % ki J set® st
t 0 0

for all > 0 and 1<H <1 as ¢ tends to infinity. To obtain the
convergence, we define the random sequence

Zn,k=Yf+§, k=0,1,2,...,n

for every integer n > 1. Then {Z, 4, k =0, 1, 2, .. ., n} is Gaussian
for every integer n > 1. It follows from Lemma 3.4 that
2 2 1 -0 (n+£)?
> ():=E[ (Zu)’] A E

n+-—
n

J n serts dSH
0

1 o [(ntE oent
S>266(n+%) JO JO 51’629(5 +r)|w (5,r)|dsd1’

< k
n+—
n

for every integer n > 1 and 0 < k < n, which implies that

1 1 2

P(|Z.kl>¢) = Zazm)d <= W d
1Zul>o) = | e j S P

o(n) y .z o(n) __&_ r‘) P2
— dy<s——L¢ @2m < e 1d

£ Js/a \/27Te Y € ¢ elo(n) \/27‘[6 Y

C
<—¢ -C 2 2H

entl xp{-Cie'n*"'}

for any ¢ > 0, every integer n > 1 and 0 < k < n.
On the other hand, for every s € (0, 1), we denote
YH

n+ke

R =YH

n+k+s

Then {R?’k, 0<s<1} also is Gaussian for every integer n > 1
and 0 < k < n. It follows that

E[(R¥F - R¥ )] < %E[ (s - sy

for all s, s’ € [0, 1]. Thus, for any & > 0, by Slepian’s theorem and
Markov’s inequality, one can get

C
P( sup IRZ’kI > s) < P(H sup ISSHI > e)
0<s<l1 N o<s<t

c J c
= enH E[ sup 151 ] enH

0<s<1

for every integer n > 1 and 0 < k < n. Combining this with the
Borel-Cantelli lemma and the relationship

{ sup IYtHI >£]» C{|Z.kl >€/2} U {sup IR?’kI > 5/2]»,
nikctanskil

0<s<1
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we show that Y7 — 0 almost surely as ¢ tends to infinity. This
completes the proof.

Theorem 4.2. Let 6 > 0 and < H < 1. Then the convergence
(X! = X1) = N (0, A110) @

holds in distribution, where A/ is a central normal random
variable with its variance

1
AH,G = EF(ZH + I)Q_ZH.

Proof. When H =1, this result also is unknown. We only
consider the case 1<H <1 and similarly one can prove the
convergence for H =1 By Eq. 20, Slutsky’s theorem, and

Lemma 3.2, we only need to show that

tHj he(s)dS!' -0 (t - 00) (22)
t
in probability and

YT — N(0,Ap)  (t — 00). (23)

in distribution.
First, Eq. 22 follows from Eq. 10 and

2 00 00
?HE = tZHJ J ho (s)hg (r)yy, (s, r)dsdr
t

t
4?H oo oo g
< L (s r)dsd
& Jt Jt (o Vi (:7)dsdr

4t4H74

02

J o (5)dS"
t

0 (o) 1
J J sV (%, y)dxdy — 0
1 (xy)

1

for all > 0 and 1<H <1 as ¢ tends to infinity.
We now obtain convergence (23). By the equation

as t tends to infinity and Lemma 3.4, we get
t t

2,‘2HE|Yf‘I|2 =" J J [ho (t,s) — hg ()] [he (£, 1) — he (r)]yy, (s, r)dsdr
0Jo

[ee] 2 t t
= t2H<I e’%s”zdu> J J 0 sret (52”2)1(/1{ (s,r)dsdr
¢ 0

0

2
22

t s
1
oo I I sret 4y, (s, r)dsdr— ST@H + 1o
0Jo

forall > 0and < H <1 as t tends to infinity. Thus, convergence
(23) follows from the normality of Y{'I for all %< H <1 and the
theorem follows.

At the end of this section, we obtain a law of large numbers.
Consider the process Y defined by

t
YH = J (X' - XMds, t>o0.
0

Then the self-attracting diffusion X' satisfies

Self-Interacting Diffusions Driven by SubfBm ||

t
Xf’sz’—OJ Yids+vt, t>0 (24)
0

and

t t
Y7 =X - J XHds = J sdX!
0 0
by integration by parts. It follows that

dyf = —otYHdt + tdS!' + vtdt (25)

forall1<H <1and t > 0. By the variation of constant method, we
can give the explicit representation of Y as follows:

g 4
se® dst + ~

5 (1-e3), t20.  (26)
0

yH - e—%atz J

t
Lemma 4.1. Let %S H <1 and 8 > 0. Then we have
1

' H
TJO Yt dt —

v

0 27)

almost surely and in L* as T tends to infinity.

Proof. This lemma follows from Eq. 24 and the estimates
Sr_Xi

1T . ) 1 ?
E(‘TJOYtdt—é)_?E<T S )

L2 <E(s;’)2 E(X?)Z) Lo,

AN
as T tends to infinity.

Theorem 4.3. Let %s H<1 and 6 > 0. Then we have
1

T
T3-2H 0

H
Y dt - ——07°"T(2H 28
| wivae - Sperem e
in L? as T tends to infinity.
Proof. Given J<H <1 and 6 > 0,
vV _1p2 _1lp2
At:é(l—ezet), n?zezetj

for all t > 0. Then

t

ue%G“Zde
0

Y =n,+ A
for all t > 0. We now prove the lemma in three steps.
Step 1. We claim that
1 ' Hy2 H  ou
WJO E[(y{)]dt » -— =0T H),  (29)

as t tends to infinity. Clearly, we have

T—o00

1 T )
lim ﬁjo Atdt =0.

Thus, 29 is equivalent to
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1
WJ E[(g") ]dt—>

By L’Hospital’s rule and Lemma 3.4, it follows that

9*2Hr (2H). (30)

Thm = ZHJ [ Hy ]dt

S

—0T2 T
~ 1 H
"~ 2(3-2H)

= lim
T—00 T3 m3—2H

uveie(u v )1// (u, v)dudv)dt

T (H +1) = O’ZHF(ZH)
for all %<H< 1.

