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Network robustness is the ability of a network to maintain a certain level of structural
integrity and its original functions after being attacked, and it is the key to whether the
damaged network can continue to operate normally. We define two types of robustness
evaluation indicators based on network maximum flow: flow capacity robustness, which
assesses the ability of the network to resist attack, and flow recovery robustness, which
assesses the ability to rebuild the network after an attack on the network. To verify the
effectiveness of the robustness indicators proposed in this study, we simulate four typical
networks and analyze their robustness, and the results show that a high-density random
network is stronger than a low-density network in terms of connectivity and resilience; the
growth rate parameter of scale-free network does not have a significant impact on
robustness changes in most cases; the greater the average degree of a regular
network, the greater the robustness; the robustness of small-world network increases
with the increase in the average degree. In addition, there is a critical damage rate (when
the node damage rate is less than this critical value, the damaged nodes and edges can
almost be completely recovered) when examining flow recovery robustness, and the
critical damage rate is around 20%. Flow capacity robustness and flow recovery
robustness enrich the network structure indicator system and more comprehensively
describe the structural stability of real networks.

Keywords: network robustness, maximum flow, connectivity, resilience, critical damage rate

INTRODUCTION

Nowadays, the network exists in every aspect of human life, and our life is convenient and
complicated because of the network. Whether it is a technical network such as a computer
network or a social network such as an interpersonal relationship, it will inevitably be disturbed
or damaged, thus affecting the normal operation of the network, or worse, leading to the paralysis of
the network. In the case of interference or disruption, robustness becomes the key to whether the
network system can continue to operate normally. Specifically, network robustness describes the
ability of a network to maintain a certain level of structural integrity and original functionality after
nodes or edges experience random or deliberate attacks [1]. For example, robustness will be the
decisive factor when a cell encounters external environmental changes or internal genetic variations,
when an ecosystem encounters man-made disturbances and when a piece of computer software
encounters disk failures, network overloads, or deliberate attacks [2]. Therefore, the robustness of a
complex network has become an important topic of academic research due to the widespread
existence of the complex network and the important role it plays for nature and human society. The
early researchers of complex network robustness were Albert et al. [3], who pointed out that the
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scale-free network is more vulnerable under deliberate attack and
more robust when subjected to random attack; Holme et al. [4]
conducted an in-depth study on the robustness of the network as
reflected by the changes in various indicators under different
types of attack; Paul et al. [5] discussed how to effectively improve
network robustness; He C-Q et al. [6] summarized the changing
trend of robustness under different network topologies; Du W
and Cai M et al. [7] proposed connection robustness and recovery
robustness based on the connectivity and resilience of the
network and selected four types of complex networks,
including the random network and the scale-free network, for
extensive experiments, and it is concluded that the random
network is the best robust to deliberate attacks, and the node
resilience of the scale-free network is better than the edge; Lu P-L
etal. [8] explored the impact of the initial clustering coefficient on
robustness when attacked by different conditions for three
complex networks with the same degree distribution and
different clustering coefficients and showed that the larger the
initial clustering coefficient, the worse is the robustness of the
network.

In research studies of the complex network robustness, the
establishment of robustness evaluation indicators provides a
certain basis for it. To ensure that the evaluation indicators
can truly reflect the robustness of the complex network,
measurability, sensitivity, and objectivity are required.
Nowadays, robustness evaluation indicators generally include
the network global effect, average path length, connectivity,
relative size of the maximum connected subgraph,
betweenness, circle rate, clustering coefficient [9], k-core
structure [10, 11], core [12], and generalized k-cores [13, 14].
Among them, as the level of network damage caused by the attack
increases, the average shortest path becomes larger and then
smaller [9], and this trend of change is not a significant guide for
practical applications; the betweenness index takes into account
the changes of nodes and edges in the network but does not
consider changes in the network size and structure as a whole [9];
the clustering coefficient reflects the tightness of connections
between nodes in the network and is also an indicator of local
change in the network; considering the maximum connected
subgraph, the robustness of the complex network is defined as the
size of the maximum connected subgraph in the network after
randomly or deliberately removing a certain percentage of nodes
from the network [15]; in single networks, k-core is defined as a
maximal set of nodes that have at least k neighbors within the set
[16], and the generalized k-core (Gk-core) is a core structure,
which is obtained by implementing a k-leaf pruning procedure
that progressively removes nodes with degree less than k
alongside their nearest neighbors [14]. It can be seen that the
existing robustness evaluation indicators mostly consider local
changes in the network. No research has been carries out to
measure robustness from the perspective of network flow, a
metric that describes the global topology of the network, and
it can reflect the structural characteristics of network connections
comprehensively and break the limitations on network weights
and propagation methods [17]. In addition, the failure
mechanism of the nodes when the network is attacked is also
an important factor in network robustness analysis [1]. Most of
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the existing studies have focused on the mechanism of system
failure, but in real life, except the occurrence of failure, it also
includes the repair of failure, which is the recovery of damaged
nodes or edges according to certain recovery mechanisms.
Therefore, it is necessary to consider the resilience after the
network is damaged in the construction of the network
robustness evaluation indicators.

In this study, we propose two types of network structural
robustness measurement indicators, namely, capacity robustness
based on maximum flow and recovery robustness based on
maximum flow, in terms of the ability of the network to resist
damage and the ability of the network structure to recover after
damage, respectively. We use non-global information to recover
deleted nodes and edges after the network is destroyed. In order
to verify the effectiveness of the robustness indicators proposed in
this study, we perform robustness experimental analysis on
several typical networks such as the BA scale-free network (a
scale-free network proposed by Barabasi and Albert), ER random
network (a random network proposed by Erdos and Renyi),
nearest neighbor coupled (NNC) regular network, and WS
small-world network (a small-world network proposed by
Watts and Strogatz) and finally explore the relationship
between network structure characteristics and network
structure robustness.

MATERIALS AND METHODS

Related Work

The complex network theory emerged in the 1960s and generally
refers to the network with some or all of the properties in self-
organization, self-similarity, attractor, small-world, and scale-free
[9]. The complex network is an abstract complex system whose
complexity is mainly reflected in the number of connected nodes
and its complex topological structure. It is often used to study the
structural properties, formation mechanisms, and evolution laws
of the real network. The network robustness and destruction
resistance are important parts of the current research on complex
networks.

