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Global mean sea level data are examined in this work by looking at the presence of time trends
in the context of longmemory or long range dependent processes. By looking at both seasonal
signals retained and seasonal signals removed data from 1992 to 2020, the results show that
the two series display significant time trend coefficients and high levels of persistence.
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1 INTRODUCTION

The evidence shows that global mean sea level (GMSL) has risen during the 20th century [1], and this rise
has been larger than that observed during the previous two centuries [2]. In line with this, GMSL data are
examined in this work by using a long memory or long range dependent model. The idea is to estimate a
linear time trend in the data under the assumption that the errors in the regression model might be
fractionally integrated, which is a particularmodel within the longmemory class. The reason for this is that
this property (long memory) has been widely observed in the majority of geophysical and climatological
series (see, e.g., [3–5]; etc.) and therefore it should also be expected in the sea level data (see also [6]).

The model examined in the empirical section is the following one:

yt � c0 + c1 β t + xt , (1 − B)dxt � ut, (1)

where yt is the sea level data; γ0 and γ1 are unknown parameters referring to an intercept and a
(linear) time trend, and xt is the regression error that is assumed to be integrated of order d or I (d)
where d can be any real value, and thus, potentially fractional. In this context, B is the backshift
operator, i.e., Bkxt � xt-k, and the d-differenced process ut in (1) is supposed to be integrated of order
0, or I (0), defined as a covariance stationary process where its spectral density function is positive
and bounded at all frequencies. It includes the case of a white noise process but also stationary and
invertible AutoRegressive Moving Average (ARMA) models. Thus, if ut is ARMA (p,q), xt is said to
be AutoRegressive Fractionally Integrated Moving Average (ARFIMA (p,d,q) model. In this paper,
however, we will deal with the autocorrelation by using a non-parametric method [7] widely used in
the context of I (d) models. In this context, evidence of significantly positive values of γ1 in (1) will
indicate that the sea level data reflect increases over time, and we do the estimation without imposing
the strong assumption that the xt in (1) are I (0) but I (d) with d freely estimated from the data.

2 METHODOLOGY

As it has been mentioned in the previous section, the methodology used in this work is based on long
memory, which is a feature observed in many time series of different disciplines including among
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others climatological and meteorological data. Long memory
processes are characterized because the spectral density function
of the data (which is the Fourier transform of the
autocovariances) displays values that explote at the smallest (zero)
frequency, which is usually consistent with first differentiation of the
data. However, inmany cases, the spectral density function of the first
differenced data shows values close to zero at the zero frequency,
which is consistent with over-differentiation. This was the origin of
fractional differentiation [8], which is a particularmodel satisfying the
long memory property, and that is described by the second equation
presented in (1).

The differencing parameter d is important from various
viewpoints. Thus, if d � 0, the series is said to be short memory
or I (0), unlikewhat happenswith positive d that implies longmemory
or long range dependence, so-named because of the strong degree of
association between the observations even if they are far distant in
time; also, from a statistical viewpoint, the value 0.5 is important. Thus,
if d < 0.5 the series is still covariance stationary, while d ≥ 0.5 implies
nonstationarity; finally, if d < 1 the series is said to be mean reverting
with the effect of the shocks disappearing in the long run, contrary
to what happens with d ≥ 1 with shocks persisting forever.

We estimate the parameter d by using the Whittle function
expressed in the frequency domain, employing a version of the tests
of Robinson [9] widely used in empirical applications (see, e.g. [10]).
Note, however, that the fractional integration approach employed in
this work ismerely one of the numerous formulations for long range

dependence that include among others the generalized Cauchy
processes, the generalized fractional Gaussian noise models and
the modefied multifractional fractional Gaussian noise model (see,
e.g., [11, 12]). These methods may also be considered as flexible
tools to investigate long range dependence in time series, including
sea level data ([13, 14], etc.).

3 DATASET

We use data which are estimates of sea level based on measurements
from satellite radar altimeters. They are available for TOPEX/Poseidon
(T/P), Jason-1, Jason-2, and Jason-3, which have been monitored.
Only altimetry measurements between 66°S and 66°N have been
processed. An inverted barometer has been applied to the time series.

Two time series are examined (seeFigure 1) referring to the global
mean sea level data, with seasonal signals retained and removed.

