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Let S” be a sub-fractional Brownian motion with index % <H < 1. Inthis paper, we consider
the linear self-interacting diffusion driven by S, which is the solution to the equation

ax{' = asy - 0( [t —XSH)ds)dt +dt, X =0,

where 8 < 0 and » € R are two parameters. Such process X" is called self-repeling and it is
an analogue of the linear self-attracting diffusion [Cranston and Le Jan, Math. Ann. 303
(1995), 87-93]. Our main aim is to study the large time behaviors. We show the solution X"/
diverges to infinity, as t tends to infinity, and obtain the speed at which the process X
diverges to infinity as t tends to infinity.

Keywords: the self-repelling diffusion, asymptotic distribution, convergence, sub-fractional Brownian motion,
stochastic integral

1 INTRODUCTION

In 1995, Cranston and Le Jan [1] introduced a linear self-attracting diffusion

t s
X, =B‘_9J J (X, - X,)duds +vt, t=0 (1.1)
0 Jo
with 6 > 0 and X, = 0, where B is a 1-dimensional standard Brownian motion. They showed that the
process X, converges in L> and almost surely, as ¢ tends infinity. This is a special case of path
dependent stochastic differential equations. Such path dependent stochastic differential equation was
first developed by Durrett and Rogers [2] introduced in 1992 as a model for the shape of a growing
polymer (Brownian polymer) as follows

t s
X, = Xo + B, + J j £ (X, = X,)duds, (12)
0

0
where B is a d-dimensional standard Brownian motion and fis Lipschitz continuous. X; corresponds
to the location of the end of the polymer at time f. Under some conditions, they established
asymptotic behavior of the solution of stochastic differential equation and gave some conjectures and
questions. The model is a continuous analogue of the notion of edge (resp. vertex) self-interacting
random walk. If f(x) = g(x)x/||x|| and g(x) > 0, X; is a continuous analogue of a process introduced by
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Diaconis and studied by Pemantle [3]. Let X (t, x) be the local
time of the solution process X. Then, we have

t
Xi=Xo+B: + j dsj f(=x) % (s, X, + x)dx
o Jr

for all ¢ > 0. This formulation makes it clear how the process X
interacts with its own occupation density. We may call this
solution a Brownian motion interacting with its own passed
trajectory, i.e., a self-interacting motion. In general, the Eq. 1.2
defines a self-interacting diffusion without any assumption on

fIf

x-f(x)20 (x-f(x)<0)

for all x € R, we call it self-repelling (resp. self-attracting). In
2002, Benaim et al [4] also introduced a self-interacting diffusion
with dependence on the (convolved) empirical measure. A great
difference between these diffusions and Brownian polymers is
that the drift term is divided by t. It is noteworthy that the
interaction potential is attractive enough to compare the diffusion
(a bit modified) to an Ornstein-Uhlenbeck process, in many case
of f, which points out an access to its asymptotic behavior. More
works can be found in Benaim et al. [5], Cranston and Mountford
[6], Gauthier [7], Herrmann and Roynette [8], Herrmann and
Scheutzow [9], Mountford and Tarr [10], Shen et al [11], Sun and
Yan [12] and the references therein.

On the other hand, starting from the application of fractional
Brownian motion in polymer modeling, Yan et al [13] considered
an analogue of the linear self-interacting diffusion:

t s
X?:Bf’—ej j(xf-x{j)dudswt, t>0
0Jo

(1.3)

with 8 # 0and X OH = 0, where B is a fractional Brownian motion
(fBm, in short) with Hurst parameter %S H < 1. The solution of
(1.3) is a Gaussian process. When 6 > 0, Yan et al [13] showed
that the solution X of (1.3) converges in L? and almost surely, to
the random variable

XOH0 = J hg(s)dBf + vJ hg(s)ds
0 0
where the function is defined ar follows

_1g,2
e du, s>0

[ee]
ho(s)=1- ser? J

N
with 6 > 0. Recently, Sun and Yan [14] considered the related
parameter estimations with 6 > 0 and 1 < H < 1, and Gan and Yan
[15] considered the parameter estimations with 8 < 0 and
I<H<1.

Motivated by these results, as a natural extension one can

consider the following stochastic differential equation:

t

Xt:Gt—GJ J (X, - X,)duds +vt, t=0 (1.4)
0

0
with 6> 0 and X, = 0, where G = {G,, t > 0} is a Gaussian process
with some suitable conditions which includes fractional
Brownian motion and some related processes. However, for a
(general) abstract Gaussian process it is difficult to find some
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interesting fine estimates associated with the calculations. So, in
this paper we consider the linear self-attracting diffusion driven
by a sub-fractional Brownian motion (sub-fBm, in short).
We choose this kind of Gaussian process because it is only
the generalization of Brownian motion rather than the
generalization of fractional Brownian motion. It only has
some similar properties of fractional Brownian motion, such
as long memory and self similarity, but it has no stationary
increment. The so-called sub-fBm with index H € (0, 1) is a
mean zero Gaussian process S = {S”, ¢ > 0} with S = 0 and the
covariance

1
Ru(t,s) = E[SPSH] = s 4 121 — 3 [(s+6)" + |t = s]
(1.5)

for all s, t > 0. For H = 1/2, S” coincides with the standard
Brownian motion B. $” is neither a semimartingale nor a Markov
process unless H = 1/2, so many of the powerful techniques from
stochastic analysis are not available when dealing with S”. As a
Gaussian process, it is possible to construct a stochastic calculus
of variations with respect to SH (see, for example, Alds et al [16]).
The sub-fBm has properties analogous to those of fBm and
satisfies the following estimates:

(-2 A1) (- <E[ (S - sTY]

<[ -2 v 1]t - )™, (1.6)

More works for sub-fBm and related processes can be found in
Bojdecki et al. [17-20], Li [21-24], Shen and Yan [25, 26], Sun
and Yan [27], Tudor [28-31], Ciprian A. Tudor [32] Yan et al
[33-35] and the references therein.