Generally, when a network is attacked, depending on intensity
and extensity of error, the attacked nodes are impaired to become
non-functional nodes or partially functional nodes (nodes as
being a state that is functional but not at full power) [18], and
these lost functions will be shared by the coupling relationships of
neighboring nodes. This additional functional commitment puts
a lot of pressure on the normal operation of the neighboring
nodes and the entire network system, and in severe cases, it may
lead to failure of other nodes or a whole network crash. The ability
to maintain the function and property of the network that the
damaged network has is network robustness. Similar to
robustness, destruction resistance indicates the performance
changes when a network is under attack. The difference is that
the destruction resistance prefers the ability to maintain or
recover to an acceptable level when the network is damaged.

Existing correlational researches mostly focus on the
measurement of the robustness and destruction resistance of
the network, make structural optimizations to them, and
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further apply them in relevant practical areas: In an earlier study,
Albert et al. [3] compared the robustness of ER network and
scale-free (SF) network under deliberate and random attacks, and
the results showed that SF network is significantly more robust
than ER network during random attack, while the robustness of
SF network is much less weak under deliberate attack, and simply
deleting a small number of nodes with the largest degree may
cause the network to collapse completely. Cohen et al. proposed
the theoretical analytical conditions for network collapse under
random attack based on percolation theory and applied them to
the Internet and found high robustness of the Internet against
random attack [19]; then they analyzed the robustness of SF
network such as the Internet under deliberate attack through
theoretical calculations and numerical simulations and argued
that the Internet is highly sensitive and vulnerable to deliberate
attack [20]. Darren et al. [21] achieved the identification of road
segment importance using the road network robustness index
and considered the road network robustness index in terms of
topological attributes, capacity, and traffic flow characteristics of
the road segments in the network. Tan Y-]J and Wu J et al. [22]
conducted research from the analysis and optimization of
destruction resistance, proposed the influence of network
aggregation and mixing on destruction resistance of network,
and combined with the actual network researches to analyze
optimization and control of destruction resistance, which
provided a direction for the study of destruction resistance
of complex network at that time. Du W and Cai M et al. [7]
proposed connectivity robustness and recovery robustness
based on the connectivity and recovery ability of the network
and simulated a certain scale of regular network, small-world
network, scale-free network, and random network for a large
number of experiments, and it is concluded that random
network has the best robustness against deliberate attack
compared with the other three networks and that the node
resilience of scale-free network is better than the edge resilience.
Based on the complex network theory, Lu S [23] selected an
aviation system as the research object modeled and analyzed the
aviation network using Pajck software, summarized the changes
of various parameters in the system, and proposed ideas to
improve the robustness of air cargo. Focusing on
interdependent networks, Dong G-G [24] et al. investigated
the case of interdependent networks by generalizing feedback
and non-feedback conditions, and specifically, they developed a
new mathematical framework and used percolation theory to
investigate numerically and analytically the percolation of
interdependent networks with partial multiple-to-multiple
dependency links. Shi H [25] proposed a shock resistance
assessment method based on complex network, using peak
ground acceleration as a reference to assess the destruction
resistance of complex network buildings in an earthquake
environment, and the assessment results were consistent with
reality, which helped the timely measurement of building shock
resistance. Dong G-G and Wang F et al. [26] developed two
types of coupled giant network theoretical research frameworks,
“deterministic coupled modes” and “coupled modes under
arbitrary distribution”, to study the resilient behavior of the
system, and concluded that there is indeed an optimum
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coupling structure among the subnetworks, which makes the
entire system has the best connectivity and destruction
resistance. Mariani et al. [27] focused on one of the non-
random structure patterns in networks—nestedness, and
concentrated on their discussion on three main aspects: the
existing methodologies to nestedness in networks, the key
theoretical mechanisms to explain nestedness in ecological
and socioeconomic networks, and implications of the nested
topology of interactions for the stability and viability of a given
interacting systems. Wuellner et al. [28] analyzed the individual
structures of the seven largest U.S. passenger carriers and found
that networks with dense interconnectivity are extremely
resilient to both targeted removal of airports (nodes) and
random removal of flight paths (edges), and here, they
measured the interconnectivity of the network using the
k-core structure, which is a subgraph of the network
constructed by iteratively pruning all vertices with a degree
less than k. Shang Y-L [14] developed a mathematical
framework for understanding the robustness of networks
based on the number of nodes and edges in the Gk-core (a
generalization of the ordinary k-core decomposition) under two
general attacks with limited knowledge (min-n and max-n
attacks), and it was found that knowing one more node
(from n = 1 to n = 2) during attacks is most beneficial in
terms of changing the robustness of the Gk-core. Therefore,
research studies related to network robustness can help people
understand the mechanisms and rules of network system failure
or collapse and can identify better ways to prevent the failure of
real network systems and build more robust systems, making
real life more stable [29].

It can be seen that the research studies on network robustness pay
more attention to measurement models and indicator changes and are
devoted to the optimization of network destruction resistance and
defense capability, while the in-depth studies of network resilience
performance are not as mature as the research on network robustness.
Resilience is the ability of a system to recover from an unfavorable
state to a normal state (i.e., the initial state, or adjust itself to a new state
according to new demands or conditions), which reflects the system’s
adaptability and survivability [30]. Through the propagation and
diffusion effects of the network, the behavior and recoverability of
the nodes in the network can have a significant impact on the
resilience of the network community and the entire network; at
the same time, by adjusting the network structure and
characteristics, the overall local and node-level resilience of the
network will be optimized [31]. Thus, network resilience, although
a relatively new concept, is an important field of network research.

Bai Y-N et al. [32] stated that a coupled network can be recovered
only when the proportion of failed nodes in that network is less than
the resilience threshold. In recent years, some scholars have further
explored the influencing factors of network resilience performance
and concluded that the coupling strength of the coupled network [33],
the node recovery order of the dependent network [34], and the node
importance ranking of the fault network [35] all have impact on the
network resilience performance. Some scholars have optimized the
network recovery model based on the equal probability recovery
mechanism [36] and proposed a weighted probability recovery
mechanism [35]. However, we can find that existing studies on
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network resilience measurements mostly focus on different typical
networks and different network sizes, and network resilience is
analyzed by comparing the number of nodes after recovery of the
damaged network and the number of original network nodes,
ignoring the impact of the network structure on the overall
network function. The number of nodes, node-to-node
connections, change in the overall structural characteristics of the
network, and the magnitude of the change after recovery of the
damaged network are important elements in the study of network
resilience.