The data are provided by the NOAA Laboratory for Satellite
Altimetry from the NOAA (http://www.star.nesdis.noaa.gov/sod/
lsa/SeaLevelRise/) and Radar Altimeter Database System (http://
www.deos.tudelft.nl/altim/rads/).

4 RESULTS

Table 1 displays the estimated coefficients of themodel given by Eq. 1
under the assumption that the error term ut is a white noise process.
We observe that the estimated value of d is 0.73 for the seasonal signals
retained data and 0.45 for the seasonal signals removed data, and in
both cases, the confidence intervals reject the null of d � 1 in favour of
d< 1, implyingmean reversion in its behaviour. Thus, shockswill have
a transitory effect in the series, disappearing by themselves in the long
run, and faster in the case of the seasonal signals removed data. The
time trend coefficient is significantly positive in the two series, being
slightly higher with the seasonal signals retained data.

Very similar results are obtained under the assumption of
autocorrelated (Bloomfield)1 errors. The estimates of d are now

FIGURE 1 | Time series plots. Seasonal signals retained. Seasonal signals removed.

TABLE 1 | Estimated coefficients I: White noise errors.

Series d

Seasonal retained 0.73 (0.69, 0.78) −17.3955 (−5.86) 0.0639 (3.95)
Seasonal removed 0.73 (0.69, 0.78) −17.3955 (−5.86) 0.0639 (3.95)

In parenthesis in column 2: 95% confidence band of values of d. In columns 3 and 4,
t-values.

TABLE 2 | Estimated coefficients imposing d � 0.

Series d (diff. par.) γ0 γ1

Seasonal retained 0.00 −15.6869 (−42.89) 0.0591 (115.36)
Seasonal removed 0.00 −15.5863 (−83.52) 0.0590 (225.60)

1The model of Bloomfield [7] is a non-parametric approach that produces errors
with the autocorrelation function decaying exponentially fast as in the ARMA case.
(see [17], for its implementation in the context of fractional integration).
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slightly smaller (0.66 for the seasonal retained data and 0.38 for the
seasonal removed data), and the slope coefficients are again
significant, 0.0637 in the first case (seasonal retained) and
0.0622 in the seasonal signals removed data. The estimated time
trends are displayed in Figure 1.

Finally, inTable 2, we display the coefficients under the assumption
that xt in Eq. 1 is I (0). Thus, the longmemory feature is not taken into
account. We observe that the slope coefficient, though significant, is
slightly smaller than under the I (d) specification. Note, however, that
this hypothesis is decisively rejected according to the results in Tables
1, 3 where d was found to be significantly positive. Thus, the fact that
the long memory is not considered here produces a bias reducing the
amount of the global sea level rise.

5 CONCLUSION

We have examined data corresponding to the global mean sea level
for the time period from 1992 to 2020, using a long range dependent
model based on fractional integration and testing for the presence of
time trends. Our results show first that long range dependence is a

feature of these data, consistent with works such as Ercan et al. [6]
and others, since the degree of differentiation is in the interval (0, 1)
in the two series examined. Moreover, the slope coefficient is highly
significantly positive and slightly higher than the one observed under
the wrong assumption that the errors are I (0).

Further work with these series should investigate other
alternative approaches for trends in the data such as LOWESS,
piece-wise-linear trends, or the presence of non-linear trends,
using, for example, either segmented trends based on structural
breaks or, alternatively, using non-linear polynomials in time, like
those based on Chebyshev polynomials [15], in both cases using
still long memory and fractional integration. Data disaggregated
by areas should also be examined. Finally, it would also be of
interest to link the inter-annual fluctuations with ENSO as
suggested by authors such as Cazenave et al. [16]. Work in
these directions is now in progress.
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TABLE 3 | Estimated coefficients II: Weakly autocorrelated (Bloomfield) errors.

Series d (diff. par.) γ0 γ1

Seasonal retained 0.66 (0.59, 0.75) −17.7419 (−6.52) 0.0637 (6.65)
Seasonal removed 0.38 (0.34, 0.42) −17.4462 (−15.31) 0.0622 (37.23)

In parenthesis in column2: 95%confidence bandof values of d. In columns3 and4, t-values.
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