In this present paper, we consider the linear self-interacting
diffusion

t s
Xffzsff—ej j (Xt - xNduds + v, t>0 (1.7)
0 0
with 6 < 0 and X =0, where S” is a sub-fBm with Hurst
parameter 3 < H < 1. Our main aim is to show that the solution of
(1.7) diverges to infinity and obtain the speed diverging to
infinity, as ¢ tends to infinity. The object of this paper is to
expound and prove the following statements:

(I) For 6 < 0 and { < H <1, the random variable
H 1692 JoH
& = . se2™ dS,

. . 2
exists as an element in L°.

(I) For 6 < 0 and <H <1, as t — 00, we have

JE(t;0,9):=te" X — £ — g
in L* and almost surely.
(III) For 0<0 and 1<H<1, define the

processes J (n,0,7) = {]f{ (n,6,v),t>0},n>1 by
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T (£6,7) = QtZ(InH_I (t:0,7) — (21— 3)!!(550 - g))
n=12,...,

for all t > 0, where (-1)!! = 1. We then have

TH (:6,) — (2n— 1)!!(52 - g)
holds in L* and almost surely for every n > 1, as t — co.

This paper is organized as follows. In Section 2 we present
some preliminaries for sub-fBm and Malliavin calculus. In
Section 3, we obtain some lemmas. In Section 4, we prove the
main result. In Section 5 we give some numerical results.

2 PRELIMINARIES

In this section, we briefly recall the definition and properties of
stochastic integral with respect to sub-fBm. We refer to Alds et al
[16], Nualart [36], and Tudor [31] for a complete description of
stochastic calculus with respect to Gaussian processes.
Throughout this paper we assume that SH ={S7 ¢>0}
denotes a sub-fBm defined on the probability space (Q,F,P)
with index H. As we pointed out before, the sub-fBm S is a rather
special class of self-similar Gaussian processes such that St = 0
E [Sf{ ]=0and

[SH51] = 2 4 M

1
R (t,s):=E -3 [(s+6)" + e = s/]

(2.1)

for all s, t > 0. For H = 1/2, S" coincides with the standard
Brownian motion B. $" is neither a semimartingale nor a Markov
process unless H = 1/2, so many of the powerful techniques from
stochastic analysis are not available when dealing with S”. As a
Gaussian process, it is possible to construct a stochastic calculus
of variations with respect to S”. The sub-fBm appeared in
Bojdecki et al [17] in a limit of occupation time fluctuations
of a system of independent particles moving in R? according a
symmetric a-stable Lévy process, and it also appears in Bojdecki
etal [18] in a high-density limit of occupation time fluctuations of
the above mentioned particle system, where the initial Poisson
configuration has finite intensity measure.

The estimate (1.6) and normality imply that the sub-fBm
t— S admits almost surely a bounded ;'5-variation on any
ﬁmte interval for any sufficiently small 9 € (0, H). That is, the
paths of t—Sf admits a bounded py-variation on any finite
interval with pg > ;. As an immediate result, one can define the
Young integral of a process u = {u,, t > 0} with respect to sub-
fBm B“*

t
J ust?
0

as the limit in probability of a Riemann sum. Clearly, the integral
is well-defined and

t t
utSf{ = J ustf + J Sstus
0 0
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for all £ > 0, provided u is of bounded gg-variation on any finite
interval with g > 1 and - Tt —H> 1 (see, for examples, Bertoin
[37] and Félllmer [38]).

Let H be the completion of the linear space £ generated by
the indicator functions 1j4, ¢t € [0, T] with respect to the inner
product

Lo Liog )y = R7(t,5)

for s, t € [0, T]. When < H <1, we can show that
T
Ioli = | j (t)(p(s)—RH (8, s)dsdt
0

T (T
= jo L o) (s)yy (t,s)dsdt, Ve eH,

where
2

a—R“ b(t,s) =

H(2H— 1)(| |2H 2 2H72)

yy(ts) = — |t + 5]

for s, t € [0, T]. Define the linear mapping £ 5> ¢S (¢) by

T
Log=>S" (1pg) = J g (9)dS = S
0

for all t € [0, T] and it can be continuously extended to H and we
call the mapping @ is called the Wiener integral with respect to
", denoted by

H _ T H
s(g)= | p(o1s]
0

T 2
lol, = E(j p(5)ds" )
for any ¢ € H.

For simplicity, in this paper we assume that J < H < 1. Thus, if
for every T > 0, the integral

and

(2.2)

T
J ¢ (s)dS!!
0
exists in L? and

J-:) J:O o ()@ (s)yy (8, s)dsdt < oo,

we can define the integral

JZO @ (s)ds!

and

E(J:o q)(s)deI>2 = J:O Jzo o (e (s)yy (8, s)dsdt.