Definition of Structural Robustness

Indicators Based on Maximum Flow
Network Model and Related Definitions

For a given capacity-containing network denoted as
G = (V,E,c), where V = {vi,vs,...,v,} is the set of nodes, E =
{(vi,vj)l vi,vj € V} is the set of edges, (v;, v;) is the outgoing arc
of node v; and is also the incoming arc of the node v}, ¢ is the
capacity set of edges, and the set element c (v;, v;) represents the
capacity of the edge (v;, v;), when G is the directed network, set ¢
is symmetric, namely, c(v;,v;) = c(vj,v;), and when G is an
undirected network, set ¢ is asymmetric. In the capacity
network G = (V, E, ¢), the flow from the source point v, to the
sink point v, is denoted as f. Suppose fy meets the following
requirements (see Eqs 1, 2):

fst’ Vi = Vs

Zf(v,-, ‘Vj) —Zf(‘l/j, V,‘) = 0; Vi :,J: Vo Vi » (1)
J J _fst’ Vi =Vt
OSf(Vi,Vj)SC(V,-,Vj), V(vi,vj) € E, (2)

then f is one of the feasible flows of the capacity network G. If
this flow is the largest of all feasible flows, it is called the
maximum flow and is denoted as fpax [15]. (vi,v;) is the
edge of the directed network, and for the undirected network,
it is expressed as {v;, v;}.

Network Robustness Based on Maximum Flow

Complex network robustness refers to the ability of a network to
remain connected even under random or deliberate attack, and its
concept is widely used in various fields such as physics, sociology, and
transportation. In the presence of uncertainty and crisis, robustness
has become critical to whether the system can continue to operate.
The existing robustness indicators mainly consider whether the
network is connected or not and reflect the robustness of the
network after a disruption from the network structure, that is, it
only considers whether the nodes are connected or not but does not
measure whether the circulation between the nodes is damaged. The
network maximum flow considers not only whether the connections
of nodes exist but also how the transmission capacity of the already
existing nodes and connections, that is, it considers both the fact of
existence and the quality of existence of the nodes. Therefore, in view
of the maximum flow’s ability to characterize the connectivity of the
network structure, this study uses maximum flow as a basic index to
evaluate the robustness of the network and then proposes “capacity
robustness based on maximum flow” and “recovery robustness based

Network Robustness Analysis

on maximum flow,” and the former reflects the ability of the network
structure itself to resist attacks, while the latter reflects the resilience of
the network after damage [7].

Capacity Robustness Based on Maximum Flow
Capacity robustness based on maximum flow (later referred to as
flow capacity robustness) is the ability of the remaining nodes in
the network to maintain circulation among themselves after
some nodes have been damaged by an attack. There are two
general ways to attack a network: one is a deliberate attack and
the other is a random attack. The former refers to a purposeful
and planned attack on the network such as prioritizing attacks
on the more important nodes or edges; the latter refers to a
network in which nodes or edges are attacked in a certain
proportion at random. In this study, two types of damage
strategies are used: deliberate attack and random attack.
Specifically, a deliberate attack is to select the top n% of
nodes with the largest degree to destroy, and a random
attack is to randomly select n% of nodes for damage, and
both strategies use one-time damage.

First, the network maximum flow matrix W is defined as the
matrix consisting of the maximum flow values between all pairs of
nodes in the network (see Eq. 3):

0 .. (vi,v2) ¢, (vi,vN)
W= Cfmwc (:V2> Vl) 0 Cfmax (VZ:) VN) , (3)
.. (vnsv1) g, (V) L 0

where N is the size of the network G= (V,E,c); V=
{vi,v2,...,vn} is the set of nodes, cy,, (vi,v;) is the
maximum flow value between nodes v; and v;, and
Cfoax (Visv)) = 0. Note that the method applies not only to
directed network but also to the undirected network, and not
only to 0-1 network but also to the weighted network. The
difference in application to different networks lies in the
calculation of maximum flow. For example, in the undirected
network, ¢y, (v;,vj) =cy,. (vj,vi); in the directed network,
Cloax VisVj) # 5, (vjsvi). Similarly, for 0-1 network and
weighted network, the corresponding maximum flow matrix is
calculated to bring in the method.

Then V is defined as the set of damaged nodes, Ny is the
number of nodes in Vg4, p=n% is the node damage rate,
N4 = pN, V; is the set of remaining nodes in the network
after destruction, N is the number of nodesin Vi, and V =V, +
Vs means the set V is equal to the union of the set V; and the set
V. Therefore, the damaged network satisfies G} = (V, E, c;),
where E is the set of edges of the network G}, and c¢; is the
capacity set of edges.

Based on the maximum flow matrix, W, is defined as the
matrix after removing the nodes in the set V; from the maximum
flow matrix W at one time (see Eq. 4):

0 e Vi Vis1)  max (v vi+NS71)
W. = Cf rax (Vir1, vi) 0 Cf prax (Vi+l) Vi+N_rl)
= . .
e (Vi ¥i) €, (Vieno Vi) 0

)
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where ¢y, € W and node v; € V.
W7 is defined as the maximum flow matrix recomputed from
the damaged network (see Eq. 5):

0 C}m (Vi vir1) C},,..u (Vi» View,-1)
W = <. (Vi1 vi) 0 C}m (Vir1s Visny-1)
¢ . . i >
C;mx (VHNS—I) Vi) C}'m (VHNS—I) Vi+1) . 0

®)

where ¢ ¢ W, that is, ¢ is the maximum flow matrix
calculated from the network G}; node v; € V. It is important
to state that the maximum flow takes into account not only the fact
that the nodes are connected to each other but also more
importantly, the quality of the transmission between the nodes.
That means the disruption or attack will lead to a reduction in the
quality of data transmission, even if the connectivity is intact.
Therefore, the recomputed maximum flow matrix, even if the
nodes are still connected to each other, may produce a change in the
quality of the traffic and thus affect the overall network
transmission capacity.