Step II. We claim that

1 2 1 T (T
WE<J Adet> = JO j ADE (' )dsdt — 0,
(31)
as T tends to infinity. We have that
e[ vy i)
= B0 L jo uvelg(“t” 'y, (u, v)dvdu
e Jsue%e“z< [ vett = +v>2”’2}dv)du

+H(2H - l)e’%e(,2+sz) Jf J uver 0 W){(u—
0Jo

E(n'y) =

=HQH - 1)e

V)22 (u+ v)ZH’Z}dvdu

= HQH - DA (H;t,s) + A, (H; £, 5)]
(32)

for all £ > s > 0. An elementary calculation may show that

t s
A, (H;t,s) <e 200+ )J u(u - s)ZH_Ze%G”Z<J ve%e"zdv)du
s 0

t
e’%g(tz“z)(e%eS2 - 1) j u(u—

N

e’%g(tz’sz)(l - e’%gsz) J u(u — s) 2000 gy

2H-2 lou?
< $)* 229 gy

D= D

2_.2

te—s
< %e‘%o(tzﬂz) J (\/s2 +x - s)ZHfze%e"dx
0

1 2_g2

-9 (1 2H-2( [ 2-2H 10
Sz—gez X ( s+x+s) e2"dx
0

2_2

1 _ te—s
S—(t +5)2 2H67%9(t2752)J sz 2 -exdx
20 0

for all + > s > 0. It follows from the equation
jg yPerdy=xP (1 A x)e* with x > 0 and B > — 1 that
A (H;t,5)<C(t -2 A (2 =&
1 ( )<SC(t-9)"" (1A ( ) (33)

<C(t-s)"2(1A (£ -5Y)"
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forall t>s>0and 0 < « < 1. For the term A,(H; £, 5), by the proof
of Lemma 3.4, we find that

1 S u
lim 71 j uyer 0+ (u = vV 2 dvdu
o Jo

500 §2-2H pbs?

67T (2H + 1)
for all { < H < 1. Combining this with the equation
: 1 s Low?+v?) -
151113 T JO JO uver?@ (u—v)*2dvdu = C € (0,00)

<L

and the equation e™ < ¢

L with x> 0and 0 < ¢ < 1, we get

N u
A; (H;t,s) = 2e7200+) J J vuer ) (4 — )2 dydy
0Jo

<Ce*—9(t2+sz)( 2— ZH(l A S)4H 0s? )

_ _lp2_2 CSzizH
= Cs7H (1 A 5)He200 ) ¢

1+ %9(1‘2 -5

CSZ—ZH ~
Smﬁc(tz - Sz)y(t —S)ZH 2
(34)

forall t >s>0,1<H<1and 0 <y <2 - 2H. Thus, we have
showed that the estimate

E(qiy) <Cug(t — ™2 (1 A (£ - )"
+ (=) (t-s)" (35)

holds for all + > s > 0. In particular, we have

E(nn') < Cuplt —

for all t, s > 0. As a corollary, we get

S|2H72 (36)

1 S -
WE J At']t dt = WJO JO AtAsE(ﬂt 1’]5 )det

Con (T (T C
< "’“J J |t — |2 = 0,
0 0

T6—4H T6 —6H

as T tends to infinity.

Step III. We claim that

2

—2H
6 F(2H)> .G

1 LAY H
THHEKJO e dt) - (3 -
as t tends to infinity. By steps I and II, we find that Eq. 37 is
equivalent to

TlHE[<J (rmdt)z] (2 eram). o

as t tends to infinity. Noting that the equation

E(() () = E((f))E((")) + 2(E(f'yh))”  (39)
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for all ¢, s > 0, we further find that convergence (38) also is
equivalent to

1 T ?
A(H@T%=5g;;E<jo(oﬁUZ—E(nffﬁ#>

2 T t
:WLI (Eni'n"Ydsdt — 0, (40)

as T tends to infinity. We now check that convergence (40) in
two cases.

Case 1. Let 3 < H < 1. Clearly, by Eq. 36, we have to

1 T t :
AT < Cortre JO JO (t - s)*""dsdt

<CouT* ™ 50 (T — o0). (41)

Case 2. Let 1 < H <3. By Eq. 36, we have that

T V-1 5 T V21
J J [E(n 7] dsdtsce,HJ J (t-
0 1

1 0

< C@,H T4H -2

s dsdt

with 1<H <2 and

T ViZ-1 ) T Vti-1 1
J J [E(ri'n™)] dsdtsj j ——dsdt <CTlogT
1 0 -

1 0

with H = 2 for all T > 1. Similarly, by Eq. 35, we also have

nf)]zdsdt
t— o) (¢ 4 ) dsdt
a t— $)4H74+20¢d$dt

1
T t2a

dt<CT**H

= Con JT tza(l‘ Ve )4H—3+2adt

(t + \/—— )4H 3+2a

fora11T>1and%—2H<(x:y<2—2Hsince0<t2—52<1for
(s;t) € {(s,0)[1<t<T,Vt? -1 <s<t}. Thus, we have shown
that
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5 SIMULATION
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Figures 1-3, Tables 1-3);
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