Denote by S the set of smooth functionals of the form

F=f£($"(¢,),5"(9,),- .-, (9,)),

where f € C;°(R") and ¢; € H. The Malliavin derivative D of a
functional F as above is given by
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3.5 T T T T T

—— H=0.5, §=-10

05 /N_\ B
N 8 |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

FIGURE 5 | A path of X' with 6 = — 10 and H = 0.5.

x10'8
:

H=0.7, 6=-100

0

FIGURE 3 | A path of X with § = — 100 and H = 0.7.

18
12 p10— : : : : : : :

T
—— H=0.5, =-100

2 L I I L I I L I I
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TABLE 1 | The data of Xf’ with = — 1 and H = 0.7.

t xH T xH t xH

0.0000 0.0000 0.3438 -0.1077 0.6875 -0.0995
0.0156 -0.0167 0.3594 -0.1190 0.7031 -0.1091
0.0313 -0.0178 0.3750 -0.1153 0.7188 -0.1163
0.0469 -0.0320 0.3906 -0.1116 0.7344 -0.1165
0.0625 -0.0338 0.4063 -0.0965 0.7500 -0.1122
0.0781 -0.0420 0.4219 -0.0937 0.7656 -0.1205
0.0938 -0.0492 0.4375 -0.0971 0.7813 -0.1170
0.1094 -0.0496 0.4531 -0.0974 0.7969 -0.1192
0.1250 -0.0564 0.4688 -0.0997 0.8125 -0.1180
0.1406 -0.0590 0.4844 -0.0976 0.8281 -0.1316
0.1563 -0.0682 0.5000 -0.0956 0.8438 -0.1245
0.1719 -0.0692 05156 -0.0983 0.8594 -0.1202
0.1875 -0.0834 0.5313 -0.0959 0.8750 -0.1241
0.2031 -0.0886 0.5469 -0.0877 0.8906 -0.1212
0.2188 -0.0969 0.5625 -0.0919 0.9063 -0.1250
0.2344 -0.0983 0.5781 -0.0818 0.9219 -0.1219
0.2500 -0.0961 0.5938 -0.0757 0.9375 -0.1199
0.2656 -0.1022 0.6094 -0.0717 0.9531 -0.1191
0.2813 -0.1120 0.6250 -0.0834 0.9688 -0.1223
0.2969 -0.1182 0.6406 -0.0894 0.9844 -0.1089
0.3125 -0.1094 0.6563 -0.0923 1.0000 -0.1023
0.3281 -0.1042 0.6719 -0.0996 - -
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TABLE 3 | The data of Xf with 6 = — 100 and H = 0.7.

t xH t xH t xH

0.0000 0.0000 0.3438 -1.0056 0.6875 ~2.29E+07
0.0156 0.0132 0.3594 -1.6439 0.7031 -6.63E+07
0.0313 0.0093 0.3750 -2.7733 0.7188 ~1.97E+08
0.0469 0.0070 0.3906 -4.8028 0.7344 ~5.99E+08
0.0625 0.0103 0.4063 -8.5377 0.7500 ~1.87E+09
0.0781 0.0116 0.4219 ~15.5941 0.7656 ~5.98E+09
0.0938 0.0092 0.4375 -29.2598 0.7813 -1.96E+10
0.1094 0.0066 0.4531 -56.3669 0.7969 ~6.59E+10
0.1250 0.0081 0.4688 -111.4786 0.8125 —2.27E+11
0.1406 0.0049 0.4844 -226.2866 0.8281 -8.02E+11
0.1563 0.0094 0.5000 ~471.3711 0.8438 —2.91E+12
01719 -0.0029 0.5156 -1.01E+03 0.8594 -1.08E+13
0.1875 -0.0114 0.5313 -2.21E+03 0.8750 -4.10E+13
0.2031 -0.0279 0.5469 -4.97E+03 0.8906 ~1.60E+14
0.2188 -0.0484 0.5625 ~1.15E+04 0.9063 ~6.40E+14
0.2344 -0.0557 0.5781 —2.72E+04 0.9219 -2.62E+15
0.2500 -0.0837 0.5938 ~6.59E+04 0.9375 ~1.10E+16
0.2656 -0.1240 0.6094 ~1.64E+05 0.9531 ~4.75E+16
0.2813 -0.1834 0.6250 —4.19E+05 0.9688 —2.10E+17
0.2969 -0.2706 0.6406 -1.10E+06 0.9844 ~9.48E+17
0.3125 -0.4085 0.6563 ~2.95E+06 1.0000 ~4.40E+18
0.3281 -0.6332 0.6719 ~8.12E+06 - -

TABLE 2 | The data of Xf’ with § = =10 and H = 0.7.