Finally, the flow capacity robustness C is defined as follows
(see Eq. 6):

Network Robustness Analysis

c_IW:
Z WC
[ 0 C}m (vi, Vis1) C}m (Vis Viene-1) ]
Z C}max (Vis1»> Vi) C}mx (Vm > Vi+N,71)
L C}W (Vi-v-N,—l» Vi) C}m (Vi+Ns—1a Vi+1) 0 ]
I 0 e Vis Vin1) ¢, (Vio Vien,1)
Z Cf piax (Vis1, i) Cf prax (Vm > Vi+N;—1)
L e (Vi1 vi) €1 (Vien, 1 Vi) 0 i

ZV,‘,VJ‘€V5Cfm,u(vi’ Vj)'
(6)

Recovery Robustness Based on Maximum Flow

In the real world, if it is difficult to obtain information about a specific
individual, the information can be recovered to some extent by asking
people who are related to the individual, and similar approaches have
been used to find keyman in terrorist groups through connections
between network nodes [37]. In this study, we recover the network
through non-global information and define recovery robustness based
on maximum flow (later referred to as flow recovery robustness), for
example, the ability to recover disappeared network structure
elements (broken nodes and edges) from information related to
unbroken nodes after some nodes in a network have been
attacked. Figure 1 visualizes the network structure of a network
after attack and recovery. Specifically, Figure 1A shows a network of
size 10 with node set V' = {0, 1,2, 3, 4,5, 6,7, 8,9} and edge set E. We
attack the network by removing the nodes and corresponding edges of
thenode set V4 = {2, 3,4, 9} (red points and edges in Figure 1A), and
the damaged network is shown in Figure 1B. After that, the network is

FIGURE 1 | Damaged and recovery network structure. (A) Original
network, where the red nodes are the nodes to be removed; (B) network that
has not been recovered after attack; and (C) recovered network after attack.
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recovered by the information of the remaining nodes of the network,
where the set of recovered nodes V, = {2,4, 9} (in Figure 1C, the
recovered nodes and edges are represented by green notes and green
dashed lines, respectively) and the set of unrecovered nodes V,, = {3}.
And, it can be seen that node 9 is a fully recovered node (i.e., both the
node and the corresponding edges are fully recovered) and nodes two
and four are not fully recovered nodes (that is, the node is recovered
and the corresponding edges are not fully recovered).

We define G = (V,,E,,c,) as the recovered network based on
the damaged network G: = (V, E;, ¢;), where V, is the set of nodes
of the recovered network based on the information related to the
nodes in V5, N, is the number of nodes in the set V,, E, is the set of
edges of the network G}, and ¢, is the capacity set of edges; when V, is
the set of unrecovered nodes, then V = V, + V, means the set V is
equal to the union of the set V, and the set V,,.

Based on the maximum flow matrix, W, is defined as the matrix
that removes the nodes in the set V', from the maximum flow matrix
W at one time (see Eq. 7); that is, it retains the nodes in the recovered
network:

Cf rax (Vh vi+N,—1)
Cf s (Vi+l > Vi+N,71)

0 e (Vs Vis1)

w, = Cf prax (‘_’m, vi)

>
Cf ax (VHN,A, vi) Cf max (Vien, 15 Vi+1) cee 0

@)

where ¢y, € W and node v; € V.
W is defined as the maximum flow matrix recomputed
according to the recovered network (see Eq. 8):

. 0 F s (Vi ¥in) ffm“x (Vi» View,-1)
Wr _ Cf,m (.VHI) Vi) 0 l:fmwr (v,»+'1, Vi+N,—1) ’
C}max (Vien,-1¥i) c},,mx (Visn,—1> Vi) . 0

®)

where ¢} ¢ W; that is, c}m is the maximum flow matrix
calculated from the network G;; node v; € V,.

Finally, the flow recovery robustness R is defined as follows
(see Eq. 9):

RZW.
W,
[ 0 C}mu (vi> vis1) C;mux (Vi Visn-1) ]
z Cfrae ('Vm, vi) Cfre (Vi+1, vi+N,71)
L C}'m (VHN,—l) Vi) C}mu (VHN,fl) Vi+l) e 0 }
[ 0 e (Vis Vin1) ¢, (Vis Vien,-1) ]
¥ F max (‘.'i*fl s Vi) 0 Cf piax (VH.I) vi+N,—1)
L Cfpun (VHN,fl; Vi) Cf s (VHN,—I) Vi+1) cee 0 |
_ ZViijGVyC}m,u (V,', vj)
ZViijEVnymax(vi’ vj)
%)
In order to explore the relationship between the
aforementioned robustness indicators and the network

topology, this study analyzes and verifies them through
simulation experiments of typical networks.

Network Robustness Analysis

RESULTS

Four Typical Network Structures

In general, network models can be divided into three
categories [38]: the first category is the random network;
the second category is the regular network; and the third
category is network structures between random and regular
networks, which have some characteristics of both regular
and random networks, including scale-free network and
small-world network. In this study, four types of typical
network, including regular network, random network,
scale-free network, and small-world network, will be
analyzed for structural robustness using the robustness
indicators based on maximum flow.

Regular Network

A regular network is the network structure obtained by
connecting nodes according to defined rules, and its
structure is symmetric. A nearest neighbor coupled
network and star network are two typical types of the
regular network. In this study, we use the nearest neighbor
coupled network (NNC) as the test network; that is, for a
given even value of k, the N nodes in the network are
connected to a ring, where each node is connected to only
k/2 neighboring nodes.

BA Scale-free Network

The concept of the scale-free network started with an article
by Barabasi and Albert published in {(Science)) in 1999 [39].
By studying the topology of the World Wide Web, they found
that the node degree distribution obeys a power law
distribution and proposed a classical model (BA model)
for constructing a scale-free network. The initial number
of nodes in the network is uy, and the growth rate is u.
Through growth and meritocratic connection, the
probability that a new node is connected to an already
existing node v; in the network is II; = L}«’ and a scale-
free network of size N =t + 1y nodes and ;tf e¢dges is formed
after time t. The node degree obeys the probability
distribution of p(k) = %2 Most nodes in a scale-free
network are connected to only a few nodes, while a small
number of nodes have an extremely large number of node
connections.

