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In this article, the convergence speed and robustness of the consensus for several dual-
layered star-composed multi-agent networks are studied through the method of graph
spectra. The consensus-related indices, which can measure the performance of the
coordination systems, refer to the algebraic connectivity of the graph and the network
coherence. In particular, graph operations are introduced to construct several novel two-
layered networks, the methods of graph spectra are applied to derive the network
coherence for the multi-agent networks, and we find that the adherence of star
topologies will make the first-order coherence of the dual-layered systems increase
some constants in the sense of limit computations. In the second-order case,
asymptotic properties also exist when the index is divided by the number of leaf
nodes. Finally, the consensus-related indices of the duplex networks with the same
number of nodes but non-isomorphic structures have been compared and simulated, and
it is found that both the first-order coherence and second-order coherence of the network
D are between A and B, and C has the best first-order robustness, but it has the worst
robustness in the second-order case.
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1 INTRODUCTION

Consensus is a class of distributed coordination problems of multi-agent systems, and the essence of
the problem is that all agents are required to achieve a common state value under some given control
strategies. In the networked system, the agents are required to communicate with each other based on
the graph of the network so that they can cooperate effectively to accomplish the
predetermined goals.

As a valuable interdisciplinary research field, consensus problems have received more and more
attention from scholars and engineers in recent years, and there exist many potential applications in
several aspects related to consensus such as sensor networks, formation control, and decision
making. Researchers have done many good research works on consensus from various perspectives
[1–18] and factors including the dynamics order (first/second order [1–15] or higher order),
communication ways (continuous or discontinuous [4, 6], the types of topologies (fixed or switching
[5]), convergence time (finite time or fixed time [16, 17]), and control methods (intermittent control
[6], adaptive control [7], impulsive control, etc.).

To solve the consensus problems, the linking structure among agents is always interpreted by the
communication graph of the system, and the performance indices of consensus models, such as
convergence speed [1, 8] and network coherence [10–14], can be characterized by the Laplacian
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eigenvalues of the graph. Synchronization problems, which share
similar control strategies and have the same essence as consensus
problems, are always connected with the network structure
[19–24] and are studied from the angle of graph theory.

There exist a great many valuable articles on coordination
problems with the application of Laplacian eigenvalues [1, 5–15,
20]. This enlightening research [1] has shown that the Fiedler
eigenvalue λ2 of an undirected (or directed) graph can
characterize the convergence speed of consensus problems.

In [9], the authors have investigated how the robustness
depends on the properties of the Laplacian eigenvalues of
graphs and give a derivation for the convergence speed and
the H2 norms of several classic graphs.

In [10, 11], the notion of network coherence has been
proposed, and it had been proved that the network coherence
can be quantified by nonzero Laplacian eigenvalues. Ref. [13]
studies the noisy consensus dynamics on windmill-type graphs,
and it is found that graph parameters and the number of leaders
have a profound impact on the studied consensus algorithms. In
[14], the authors found that 5-rose networks with small size have
high network coherence and can be considered to be more robust
to noise than networks with low coherence.

Lately, multilayer network is a frontier research branch of
network science, and the multilayered structure has many
examples in reality, for instance, the interactions between
power grid and Internet, friendship and family relations, or
transportation and aviation networks. Multiplex networks are
coupled multilayer networks where each layer consists of the
same node set but possibly different graph structures and layers
interact with each other only via counterpart nodes of different
layers [24, 25].

Considering that many real-world systems have multilayered
structures, it is necessary to extend the consensus theory related
to the Laplacian spectrum to multilayered graph structures. From
the perspective of the application, the star graph is one of the most
classic computer network structures. Star-related topologies are
widely considered in many fields including coordination control
problems [9, 15, 21, 22, 26, 27].

Based on the above analysis, this paper considers some dual-
layered networks with certain meaningful topologies constructed
by the graph operations, and each of the layers contains star
subgraphs. It is familiar that the star network can be viewed as a
point-to-multipoint communication system, and the dual-
layered networks with star subgraphs can be comprehended as
adding communication links among the counterpart nodes of
different layers of the networks.

This paper makes further efforts to use the theory of graph
spectra for studying the consensus indices related to robustness
and convergence speed. In this research, some scale-free networks
with symmetric structures and star subgraphs are considered.