t xH t xH t xH

0.0000 0.0000 0.3438 -0.1597 0.6875 -0.5552
0.0156 0.0087 0.3594 -0.1729 0.7031 -0.5943
0.0313 0.0113 0.3750 -0.1912 0.7188 -0.6439
0.0469 0.0040 0.3906 -0.2051 0.7344 -0.7019
0.0625 -0.0153 0.4063 -0.2130 0.7500 -0.7595
0.0781 -0.0239 0.4219 -0.2342 0.7656 -0.8345
0.0938 -0.0234 0.4375 -0.2494 0.7813 -0.9066
0.1094 -0.0279 0.4531 -0.2654 0.7969 -0.9868
0.1250 -0.0348 0.4688 -0.2820 0.8125 -1.0919
0.1406 -0.0372 0.4844 -0.2980 0.8281 -1.2177
0.1563 -0.0395 0.5000 -0.3156 0.8438 -1.3507
0.1719 -0.0530 0.5156 -0.3363 0.8594 ~1.5050
0.1875 -0.0587 0.5313 -0.3543 0.8750 -1.6776
0.2031 -0.0648 0.5469 -0.3694 0.8906 -1.8811
0.2188 -0.0835 0.5625 -0.3865 0.9063 -2.1081
0.2344 -0.0942 0.5781 -0.4093 0.9219 -2.3699
0.2500 -0.1100 0.5938 -0.4204 0.9375 -2,6701
0.2656 -0.1213 0.6094 -0.4368 0.9531 -3.0170
0.2813 -0.1317 0.6250 -0.4620 0.9688 -3.4144
0.2969 -0.1365 0.6406 -0.4810 0.9844 -3.8989
0.3125 -0.1418 0.6563 -0.5086 1.0000 -4.4510
0.3281 -0.1541 0.6719 -0.5258 - -

The derivative operator D is then a closable operator from
L*(Q) into L2 (Q; H). We denote by D the closure of S with
respect to the norm

IFll,o = \EIFI* + EIDFIj,.

TABLE 4 | The data of Xf with 6 = — 1 and H = 0.5.

t xH t xH t xH

0.0000 0.0000 0.3438 0.2713 0.6875 0.6225
0.0156 0.0711 0.3504 0.3234 0.7031 0.7483
0.0313 0.0168 0.3750 0.2698 0.7188 0.9047
0.0469 -0.1326 0.3906 0.3765 0.7344 0.7963
0.0625 -0.1887 0.4063 0.4725 0.7500 0.8221
0.0781 -0.1911 0.4219 0.2156 0.7656 0.7416
0.0938 -0.0792 0.4375 0.1224 0.7813 0.6743
0.1094 -0.0320 0.4531 0.0691 0.7969 1.0655
0.1250 -0.1853 0.4688 0.0377 0.8125 1.0480
0.1406 -0.0827 0.4844 0.1668 0.8281 0.9146
0.1563 -0.0861 0.5000 0.3344 0.8438 0.9478
0.1719 0.0616 0.5156 0.2866 0.8594 1.0125
0.1875 0.1014 0.5313 0.1759 0.8750 1.0931
0.2031 0.1542 0.5469 0.0739 0.8906 1.2403
0.2188 0.2224 0.5625 0.2168 0.9063 0.9036
0.2344 0.2205 0.5781 0.3676 0.9219 0.8949
0.2500 0.3345 0.5938 0.3904 0.9375 0.8626
0.2656 0.3581 0.6094 0.3878 0.9531 0.9140
0.2813 0.2635 0.6250 0.3985 0.9688 1.0247
0.2969 0.4084 0.6406 0.4900 0.9844 1.1976
0.3125 0.2820 0.6563 0.4769 1.0000 1.0780
0.3281 0.4043 0.6719 0.6713 - -

The divergence integral § is the adjoint of derivative operator
D", That is, we say that a random variable u in L? (Q; ) belongs to
the domain of the divergence operator §, denoted by Dom(6°), if

E[XDF, u)y| <cllFl2 g

for every F € D2, where c is a constant depending only on u. In
this case §(u) is defined by the duality relationship

E[F8(u)] = E(DF,u),, (2.3)
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TABLE 5 | The data of Xﬁ" with § = — 10 and H = 0.5.

t xH t xH t xH

0.0000 0.0000 0.3438 0.3643 0.6875 1.0084
0.0156 0.1112 0.3594 0.3489 0.7031 1.0312
0.0313 0.1668 0.3750 0.2532 0.7188 1.1722
0.0469 0.1353 0.3906 0.2453 0.7344 1.2474
0.0625 0.2259 0.4063 0.4297 0.7500 1.1783
0.0781 0.0764 0.4219 0.3837 0.7656 1.1997
0.0938 0.0025 0.4375 0.4639 0.7813 1.3114
0.1094 0.2166 0.4531 0.3663 0.7969 1.5335
0.1250 0.2593 0.4688 0.5287 0.8125 1.3820
0.1406 0.2412 0.4844 0.5164 0.8281 1.5679
0.1563 05773 0.5000 0.4502 0.8438 1.4858
0.1719 0.4322 0.5156 0.4488 0.8594 1.6145
0.1875 0.4384 0.5313 0.4538 0.8750 1.6282
0.2031 0.2872 0.5469 0.2729 0.8906 1.7043
0.2188 0.3078 0.5625 0.5069 0.9063 1.9432
0.2344 0.3761 0.5781 0.6164 0.9219 1.8384
0.2500 0.1896 0.5938 0.9359 0.9375 2.1171
0.2656 0.1558 0.6094 0.8222 0.9531 2.3878
0.2813 0.3807 0.6250 0.7422 0.9688 2.5204
0.2969 0.3637 0.6406 0.9326 0.9844 2.7823
0.3125 0.3641 0.6563 1.0095 1.0000 3.1287
0.3281 0.3580 0.6719 1.0371 - -