ER Random Network

The ER random network was proposed by Erdos and Renyi in
1960 [40], and it is one of the main reference models for
network research. The connections between network nodes of
a random network are random, given the network size N and
the total number of edges n, any two nodes, are connected at a
time with probability g = % without repetition until the
total number of edges of the network reaches n, and an ER
random network is obtained. The degree values of most nodes
in the network are concentrated around a particular value, the
average degree k = g(N — 1), and the degrees of nodes obey
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the Poisson distribution P (k) = e;,’\ , where 1 is the average
incidence of random events per unit time.

WS Small-World Network

A small-world network is a type of network with short mean path
lengths and high clustering coefficients. The first to propose a
method for constructing a small-world network were Watts and
Strogatz [41]. The specific construction algorithm is as follows:

1) Constructing a regular network encloses a nearest neighbor
coupled network containing N nodes to a ring, where each
node is connected to the k/2 nodes adjacent to its left and
right, wherek is an even number.

2) Random reconnection randomly reconnects each edge in a
regular network with probability p, that is, leaving one end of
the edge unchanged and connecting the other endpoint
randomly at a new location, but self-connections and
repeated connections should be excluded.

p =0 corresponds to the nearest neighbor coupled network,
p =1 corresponds to the ER random network, and 0< p<1
corresponds to the WS small-world network, which is a
transitional network between the regular network and random
network, taking into account the characteristics of both.

Simulation Experiment and Discussion

The simulation experiments were all implemented using Python
3.8 programming. Our method is applicable to many types of
networks, such as the directed network, undirected network, 0-1
network, and weighted network, but in order to facilitate
comparison with other methods and to focus on reflecting the
impact of differences in the network structure on robustness, the
networks chosen for the experiments were all undirected and
unweighted 0-1 benchmark networks; that is, the same
maximum flow value between the same node pairs
Cloee Vis Vi) =y, (vj,v;). The size N of all four typical
networks was incremented from 50 to 550, with steps of 10
from 50 to 100 and 30 from 100 to 550. Specifically, the average
degree of the NNC regular network was incremented from 2 to 20
in steps of 2, and the average degree here is the average number of
neighboring nodes of each node; ER random network density
increased from 0.01 to 0.1 in steps of 0.01 and from 0.1 to 0.5 in
steps of 0.1, and it should be noted that the network density is
numerically equal to the probability of connection g between two
points; the growth rate of BA scale-free network increased from 2
to 20 in steps of 2, and the growth rate indicates the number of
edges added to the network per unit of time; the average degree of
the WS small-world network increased from 2 to 10 in steps of 2,
and the reconnection probability increased from 0.002 to 0.01 in
steps of 0.002 and then from 0.01 to 0.1 in steps of 0.01. It should
be noted that the experimental results are the statistical mean of
10 independent randomized experiments.

The attack strategies used in this study are random attack and
deliberate attack. The random attack randomly selects 1% of the
nodes from the network nodes for damage, and the deliberate
attack selects the top n% of the nodes with the largest degree value
in the network for damage, where the damage rate n% is taken as

Network Robustness Analysis

[1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70%]. The
network recovery strategy used in the experiment is a non-global
information-based network recovery, that is, the network is
restored by adding points and edges to the network using the
information of neighboring nodes and edges of the remaining
nodes in the network after the damage. For ease of understanding,
we provide a brief explanation of attack and recovery strategies
based on real-life scenarios: a random attack in the definition can
be understood as natural disasters (such as earthquakes), which
occur independent of human factors and attack humans at
random; a deliberate attack can be understood as traffic jams,
road controls, and accidents caused by human factors, or in the
case of police arrest operation, the collapse of an entire criminal
organization by arresting the key figures. For a non-global
information recovery strategy, project onto the social
interactions, if it is difficult to obtain information about a
particular individual, a feasible approach is to recover
information about the individual to some extent by asking
people who are related to the individual, and a similar strategy
has been used to find key individuals in terrorist groups [37]. In
order to facilitate the comparison of network parameters and
network structures, we fixed the network size N, so this article
only analyzes the experimental results of the network size of 100.

Analysis of Experimental Results of Flow Capacity
Robustness

Figure 2 gives the changing situation of the flow capacity
robustness for BA scale-free network of size 100, where
Figure 2A and Figure 2B show the flow capacity robustness
under deliberate and random attacks with the change in the node
damage rate and growth rate, respectively, and Figure 2C shows
the difference in flow capacity robustness under two types of
attacks. From Figure 2A and Figure 2B, it can be seen that the
overall network flow shows a significant decreasing trend as the
node damage rate increases, regardless of whether it is a deliberate
attack or a random attack. Specifically, when the network is
deliberately attacked, the circulation capacity of the BA scale-free
network, which has a small network growth rate, decreases
rapidly when the nodes start to be damaged, showing the
“emergent” phenomenon. It shows that the network with a
small growth rate is more dependent on nodes with a larger
degree, and only a few nodes with a large degree are damaged
deliberately and can have a significant influence on the network,
while the increase in the network growth rate can improve the
flow capacity robustness. In contrast, for a BA scale-free network
under random attack, the network growth rate has little effect on
its flow capacity robustness, and there is almost a synchronous
trend under different growth rates. Figure 2C shows the change
in the difference between the flow capacity robustness under
random attack minus the flow capacity robustness under
deliberate attack (all similar differences below are for random
attack minus deliberate attack, referred to as the flow capacity
robustness difference). It can be seen that the flow capacity
robustness differences are all greater than 0, reflecting to some
extent that the robustness of the BA scale-free network against a
random attack is better than that of the network against a
deliberate attack. And the larger the growth rate of the
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FIGURE 2| Changes in flow capacity robustness of the BA scale-free network. (A) Change in flow capacity robustness under different damage rates and increase
rates for BA scale-free network under deliberate attack; (B) change in flow capacity robustness under different damage rates and increase rates for BA scale-free
network under random attack; (C) change in the difference between the flow capacity robustness under random attack minus the flow capacity robustness under

deliberate attack.

December 2021 | Volume 9 | Article 792410

Frontiers in Physics | www.frontiersin.org


https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Cai et al.

network, the smaller is the flow capacity robustness difference,
while the network with a larger growth rate has smoother flow
capacity robustness change as the node damage rate increases.