Based on the chosen undirected graphs, we mainly study the
network coherence of consensus to communication noise with an
application of the theory of graph spectra. Specifically, the main
contributions of this paper are listed as follows:

1. Several novel duplex star-composed networks with different
linking structures but the same number of nodes have been

constructed by graph operations, and the similar structure is
the basis for comparative optimization.

2. Methods of graph spectra are applied to derive the
Laplacian spectrum. Several new results on the
asymptotic behavior of the consensus indices have been
acquired.

3. The results that the first-order robustness will increase by a
certain value depending on the number of leaf nodes have
been found.

The main aim of this research is to investigate the consensus
indices of the dynamical system with additive stochastic
disturbances, which are described as network coherence and
derived through the Laplacian spectrum.

The paper is organized as follows. In Section 2, some notations
on graph theory are summarized, and the relations between
performance and Laplacian eigenvalues are explained. In
Section 3, the constructions of two-layered systems and main
results are given. In Section 4, combined with the theorem of
algebraic graph theory, the simulation results are compared and
analyzed in Section 3.

2 PRELIMINARIES

2.1 Graph Theory and Notations
A complete graph of n vertices is denoted by Kn, and a star
graph with k leaves is denoted by Sk, where the leaf refers to
the vertex of degree 1. Ep is defined to be the empty graph
with p vertices, where the empty graph means the graph
without edges among all the nodes of the graph. Let G be a
graph with vertex set V � {v1, v2, . . ., vN}, and its edge set is
defined as E � {(i, j)|i, j � 1, 2, . . . , N; i ≠ j}. The adjacency
matrix of G is defined as A(G) � [aij]N, where aij is the weight
of the edge (i, j). In the undirected graph, one can see that (i,
j) and (j, i) are the same edge in E, i.e., aij � aji. All the edges in
our undirected networks are 0–1 weighted; that is,

aij � 1, (i, j) ∈ E;
0, (i, j) ∉ E.{ . The Laplacian matrix of G is

defined as L(G) � D(G) − A(G), where D(G) is the
diagonal degree matrix of G defined by D(G) � diag (d1,
d2, . . ., dN) with di � ∑

j≠i
aij. The Laplacian spectrum of G is

defined as S(L(G)) � λ1(G) λ2(G) . . . λp(G)
l1 l2 . . . lp

( ), where

λ1(G) < λ2(G) < . . ., < λp(G) are the eigenvalues of L(G),
and l1, l2, . . ., lp are the multiplicities of the eigenvalues [28].

To construct the novel dual-layered networks, the following
graph operations are needed.

Definition 1. [29] (The corona of two graphs) Let G1 and G2 be
two graphs on disjoint sets of n and k vertices, respectively.
The corona G1◦G2 of G1 and G2 is defined as the graph
obtained by taking one copy of G1 and n copies of G2 and then
joining the ith vertex of G1 to every vertex in the ith copy
of G2.
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Definition 2. [30, 31] (The Cartesian product of two graphs) For
two graphs G1 � (V1, E1) and G2 � (V2, E2), the Cartesian product
graph G � G1 × G2 is the graph with vertex set V1 × V2, and there
is an edge from the vertex (x1, y1) to the vertex (x2, y2) if and only
if either x1 � x2 and y1, y2 ∈ E2 or y1 � y2 and x1, x2 ∈ E1.

Lemma 1. [32] The eigenvalues of a circulant matrix C �
C(c0, c1, c2, . . . , cn−1)n are

λk � c0 + c1wk + c2w
2
k +/ + cn−1wn−1

k ,

where wk � exp(2kπin ), 0 ≤ k ≤ n − 1.

Lemma 2. [29] Let G1 be any graph with n1 vertices andm1 edges
and G2 be any graph with n2 vertices and m2 edges. Suppose that
S(L(G1)) � (μ1, μ2, . . . , μn1) and S(L(G2)) � (δ1, δ2, . . . , δn2).
Then the Laplacian spectrum of G1◦G2 is given by

i) Two multiplicity one eigenvalues (μi+n2+1)±
����������
(μi+n2+1)2−4μi

√
2

∈ S(L(G1◦G2)) for each eigenvalue μi (i � 1, 2, . . ., n1) of
S (L (G1));

ii) δj + 1 ∈ spec (L (G1◦G2)) with multiplicity n1 for every
eigenvalue δj (j � 2, . . ., n2) of S (L (G2)).