TABLE 6 | The data of X}’ with § = — 100 and H = 0.5.

t xH t xH t xH

0.0000 0.0000 0.3438 2.1870 0.6875 5.26E+07
0.0156 -0.1749 0.3594 3.5867 0.7031 1.52E+08
0.0313 -0.3397 0.3750 6.3084 0.7188 4.52E+408
0.0469 -0.4106 0.3906 11.0159 0.7344 1.37E+09
0.0625 -0.3348 0.4063 19.5047 0.7500 4.29E+09
0.0781 -0.3567 0.4219 35.6469 0.7656 1.37E+10
0.0938 -0.3936 0.4375 66.9024 0.7813 4.50E+10
0.1004 -0.3411 0.4531 129.1499 0.7969 1.51E+11
0.1250 -0.2522 0.4688 255.5964 0.8125 5.21E+11
0.1406 -0.1583 0.4844 518.9528 0.8281 1.84E+12
0.1563 -0.1543 0.5000 1.08E+03 0.8438 6.66E+12
0.1719 0.0877 0.5156 2.31E+03 0.8594 2.47E+13
0.1875 -0.1242 0.5313 5.07E+03 0.8750 9.42E+13
0.2031 -0.0522 0.5469 1.14E+04 0.8906 3.67E+14
0.2188 0.1336 0.5625 2.63E+04 0.9063 1.47E+15
0.2344 0.0243 0.5781 6.23E+04 0.9219 6.02E+15
0.2500 0.1665 0.5938 1.51E+05 0.9375 2.53E+16
0.2656 0.2096 0.6094 3.77E+05 0.9531 1.09E+17
0.2813 0.4085 0.6250 9.62E+05 0.9688 4.81E+17
0.2969 0.5852 0.6406 2.52E+06 0.9844 2.18E+18
0.3125 0.8397 0.6563 6.76E+06 1.0000 1.01E+19
0.3281 1.3366 0.6719 1.86E+07 - -

for any F € D"?. We have D"? ¢ Dom(8) and for any u € D"?
E[8(u)’] = Ellull;, + E<Du, (Du)*)3en
= Elul?, + EJ[O | Dese Dty (1.7)6y, (6, )dsdrdéd

where (DSu)” is the adjoint of Du in the Hilbert space H ® H. We
will denote

T
S(u) = J u 68"
0

Self-Interacting Diffusion Driven by SubfBm |

for an adapted process u, and it is called Skorohod integral. Alds
et al [16], we can obtain the relationship between the Skorohod
and Young integral as follows

T T T T
J ustSH = J us(?Sf +J J Dy (t, s)dsdt,
0 0 o Jo

provided u has a bounded g-variation with 1<g<4 and
u € D2 (H) such that

T T
J J Du,y (t, s)dsdt < co.
0

0
Theorem 2.1. (Alés et al [16]). Let 0 < H < 1 and let f € C*(R)
such that

max{lf GO If (Ol 1" ()1} < xe,

where k and 8 are two positive constants with § < T2 Then we
have

(2.4)

(87 =£)+ JO £ (Styds? + H (2 - 2211
Jt £ (SM)s*ds

for all t € [0, T].

3 SOME BASIC ESTIMATES

Throughout this paper we assume that 6 < 0 and 1 < H < 1. Recall
that the linear self-interacting diffusion with sub-fBm S defined
by the stochastic differential equation

t s
X =sf'—ej j (X - xduds + v, >0 (3.1)
0 0
with 8 < 0. Define the kernel (¢, s)— hy(t, s) as follows
t
1 - fser®’ j e 1% dy, t>s,
hg(t,s) = s (3.2)
0) t<s

for s, t > 0. By the variation of constants method (see, Cranston
and Le Jan [1]) or Itd’s formula we may introduce the following
representation:
t t
X = J o (1, 5)dS! + vJ’ ho (£, 5)ds (33)
0 0
for t > 0.
The kernel function (t, s)— hy(t, s) with 8 < 0 admits the

following properties (these properties are proved partly in Sun
and Yan [12]):

e For all s > 0, the limit

lim(te%otzhg (t, s)) = ser®’ (3.4)

t—00

for all s > 0.
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e Forall t > s > 0, we have

1<hy(t,s)<e0(5),

e Forall t >s, r >0, we have

t t
ho (£,0) = ho (£,) = 1, J T (£, 1)t = e%eszj o gy,

N

Lemma 3.1. Let 6 < 0 and define function

t
Io(t) = —6ter®’ J e % dy — 1.
0

We then have tlim tIg(t) = -} and

© 1
lim t2<1 + Ote 2 J eﬁeuzdu> ==
t—00 t 9

Proof. This is simple calculus exercise.

Lemma 3.2. (Sun and Yan [12]). Let 0 < 0 and define the functions

t=Ig(t, n), n =1, 2, ... as follows
Io(t, 1) = =0214(t), Io(t,n+1)=—-0t[I5(t,n) — 2n— D]
Then we have
tlim Iy(t,n) = 2n— 1N (3.5)

for every n > 0, where (-1)! = 1.
Lemma 3.3. Let 6 < 0. Then the integral

A= j :0 J :o xye? Uy (x, y)dxdy  (3.6)

converges and as t — 00,

lim e E(X7)* = A(H).

t—00

Proof. An elementary may show that (3.6) converges for all § < 0.