Figure 3 shows the results of the flow capacity robustness of
the ER random network with size 100. It can be seen that the flow
capacity robustness shows a decreasing trend with increasing
node damage rate under both attack strategies, and the change of
node damage rate brings an unstable change in network flow
when network density is small (around 0.1). In contrast, network
flow decreases smoothly at higher network densities. A deliberate
attack can cause the “emergent” phenomenon of the ER random
network with low network density when the node damage rate is
small, suggesting that the flow capacity robustness of the low-
density random network is more dependent on nodes with higher
degrees. From Figure 3C, it can be seen that the flow capacity
robustness difference is greater at smaller network densities
(around 0.1), indicating that a low-density random network is
not truly “random,” and therefore, the destructiveness of a
deliberate attack in a low-density ER random network is much
higher than that in a random attack. As network density
increases, the gap between the destructiveness of the two
attack strategies narrows significantly.

The flow capacity robustness results for an NNC regular
network of size 100 are shown in Figure 4. The results show
that the trend of network flows for deliberate and random attacks
is very similar, that is, the overall decreases with the increase in
the node damage rate, and an early “emergent” phenomenon of
the flow capacity robustness emerges earlier in the regular
network with a small average degree. Unlike the BA scale-free
network and ER random network, the “emergent” phenomenon
occurs in the NNC regular network under a random attack, that
is, it is most sensitive to the initially disrupted 10% of nodes, and
network flow decreases rapidly. This is also consistent with the
case that NNC regular network nodes’ degree is the same,
indicating that random and deliberate attacks have the same
effect on the regular network. The change in the flow capacity
robustness difference is also concentrated in a narrow range
([-0.025,0.025]), which indicates that the two attack strategies
do not differ much for the NNC regular network and confirms
that the same value of node degree of the regular network makes
the two attacks essentially indistinguishable.

Figure 5 shows the experimental results of the flow capacity
robustness for a WS small-world network of size 100, average
degree 10, and reconnection probability increasing from 0.002 to
0.1. With the increases in the node damage rate, the overall
network flow still shows a decreasing trend, but it can be seen that
the flow capacity robustness under random attack decreases more
regularly and smoothly, while the flow capacity robustness with a
small reconnection probability does not change significantly
during a deliberate attack (Figure 5A). From the results of the
change of the flow capacity robustness difference, the difference
at low reconnection probability and high damage rate is more
obvious, and the destructive effect of a deliberate attack is
significantly higher than that of a random attack.

The results of the flow capacity robustness experiments with a
size of 100, a fixed reconnection probability of 0.1, and a mean
degree increasing from 2 to 10 are shown in Figure 6. It can be
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seen that under the two attack methods, the smaller the network
average, the earlier is the “emergent” phenomenon, and with the
damage intensity increases, the overall network flow still shows a
downtrend. The flow capacity robustness difference shows a large
variation with the node damage rate’s change at smaller average
degree; specifically, the change from a positive to negative flow
robustness difference is accompanied by the change from a small
to large node damage rate.

Based on the previous experiments, Figure 7 shows how the
flow capacity robustness indicator of several representative
network parameters changes with the increase in the node
damage rate, and the corresponding error bars are also shown
in the figure, which is the standard of the mean (standard error).

For a deliberate attack (Figure 7A), an “emergent”
phenomenon of a low-density ER random network is more
obvious, and almost no “emergent” phenomenon occurs for
higher network densities, with a smooth decrease in network
flow transmission capability. As for a BA scale-free network,
although the flow capacity robustness is not as good as that of the
high-density ER random network, it also shows a relatively stable
downtrend, and the network flow transmission capacity of a low
growth rate decreases faster than that of a high-growth network.
The network flow transmission capability of an NNC regular
network is similar to that of a BA scale-free network, and both
show a steady decline. For a WS small-world network, when the
network average degree is fixed, the smaller the reconnection
probability, the larger is the flow capacity robustness and the
more robust is the network. This also reflects small-world
network between theeregular network and random network,
where the higher the reconnection probability and the closer
to random network, the more fragile is the network; conversely,
the closer to the regular network, the more stable is the network.
When network reconnection probability is fixed, the larger the
average degree, the stronger is the network flow transmission
capability and the greater is the flow capacity robustness; on the
contrary, the weaker the network flow transmission capability
and the smaller the flow capacity robustness. It can be seen that
there are several small-scale rebounds in the network flow
capacity robustness, which is due to the fact that the nodes
with the same degree value are not unique and the order of
nodes of two adjacent attacks is much more likely different, that
is, the n + 1 th attack is not necessarily carried out on the basis of
the nth damaged node, which leads to a rebound of robustness in
a small range. It can be seen that the error bars in some results are
relatively obvious, which may be related to the network size and
the number of experiments repeated.

For random attack (Figure 7B), in the ER random network,
the low-density network appears “emergent” phenomenon faster,
and the trend of change is unstable. In contrast, the growth rate of
the BA scale-free network is not as sensitive to the random attack
as deliberate attack, and it can be seen that there is little difference
in the flow capacity robustness for growth rates of 6 and 16. NNC
regular network flow is steadily decreasing with an increasing
node damage rate, and the greater the average degree, the greater
is the flow capacity robustness, which is basically consistent with
the situation of the deliberate attack. The results of the WS small-
world network show that after fixing reconnection probability,
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FIGURE 3 | Changes in flow capacity robustness of the ER random network. (A) Change in flow capacity robustness under different damage rates and network
density for ER random network under deliberate attack; (B) change in flow capacity robustness under different damage rates and network density for the ER random
network under random attack; (C) change of the difference between the flow capacity robustness under random attack minus the flow capacity robustness under
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FIGURE 4 | Changes in flow capacity robustness of NNC regular network. (A) Change in flow capacity robustness under different damage rates and average
degree for the NNC regular network under deliberate attack; (B) change in flow capacity robustness under different damage rates and average degree for an NNC regular
network under random attack; (C) change in the difference between the flow capacity robustness under random attack minus the flow capacity robustness under
deliberate attack.
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FIGURE 7 | (A) Flow capacity robustness of four typical networks under deliberate attack. (B) Flow capacity robustness of four typical networks under random
attack.

the larger the average degree, the larger is the flow capacity
robustness; after fixing the average degree, the smaller the
reconnection  probability, the faster the “emergent”
phenomenon appears.