Lemma 3. [28] Let G be a graph of order n, and let �G be the graph
obtained from G by deleting the edge e of G. Then 0 � λ1( �G) �
λ1(G) ≤ λ2( �G) ≤ λ2(G) ≤ λ3( �G) ≤ λ3(G) ≤ . . . , ≤ λn−1( �G) ≤ λn−1
(G) ≤ λn( �G) ≤ λn(G).

2.2 Relations Between Consensus Index
and Laplacian Spectrum
The main objective of this work is to investigate the robustness of
the two-layered systems when the dynamics have external
disturbances and to accurately quantify the relations between
the consensus indices and Laplacian eigenvalues. The robustness
of the systems with noise can be described by the network
coherence; in addition, the convergence speed, which can be
characterized by λ2 (algebraic connectivity), is discussed.

i) The first-order system with noise is described by

_x t( ) � −L G( )x t( ) + ξ t( ) (1)

with x ∈ RN and where ξ(t) ∈ RN is a vector of delta-correlated
noise, and L(G) is the Laplacian matrix.

Definition 3. [10, 11] The first-order network coherence is
defined as the mean steady-state variance of the deviation
from the average of all node values:

Hf � lim
t→∞

1
N
∑N
i�1

Var xi t( ) − 1
N
∑N
j�1

xj t( )⎧⎨⎩ ⎫⎬⎭.

It has been proved that [10, 11] the first-order coherence Hf is
completely determined by the spectrum of L. Let the eigenvalues
of L be 0 � λ1 < λ2 ≤ . . ., ≤ λN, and then the first-order network
coherence is given by

Hf � 1
2N

∑N
i�2

1
λi
. (2)

ii) In the second-order system like the vehicle formation
problem, there are N vehicles, each with a position and
a velocity. The states in the system have a position vector x
∈ RN and a velocity vector v ∈ RN. The system can be
described by

_x t( )
_v t( )[ ] � 0 I

−L −L[ ] x t( )
v t( )[ ] + 0

I
[ ]ξ t( ), (3)

where 9 is a 2N-vector of zero mean white noise processes. I is the
identity matrix.

The second-order coherence can be also determined by the
eigenvalues of Laplacian matrix, that is,

Hs � 1
2N

∑N
i�2

1

λ2i
. (4)

The notion of network coherence implies the ability of
maintaining its convergence trend under the effect of
stochastic disturbances. The characterization of this consensus
index has some similarity with the Kirhoff index [33, 34].

3 MAIN RESULTS

As we mentioned in the Introduction part, the layered star-
like networks of this paper are a kind of network in which all
nodes have identical dynamics, and they have the topology
composed by linking the center nodes among the basic star
topologies. All the star-composed structures in this article are
undirected and connected; therefore, the networks
considered in this paper can achieve consensus. The
following subsections are given to define the three classes
of networks and to derive the coherence.

It should be noticed that in the case of A,B,C, and D, the leaf
nodes in one layer is designed to be disconnected with other
layers.

FIGURE 1 | An example of A, n � 5, p � 3.
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3.1 The consensus Indices for Network
Topology G(A) and G(A)
In this subsection, a sort of duplex star-like graph with symmetric
structure based on A is considered. Set G(A)dG(Kn × P2),
and G(A) � G(A)◦Ek.

As shown in Figure 1, let each node in A be the center nodes
that stick to a star structure with k leaf nodes, and the leaf nodes
with vertex degree equal to 1 are designed to have not the access to
link with other layers.