It follows from L’Hospital’s rule that

t t
lim £e B(XYY = lim 6% [ [ hott 00 (6 3)p (5 y)dxdy
2

= lim 7] dXJ xye ! 7y, (x, y)dyj J 1002w gy,

B 2
fﬂootzeo

=2lim ——

29(x+y
e [ [ [

e
0

WH (%)

= lim e
e

t
16
e e

t
=lim —— 719# J evzdvj dxj xyet? T )y (x, y)dy

t—=00 772

= rodxj xyet? Gy (x,y)dy,
0

0

(
xye2 06y (x, y)dy
(

Self-Interacting Diffusion Driven by SubfBm |

where we have used the following fact:

1 ! —1o2 ! X%+
lim 1—*“39[06 26 vade Joxyeze( My, (x,y)dy

t—»oot e 2
l t x 1 2
= lim —lgzj de e dy
t—oo 7120 ] 0
J xyet? )y (x, y)dy = 0.
0

This completes the proof.

Lemma 3.4. Let 6 < 0. Then, convergence

oo J j sres? (5 )I/IH (s, r)dsdr
t s

I 1
tLIlo]o t22H

= Z(—6)‘2Hr(2H +1). (3.7)
holds.

Proof. It follows from L’Hospital’s rule that

1 © ©
thm m .[ ueieuz (J Veievz Yy (1/[, V)dV)du
- e t u
1 1 ©
=—— lim 4J ver® ‘VH (t,v)dv
t

20 t-500 $2-2H Lot

= —lim H(L,_DJ vet? () (v =12 = (v + ) ) dy
-0 207720 ),

for all 6 < 0 and 1< H < 1. By making the change of variable
16(+* - 1?) = x, we see that

nm%j vet C70) (v = 012 = (v 4+ 012)dy

1 =\
(5
(VE + t)ZHZ}dx
i g ) ()
- tlioo 292% JO e‘x(\/m + t)ZHizdx
= %(—6)‘2H'1F(2H -1)
for all § < 0 and § < H < 1. This completes the proof.
Lemma 3.5. Let 0 < 0 and 0 < s < t < T. We then have

c(t— s <E[(xI" - XH)"| <C(t -5 (3.8)

Proof. Given 0 < s < t < T and denote

~H £
X, =j hg(t,r)dSY, t>0.
0
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It follows that

E[(Xf’ - Xf)z] - E( j [ho (£, %) — hg (5, x)]dsf>
0
t 2
+E<J o (1, x)dS"! )

+2E(J’ he (¢, y)dS}I,’ JTJ [ho (t, x) — hg (s, x)]dSY )
(3.9)

Now, we estimate the three terms. For the first term, we
have

. 2
0 SE(I [ho (t, x) — hg (s, x)]de)

= JO L (ho (t, x) — hg (s, X))
(ho(t,y)

= ( 20 gy

)
<Os(t—s)e ™ J J vy (x, y)dxdy

=02 (t -

—ho(s,y )WH (x, y)dxdy

xyeze(x 2y (x, y)dxdy

s)%e E(SH) <Cpr(t—s)

forall 8 < 0 and 0 < s < t < T. For the second term, we have

t 2 t oot
E( | h@(t,x)def) = [[ mote ot 9wy (e ey
2 t 4 1 2 2
se” J j xyel?(C)y (x, y)dxdy

t rt
<t?e J J vy (x, y)dxdy
<Cpr(t-s)"

forall @ <0and 0 < s < t < T. Similarly, for the third term, we also
prove

0<E <j ho (£, y)dst! j Lo (£, x) — o (5, x)]dS"" )

= [ [ e )00 )= s 01 (. )iy

t
s@ze'%(”Z(J e'%{’“zdu> J yer®” dyJ xet™ g (x, y)dx

t
<Pe™ (t-ys) J ye%eyzdy J xet®™ vy (%, y)dx
< CH,T (t - 5)2

forall  <0and 0 < s < t < T. Thus, we have obtained the following
estimate:

S o H\? 2H
E (x X) <Curlt -l

foral@<0and 0 <s<t<T.
On the other hand, elementary calculations may show that

Self-Interacting Diffusion Driven by SubfBm |

s t
J [hg (t,7) — hg(s,1)]dr = GJ e % dy J rer® dr < Cur(t-s)
0 s 0
and
¢ 1p2 ¢ 1p.2
J ho (t, r)dr = e2% J’ et dr<Cyr(t-s)

forall @ < 0and 0 < s < t < T. It follows that

<Jt hg (t,r)dr — r hy (s, r)dr) = (r [ho (t,7) — hg (s, r)]dr)

t 2 t s
+<J he(t,f)df) +2 J hg(t,r)drj [hg (t, 1) — hg(s,7)]dr
<Cpur(t-s)

2

forall 8 < 0 and 0 < s < t < T, which implies that

E[(Xf’b —X?'b)z] - E[(Xb - X”’) ]

+ v2<r hg (t,r)dr — JS hg (s, r)dr)

<Cuyr(t—s)

forall 6 < 0 and 0 < s < t < T. Noting that the above calculations
are invertible for all § < 0 and 0 < s < t < T, one can obtain the left
hand side in (3.8) and the lemma follows.