Figure 7 shows how the flow capacity robustness indicator of
several representative network parameters changes with the
increase in the node damage rate under deliberate and
random attacks. Furthermore, we conducted experiments on
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the same network with classical robustness, and the results are
shown in Figure 8. Here, we chose the robustness based on the
maximum connected subgraph as the classical robustness
indicator, which is defined as follows:

N

M=_—"_
N - N,

(10)
where N is the size of the initial network; N is the number of
nodes removed from the network; and N,,, is the number of nodes
in the maximum connected subgraph in the network when the
nodes are removed.

Figure 8A shows how the classical robustness indicator
changes under a deliberate attack. It can be seen that similar
to flow capacity robustness, the robustness of a small-density
ER random network (network density = 0.02) is relatively
poor, and as network density increases, the network robustness
increases. Compared with a small increase rate (increase rate =
6), a BA scale-free network is more robust at a large increase
rate (increase rate = 16). The robustness of the NNC regular
network is also stronger at a large average degree. The
reconnection probability of a WS small-world network has
little effect on network robustness, while the network average
degree has a more significant impact on robustness, with the
higher the average degree, the stronger is the robustness. For a
random attack (Figure 8B), the classical robustness indicator
shows a similar pattern of variation, that is, high network
density is stronger than low network density (ER random
network), high increase rate is stronger than low increase
rate (BA scale-free network), and high network average
degree is stronger than low network average degree (NNC
regular network, WS small-world network). Compared to the
results of flow capacity robustness (Figure 7), due to the
different standards of the indicators, the result curves of
robustness are not exactly the same, but the trend in
relative magnitude of network robustness is basically
consistent. This also demonstrates the reasonableness of our
method compared with the classical robustness indicator.
Figure 8 shows how the classical robustness indicator of
several representative network parameters changes with the
increase in the node damage rate under deliberate and random
attacks.

Analysis of Experimental Results of the Flow Recovery
Robustness

We still use two attack strategies, deliberate and random attacks,
and the node recovery strategy is based on the non-global
information: nodes v; and v; are adjacent nodes, after node v;
is removed, and if node v; is still in the remaining network V.,
then node v; and edge {v;, v;} can be recovered by the information
of node v;. The pseudo-code for the node recovery strategy is
given as follows:

Program Network Recovery
Dim is Adjacent As Boolean
For v; in Vs
For v; in Vd
If is Adjacent (v;, v;) = True

Network Robustness Analysis

add node v; to network G
add edge {v;, v;} to network G
End If

End For

End For

End Network Recovery

Figure 9 shows the flow recovery robustness indicator, and its
difference varies with the change in the node damage rate and
growth rate for the BA scale-free network of size 100. It can be
seen that the recovered network flow shows similar changes
with the increase in the node damage rate under both two attack
strategies; that is, when fewer nodes are damaged (damage rate
less than 20%), the network resilience is strong, and almost all of
the damaged nodes can be recovered. In this study, we call this
damage rate “critical damage rate” for the flow recovery
robustness, and the damaged network can be fully recovered
when the node damage rate is less than or equal to this critical
damage rate. As the number of damaged nodes increases, the
recovery ability of the network becomes weaker, and the
“emergent” phenomenon appears. At the same time, it can
be seen that when the number of attacked nodes reaches a large
value (the damage rate is around 70%), the network flow
recovered from a deliberate attack is less than that from a
random attack. The flow recovery robustness difference
increases with the increase in the node damage rate,
indicating that as the level of network damage increases, the
gap between the random attack and deliberate attack in the
recovery ability of the network after damage becomes more and
more significant.

Figure 10 shows the experimental results of the flow recovery
robustness of ER random network of size 100 under deliberate
and random attacks. The resilience of the network remains
strong when the node damage rate is small, and the damaged
nodes can be almost fully recovered. As the damage rate
increases, the recovered network flow attenuates. In
addition, when network density is small (less than 0.1), the
number of nodes that cannot be recovered from the initial
damage of the ER random network under deliberate attack
increases rapidly, that is, the “emergent” phenomenon occurs
at the early stage of attack. The flow recovery robustness
difference demonstrates the same condition: two attack
strategies have a significant difference in the impact of
network resilience, that is, a deliberate attack leads to an
“emergent” phenomenon in the early stage of damage, but
not in a random attack. As the network density increases, the
resilience of the ER random network is almost the same for
both attacks.

Figure 11 shows results of the flow recovery robustness for the
NNC regular network of size 100. When the network average
degree is small, unrecovered nodes increase rapidly at the
beginning of damage, showing an “emergent” phenomenon.
As a larger average degree, the nodes can recover completely
at the initial stage of damage and then the flow recovery
robustness begins to decrease smoothly. The flow recovery
robustness difference shows that the difference is large only
when a small average degree and low damage rate are present
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FIGURE 8 | (A) Classical robustness of four typical networks under deliberate attack. (B) Classical robustness of four typical networks under random attack.

at the same time. In other cases, the difference converges to 0, that The experimental results of the WS small-world network with
is, the difference in the impact of the two attack strategies on the  fixed mean degree are shown in Figure 12, and we set a network
network is not significant. average degree to 10. As the attack level increases, the network
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network under random attack; (C) change in the difference between the flow recovery robustness under random attack minus the flow capacity robustness under

deliberate attack.
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recovery flow goes from almost fully recoverable to significantly
reduced. We can also find that reconnection probability has
almost no effect on the network resilience, especially under
random attack. The flow recovery robustness difference also
varies with the change in the node damage rate, and there is
no significant pattern to follow in the effect of reconnection
probability on this difference.

Figure 13 shows the experimental results of a WS small-world
network with a fixed reconnection probability, which is fixed at
0.1. It can be seen that the resilience of a low-average degree
network decreases and is more prone to an “emergent”
phenomenon, and during a deliberate attack, as the network
average degree increases, the flow recovery robustness shows a
downtrend. It can be seen from Figure 13C that when the
network average degree is low, the changes of the flow
recovery robustness have their own patterns, and after the
average degree increases, the difference change shows a certain
pattern, that is, the change is more stable.