The Laplacian matrix of G(A)dG(Kn × P2) can be
characterized as follows:

L G A( )( ) � nIn − A Kn( ) −In
−In nIn − A Kn( )( )

therefore, by the corresponding characteristic polynomial, one

has SL(G(A)) � 0 n 2 2 + n
1 n − 1 1 n − 1

( ), and since

SL(Ek) � 0
k

( ), to network A, we have H(1)(A) � 1
2Na

∑N
i�2

1
λi
→ 0 as n → ∞, and H(2)(A) → 0 as n → ∞. By

Lemma 2, one can derive SL[G(A)], i.e., SL[(P2 ×Kn)◦Ek]
as follows:

i) 0 and k + 1 ∈ SL[G(A)] with multiplicity 1.

ii) n+k+1±
��������
(n+k+1)2−4n

√
2 ∈ SL[G(A)] with multiplicity (n − 1).

iii) 3+k±
������
(3+k)2−8

√
2 ∈ SL[G(A)] with multiplicity 1.

iv) 3+n+k±
�����������
(3+n+k)2−4(2+n)

√
2 ∈ SL[G(A)] with multiplicity n − 1.

v) 1 ∈ SL[G(A)] with multiplicity 2n (k − 1).

Therefore, it can be acquired that λ2 � 3+k−
������
(3+k)2−8

√
2 .The first-

order coherence for G(A) is

H 1( ) � 1
2Na

∑N
i�2

1
λi
� 1
2n k + 1( )

1
2 k + 1( ) +

n − 1

n + k + 1( ) +
��������������
k + 1 + n( )2 − 4n

√⎛⎜⎜⎜⎝⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ n − 1

n + k + 1( ) −
��������������
k + 1 + n( )2 − 4n

√ ⎞⎟⎟⎟⎠ + 1

3 + k( ) +
����������
3 + k( )2 − 8

√⎛⎜⎜⎜⎝ +

1

3 + k( ) −
����������
3 + k( )2 − 8

√ ⎞⎟⎟⎟⎠ + n − 1

3 + n + k( ) +
�������������������
3 + n + k( )2 − 4 2 + n( )

√⎛⎜⎜⎜⎝ +

n − 1

3 + n + k( ) −
�������������������
3 + n + k( )2 − 4 2 + n( )

√ ⎞⎟⎟⎟⎠ + 2n k − 1( )⎤⎥⎥⎥⎥⎥⎥⎥⎦ � 1
2n k + 1( )·

1
2 k + 1( ) +

n − 1( ) n + k + 1( )
2n

+ 3 + k( )
4

+ n − 1( ) 3 + n + k( )
2 2 + n( ) + 2n k([

−1)],

then if the number of nodes k is fixed, let n → ∞, and then one
has H(1) � 2k−1

2k+2; and if n is fixed, H(1) → (n−1)
4n2 + 1

8n + n−1
4n2+8n + 1 as

k → ∞.
The second-order coherence of the network can be calculated

as follows:

H 2( ) � 1
2Na

∑N
i�2

1

λ2i
� 1
2n k + 1( )

1

k + 1( )2 +
n − 1( ) n + k + 1( )2 − 2k{ }

4n2
( +

3 + k( )2 − 4
16

+ n − 1( ) 3 + n + k( )2 − 2 2 + n( ){ }
4 2 + n( )2 + 2n k − 1( )),

when k is fixed, let n → ∞, and one has H(2) → 1
8(k+1) + 1

16(k+1)+
k−1
k+1 � 16k−13

16(k+1), and when k → ∞, H(2)/k → n−1
2n + 1

32n + n−1
8n(2+n)2.

3.2 The Consensus Indices for Network
Topology G(B) and G(B)
As shown in Figure 2, let each node in B be the center nodes that
stick to a star structure with p leaf nodes, and then
G(B) � G(B)◦Ep, p ≥ 3, i.e., [Wn × P2]◦Ep, where Wn is the
wheel graph with n circle nodes and one center node. The leaf
nodes of which vertex degree equal to 1 are designed to
disconnected with the other layer.

Since

| L G B( )( ) − λI |� F −In+1
−In+1 F

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ � |F + In+1‖F − In+1|,

where

F �

n + 1 − λ −1 −1 −1 . . . . . . −1
−1 4 − λ −1 0 . . . 0 −1
−1 −1 4 − λ −1 0 . . . 0
−1 0 −1 4 − λ −1 1 «
« « « 1 1 1 0
−1 0 . . . . . . −1 4 − λ −1
−1 −1 0 . . . 0 −1 4 − λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and then one has

| L G B( )( ) − λI |� n + 3 − λ( )|λI − A|n + −1( )|λI − B|n{ } n + 1 − λ( )·{
λI − P|n + −1( )|λI − Q|n| },

where the circulant matrices A � C(5,−1, 0, . . . , 0,−1), B � C(6,
0, 1, . . . , 1, 0), P � C(3,−1, 0, . . . , 0,−1), Q � C(4, 0, 1, . . . , 1, 0).
Hence, by Lemma 1, the Laplacian spectrum of G(B) has the
following form:

SL(G(B)) � 0 2 1 + n 3 + n 1 + 4sin2
kπ

n
3 + 4sin2

kπ

n
1 1 1 1 1 1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.
where k � 1, 2, . . ., n − 1.