4 CONVERGENCE
In this section, we obtain the large time behaviors associated with
the solution X' to Eq. 3.1. From Lemma 3.5 and Guassianness,

we find that the self-repelling diffusion {X!’,#>0} is H-Holder
continuous. So, the integral

t
J sdX !
0
exists with ¢ > 0 as a Young integral and
t t
tx? = J sdX" + I XHds
0 0
for all > 0. Define the process Y =

{Y, t > 0} by

Y,

t t t
J (X - XxMds =X} - j XPds = j sdXx™
0 0

0

t t
1
J sdSH — J OsY ds + —vt2.
0 0 2
By the variation of constants method, one can prove
Y, = e 2% JO ser0 dst - a( oioe _ 1)
{ff{, t >0} as follows

for all £ > 0. Define Gaussian process & =

ff' ==J ser®’ ast, t>o.
0
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Lemma 4.1. Let 0 < 0 and %< H < 1. Then, the random variable

gl= J sez®’ as?
0

exists as an element in L> Moreover, &% is H-Holder
continuous and Ef{ - Efo in L* and almost surely, as t tends
to infinity.

Proof. This is simple calculus exercise. In fact, we have

0 0 0

=2 J xet® dx J ye® y,, (x, y)dy
0

=2H(H-1) J xe?® dx

0
[ et (=) = (e 3y
<2H(2H - I)J xer®™ dx

0
JO( (x= )" = (x+ )" )ydy
=2H((2H - 1)Cy j x2HH 10 g

0

= Coul' (2H +2)

for all § < 0 and 1 < H <1, which shows that the random variable
ffo exists as an element in L%

Now, we show that the process £ is Holder continuous.
For all 0 < s < ¢ by the inequality e x<C for all x > 0, we

have
) 2
-&1) = E(J xet®’ dSH>

t t
=J J xyet? Uy, (x, y)dxdy

E(&'

t X
= ZJ xeée"zdxj ye® y (x, y)dy
=2H(2H - 1) J xer? de ye%eyz( (x—y)"?
~(x+ )" dy
t x
<2HCy(2H - I)J dxj (x - y)"dy
= Cop (t —s)™.

Thus, the normality of &7 implies that

E(&" - &) < Copr (£ - 5™

for all 0 <'s < t,2<H <1 and integer numbers n > 1, and the
Holder contlnulty follows.

Self-Interacting Diffusion Driven by SubfBm |

Nextly, we check the f?’h in L%, This follows

from the next estimate:

(e -0y [ [ ey, ity

H
converges to £,

=2J J- xye® Uy (x, y)dxdy

t t

<26 J xe%e"zde Yy (x,y)dy
t t

<21 J xe%e"zdxj Yy (xy)dy
t 0

<2H(2H-1)e*’
. jt xezﬂx dx JO y( (X _ y)ZH—Z
~(x+ )" Ny
<2H(2H - 1)e:™" . Jr xet® dx JO y(x—y)"dy

=2H(2H - 1)(J1 u(1-u) 2du>elet
0

(o8]
J K20 gy 0, (4.1)
t
as t tends to infinity.
Finally, we check the 5‘:’b converges to &
integration by parts we see that

almost surely. By

gl = J se% dsH = —er® gH J (1 +6s%)er® s ds
t

t
(4.2)
for all ¢t > 0. Elementary may check that the convergence
nt= J (1 +6s)et* sHds™30
t
holds almost surely, as ¢ tends to infinity. In fact, by
inequality

J '™ ds<Cr e, a> -1,
t

with t > 0, we may show that

e s el )< [ [ aves

(1+ 6r*)et? ) EISH|ISH drds

© 1p.2 >
<C J 20 g
n

>

2
<C n2+2H eGn

for all integer numbers # > 1, and hence
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S

[ee]
2 _ 2
sup |nt] ZS) <Ce Zan"ZHee” <00.
n=0

n<t<n+l n=0

Thus, Borel-Cantelli’s lemma implies that /' converges to
zero almost surely as ¢ tends to infinity, and the lemma follows

from (4.2).

Corollary 4.1. For all y > 0, we have

[e3)
1

tV(ftH - gi) = tyj SezeszdSSH o
t

in L* and almost surely, as t tends to infinity.
Lemma 4.2. Let 6 < 0 and < H < 1. Then, we have

t
Ay (t,0):=1"1es J et (& - )du — 0

0

in L* and almost surely for every y > 0, as t tends to infinity.

Proof. Given 0 < s < t, 8 < 0 and denote

Yo(s,t):= j

0

[ee]
_lg,2 1p,2
e 2% dvj re2? vy (s, r)dr

v

t r
1p,2 _1p9,2
= J re2? WH(s,r)er e dy
0 0

t (o)
+ (J e%evzdv> J ret y, (s, r)dr
0 t

t (o)
<C J ryy (s,r)dr + %e‘%("z J ret™ yy (s,r)dr
0

t

t
SC(J ryy (s, r)dr + (t - s)*H2! >,
0

where we have used the fact

* -1612 C —10x?
e2dyv<—e2™, Vx>0
0 X

and estimates
J ret® v, (s,r)dr = H(2H - 1) J r((r-s?
t t
~(s+ 1) )et dr

r(r— s)ZH'ze%ngdr
t

SHQH—DJ

<HQH-1)(t - s)*? J re?® dr
t

_ H(ZHQ_ 1) (t— S)szze%etz.