Next, Figure 14 shows the changes of the flow recovery
robustness indicator for the network with different parameters.
In case of a deliberate attack (Figure 14A), for ER random
networks, the low-density network is more unstable than the
high-density network in terms of network resilience. Specifically,
the flow recovery robustness of the low-density network shows a
rapid decline in the early stage, while the recovery ability of the
high-density network is almost 100% until the damage rate
reaches the critical value (20%), and the flow recovery
robustness decreases smoothly after exceeding the critical
damage rate. The BA scale-free network, on the other hand,
presents an almost coincident resilience with an ER random
network of higher density (network density = 0.3), and it can be
seen that the growth rate does not have much influence on the
flow recovery robustness of the BA scale-free network. The
recovery capability of the NNC regular network also shows a
steady decrease with the increase in damage rate, and there is no
critical damage rate in the NNC regular network, that is, the flow
recovery robustness decreases when the network is initially
damaged on a small scale (damage rate <20%), especially in
the NNC regular network with a small average degree. For the WS
small-world network, when the network average degree is fixed,
the higher the reconnection probability, the better is the
network’s resilience, and there is a corresponding critical
damage rate. Conversely, the smaller the reconnection
probability, the worse is the recovery capability and there is
no corresponding critical damage rate. When the reconnection
probability is fixed, the larger is the network average degree, the
higher is the flow recovery robustness.

During a random attack (Figure 14B), the ER random
network does not appear as an “emergent” phenomenon
similar to the rapid decrease in network recovery ability
during a deliberate attack and has a corresponding critical
damage rate, regardless of network density. The BA scale-free
network shows a steady decline after critical damage rate is
reached, and the growth rate does not have a significant
impact on recovery ability. Similarly, the NNC regular
network shows a trend of strong recovery ability in the early
stage and a steady decline in the later stage, and the greater the

Network Robustness Analysis

average network degree, the greater is the flow recovery
robustness. For the WS small-world network, the overall trend
of the flow recovery robustness is more stable than for deliberate
attack, but still, after fixing the network average degree, the flow
recovery robustness increases as reconnection probability
increases, and the change in resilience is more stable for the
network with higher reconnection probability; after fixing
reconnection probability, the network average degree increases,
and the network’s resilience is enhanced, and the change of the
flow recovery robustness is smoother for the network with a
larger average degree. It can be seen that a small rebound in the
flow recovery robustness during random attack occurs. It is
normal for a small rebound to occur because the latter of two
adjacent attacks does not based on the previous one but randomly
damages a certain percentage of nodes again.

Figure 14 shows how the flow recovery robustness indicator of
several representative network parameters changes with the
increase in the node damage rate under deliberate and
random attacks. Finally, in order to verify the effectiveness of
the recovery strategy in this study, we make the difference
between the flow recovery robustness and the flow capacity
robustness, which is intended to consider the difference
between the network flows after network recovery and before
recovery. As can be seen from Figure 15, the flow recovery
robustness after recovery is greater than the flow capacity
robustness before recovery in varying levels for all four typical
networks, whether under a deliberate or random attack, which
reflects the effectiveness of the recovery strategy based on non-
global information.

DISCUSSION

In this study, we define two types of robustness evaluation
indicators based on network maximum flow: the flow capacity
robustness, which assesses the ability of the network to resist
attack, and the flow recovery robustness, which assesses the
ability to rebuild the network after an attack on the network.
In order to verify the effectiveness of the proposed robustness
evaluation indicators, this study conducts experimental analysis
on four typical networks, and the experimental results show that
after ER random network is attacked, the high-density network
outperforms the low-density network in terms of connectivity
and resilience; network growth rate of the BA scale-free network
does not have a significant effect on robustness changes in most
cases; robustness of the NNC regular network decreases steadily
as the node damage rate increases, and the greater the average
degree, the greater is the robustness; for the WS small-world
network, when we fix the network average degree, the larger the
reconnection probability, the better is the connectivity and
recovery ability of the network after attack, and when we fix
reconnection probability, the bigger the network average degree,
the greater is the robustness. When examining the flow recovery
robustness, we find that there is a critical damage rate (nodes and
edges that are damaged can be almost completely recovered when
the node damage rate is less than this critical value), and the
critical damage rate is located around 20%. In addition, the
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FIGURE 13 | Changes in flow recovery robustness of a WS small-world network with 0.1 reconnection probability. (A) Change in flow recovery robustness under
different damage rates and average degree for the WS small-world network with 0.1 reconnection probability under deliberate attack; (B) change in flow recovery
robustness under different damage rates and average degree for the WS small-world network with 0.1 reconnection probability under random attack; (C) change in the

difference between the flow recovery robustness under random attack minus the flow capacity robustness under deliberate attack.
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decline in robustness based on network maximum flow not only
appears an “emergent” phenomenon as the number of attacked
nodes increases but also presents a certain “emergent”
phenomenon with the change in network structure
parameters. Finally, this study also verifies the effectiveness of

our adopted non-global information-based recovery strategy for
attacked network through difference values between the flow
recovery robustness and the flow capacity robustness. The flow
capacity robustness and the flow recovery robustness based on
network maximum flow proposed in this study enrich the
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the difference between the flow recovery robustness and the flow capacity robustness in ER random network under deliberate attack and random attack; (E, F),
respectively, show the difference between the flow recovery robustness and the flow capacity robustness in the NNC regular network under deliberate attack and
random attack; (G, H), respectively, show the difference between the flow recovery robustness and the flow capacity robustness in the WS small-world network under

deliberate attack and random attack.
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network structure indicator system and more comprehensively
describe structural stability of real networks such as interpersonal
networks and Internet. The main work in this study focuses on
the design of two types of the robustness evaluation indicators based
on network maximum flow and the experimental characterization of
typical networks, and more in-depth theoretical analysis and
quantitative description are the main elements of the subsequent
study. Furthermore, we will try to extend our method from static
networks to dynamic networks. Methods that have been used to deal
with dynamic networks include exponential random graph models
[42], stochastic block models [43, 44], continuous latent space
models [44, 45], latent feature models [46, 47], and majority
dynamics [48]. We will extend our indicators to dynamic
networks by referring to existing methods.
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