FIGURE 2 | An example of B, n � 7, p � 3.
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Therefore, the asymptotic properties of coherence for G(B)
can be calculated as follows:

lim
n→∞

H 1( ) � 1
4
∫1

0

1

1 + 4sin2 πx( ) +
1
4
∫1

0

1

3 + 4sin2 πx( )

�
�
5

√
20

+
��
21

√
84

≈ 0.166

lim
n→∞

H 2( ) � 1
4
∫1

0

1

1 + 4sin2 πx( )( )2

+ 1
4
∫1

0

1

3 + 4sin2 πx( )( )2 ≈ 0.32

Therefore, by Lemma 2, the Laplacian spectrum of G(B) has
the following characterization:

1) p + 1 and 0 ∈ SL[G(B)] with multiplicity 1.

2) 2+n+p±
�����������
(2+n+p)2−4(1+n)

√
2 ∈ SL[G(B)] with multiplicity 1.

3)
(2+4sin2(kπn )+p)±

��������������������
(2+4sin2(kπn )+p)2−4(1+4sin2(kπn ))

√
2 ∈ SL[G(B)] with

multiplicity 1, k � 1, 2, . . ., n − 1.

4) 3+p±
������
(3+p)2−8

√
2 ∈ SL[G(B)] with multiplicity 1.

5) 4+n+p±
�����������
(4+n+p)2−4(3+n)

√
2 ∈ SL[G(B)] with multiplicity 1.

6)
(4+4sin2(kπn )+p)±

��������������������
(4+4sin2(kπn )+p)2−4(3+4sin2(kπn ))

√
2 ∈ SL[G(B)] with

multiplicity 1, k � 1, 2, . . ., n − 1.
7) 1 ∈ SL[G(B)] with multiplicity 2 (n + 1) (p − 1).

Therefore, the convergence speed has the

description λ2 � 3+p−
������
(3+p)2−8

√
2 .

Suppose that p is fixed, and then the first-order coherence of
network B is

H 1( ) � 1
2Na

∑N
i�2

1
λi
� 1
4 n + 1( ) p + 1( ) 1

p + 1
+ 2 + n + p

1 + n
(

+∑n−1
k�1

1 + 1 + p

1 + 4sin2
kπ

n
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + 3 + p

2
+ 4 + n + p

3 + n
+∑n−1

k�1
1 + 1 + p

3 + 4sin2
kπ

n
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+2 n + 1( ) p − 1( ))
If p is fixed, then we have

lim
n→∞

H 1( ) � p

2 p + 1( ) + 1
4
∫1

0

1

1 + 4sin2 πx( ) dx + 1
4
∫1

0

1

3 + 4sin2 πx( )dx

� p

2 p + 1( ) +
�
5

√
20

+
��
21

√
84

,

and when n is fixed, H(1) → 1
4(n+1)2 + 1

4(n+1)· ∑n−1
k�1 1

1+4sin2(kπn )
+

1
8(n+1) + 1

4(n+1)(n+3) + 1
4(n+1) ·∑n−1

k�1 1
3+4sin2(kπn )

+ 1
2;and if n → ∞,

p → ∞, then

H 1( ) � 1
4
∫1

0

1
1 + 4sin2 πx( ) dx + 1

4
∫1

0

1
3 + 4sin2 πx( ) dx

+ 1
2
≈ 0.667

Remark 1. From the above derivation, it can be acquired that if
the layered network has been added star topologies with each
node, thenH(1) will increase p

2(p+1) as n→∞, which infers that if p
is fixed, then the coherence will increase by a constant instead of
increasing indefinitely as n → ∞.