It follows that
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t

t
E|A, (£,60)]" = 212" L JO e 10 (w )

E(J se%eszde')<J re%e’zde)dudv

t rt
2 1p(, 2.2
= 12 J J e 100 ) dudy

0Jo

j J rse%e(rz*sz)y/H (s,r)drds

u

t 0
2 _1pg.2 19¢2
= 242 I g2 duJ €% Yo (s, t)ds
0

u

t s
2 1p2 _1g,2
= 2t J se® (s, G)dsj e 2% du
0 0

(o] t
2 192 _lg,2
1220 J se2% Yo (s, t)dsj e % du
¢ 0

t
< 127120 J Y (s, t)ds
0

(o]

1p2 1p2

+ 1l J se2% Yy (s, t)ds
t

-0 (t—00),

which shows that A, (t, 8) converges to zero in 12
Now, we obtain the convergence with probability one. Noting
that

se?® gsH
S

w-g-

u

for all u > 0, we get

t
A, (t,0)| <t J e 0 du
0

0 1p2
J sex® de

u

t (o)
<trHlgntt j e 20 <u|SMH|e%9“2 + J IS7(1- Bsz)le%aszds)du
u

0

t t

142 192 _1p,2

=+l J ulSH|du + 7 e I e du
0 0

o0
J IS (1- 952)|e%052ds
u
t
:twle%atzj u|SMH|du
0

t s
1pgs2 1ps2 _lpg.2
+r e J S (1 - 6s%)|e2* dsJ e ™ du
0 0

00 t
192 192 _1p,2
FtrH et J IS (1 - 05%)]e2 dsJ e 2™ du
t

0
1 1682 ' H 1 16 ! H 2
<l J ulS! |du+" er™ J ISH (1 6s%)|sds
0 0

© H 2| 1082
+C9tyj IS (1-6s%)|e2™ ds

t
-0

almost surely for all y > 0, 6 < 0 and J<H <1, as t tends to
infinity. This completes the proof.
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The objects of this paper are to prove the following theorems
which give the long time behaviors for X" with 1 <H <.

Theorem 4.1. Let 0 < 0 and %<H< 1. Then, as t — oo, the
convergence

)
JE(t;0,9) =t X! — £ - i

holds in L* and almost surely.

Proof. Given ¢ > 0 and 6 < 0. Simple calculations may prove

JE (£ 6,v) = te%ethf{

t t
= ter® J ho (t,s)dS™ + e j ho (t, s)ds
0 0

t t
1p.2 1p.2 1p2 _1g,2?
= ter? SH - Ot*e J ser® <J e 20 du>de
0

N

t
192 12
+oter J e 2% ds
0

t u
= te 2 Sl - frer®” J e 30 (j se%gszdeI)du

0 0

t
1p.2 _1p2
+ vter® J e 2% ds
0
t

1p:2 192 _lp2
= te2" S — ftex™ J ey
0

t
+ pter® J e 2% ds. (4.3)
0

It follows from Lemma 4.1, Corollary 4.1, and Lemma 4.2 that

JiH(t;6,v) —(ffo - g) _ te%GtZX{-] _ (550 ~ g)

t
= te® 7 — fet®™ j e’%g“z(ff - &0 )du

0

t
+<5Z, - ;)(—Gte;mz J e dy — 1) -0 (t— 00)
0
(4.4)
in L* and almost surely for all § < 0 and 1<H<1, as t tends to
infinity.

Theorem  4.2. Define the
{JH (n,0,v),t>0},n>1 by

processes  J7(n,0,v) =

T (50,9 = 06 (71, (16,0 - (2n - (8 - 7)),

n=12,...,

for all t > 0, where (=1)!! = 1. Then, the convergence
TH(£:6,7) — (2n— 1)!!(550 - g)

holds in L* and almost surely for every n > 1, as t — oo.

Proof. From the proof of Theorem 4.1, we find that the
identities
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t
R ) R e I G

t
+(£0Ho - g)(@te%etz J e 1% gy — 1),
0
JH (:6,v) = (ffo - £>In(t, 0) + £ (612) e 2% s

t
+61‘(6t2)”e%9tz J e%auz(ff - )du.

[eY]
0

holds forall t > 0, n > 1 and 6 < 0, where I,,(t, ) is given in Lemma
3.2. Thus, the theorem follows from Lemma 4.1, Corollary 4.1,
Lemma 4.2 and Theorem 4.1.

5 SIMULATION

We have applied our results to the following linear self-repelling
diffusion driven by a sub-fBm S with J<H<I:

t

X! = s - e(J (X - Xf’)ds)dt fadt, XM=,

0

where 0 < 0 and v € R are two parameters. We will simulate the
process with ¥ = 0 in the following cases:

e H=07and 0 =-1, 6 = - 10, and 0 = — 100, respectively
(see, Figure 1, Figure 2, Figure 3, and Table 1, Table 2,
Table 3);

e H=05and 6 =-1, 0 = - 10, and 6 = — 100, respectively
(see, Figure 4, Figure 5, Figure 6, and Table 4, Table 5,
Table 6);

Remark 1. From the following numerical results, we can find that
it is important to study the estimates of parameters 0 and .
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