The second-order coherence of B can be calculated as
follows:

H 2( ) � 1
2Na

∑N
i�2

1

λ2i

� 1
4 n + 1( ) 1 + p( ) ∑n−1

k�1

p2 + 2p 2 + 4sin2
kπ

n
( )( ) + 2 + 4sin2

kπ

n
( )( )2

1 + 4sin2
kπ

n
( )( )2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 2

1 + 4sin2
kπ

n
( )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +∑n−1
k�1

p2 + 2p 4 + 4sin2
kπ

n
( )( ) + 4 + 4sin2

kπ

n
( )( )2

3 + 4sin2
kπ

n
( )( )2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 2

3 + 4sin2
kπ

n
( )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + 1

p + 1( )2 + 1 + 1 + p

3 + n
( )2 − 2

3 + n

+ 1 + 1 + p

1 + n
( )2 − 2

1 + n
+ 3 + p( )2 − 4

4
+ 2 n + 1( ) p − 1( ))

If n is fixed, one has

lim
p→∞

H 2( )/p � 1
4 n + 1( ) ∑

n−1

k�1

1

1 + 4sin2
kπ

n
( )( )2 +

1
4 n + 1( ) ∑

n−1

k�1

1

3 + 4sin2
kπ

n
( )( )2

+ 1

4 n + 1( ) n + 3( )2 +
1

4 n + 1( )3 +
1

16 n + 1( ).

If p is fixed, one has

lim
n→∞

H 2( ) � p2

4 1 + p( )∫
1

0

1

1 + 4sin2 πx( )( )2 dx + p

1 + p
∫1

0

1 + 2sin2 πx( )
1 + 4sin2 πx( )( )2 dx

+ 1
1 + p

∫1

0

1 + 2sin2 πx( )( )2
1 + 4sin2 πx( )( )2 dx − 1

2 1 + p( ) ∫
1

0

1

1 + 4sin2 πx( )dx

+ p2

4 1 + p( ) ∫
1

0

1

3 + 4sin2 πx( )( )2 dx + 2p
1 + p

∫1

0

1 + sin2 πx( )
3 + 4sin2 πx( )( )2 dx

+ 4
1 + p

∫1

0

1 + sin2 πx( )( )2
3 + 4sin2 πx( )( )2 dx − 1

2 1 + p( ) ∫
1

0

1

3 + 4sin2 πx( )dx

+ p − 1
2 p + 1( )

� 3
�
5

√
100

p2

1 + p( ) + 4
�
5

√
25

p

1 + p
+ 13

�
5

√
100

+ 1
4

( ) 1
1 + p

−
�
5

√
10

1
1 + p( )

+ 5
��
21

√
1764

p2

1 + p( ) + 13
��
21

√
441

p

1 + p
+ 47

��
21

√
1764

+ 1
4

( ) 1
1 + p

−
��
21

√
42

1
1 + p( )

+ p − 1
2 p + 1( )

≈ 0.801
p2

1 + p
+ 0.993

p

1 + p
+ 0.079

1
1 + p

.
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3.3 The Consensus Indices for Network
Topology G(C) and G(C)
In this subsection, based on the idea that the leaf nodes
might have communications with each other, fan-graph
structures are added on the original layered dual-star
topology, i.e., G(C)d(Sn × P2)◦Pl. As shown in Figure 3,
the black nodes have a larger degree, and they compose
into the topology G(C)dSn × P2, and the blue nodes form
into the edges of the fan structure. The blue nodes in one
layer are designed to be disconnected from the other
layer.By

| L G C( )( ) − λI |� J −In+1
−In+1 J

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣,

where

J �

n − λ −1 −1 . . . −1
−1 2 − λ 0 . . . 0
−1 0 2 − λ 0 . . . ,
« . . . . . . 1 «
−1 0 0 . . . 2 − λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Then it can be derived that

SL G C( )( ) � 0 2 n + 1 n + 3 1 3
1 1 1 1 n − 1 n − 1

( ),
therefore, to network C, λ2(C) � 1,H(1) → 1

3 and H(2) → 5
18, and

since SL(Pm) � (0, 4sin2(kπ
2m)), k � 1, 2, . . . , m − 1 [35]. The

Laplacian spectrum of G(C) has the following description:

1) 0 and m + 1 ∈ SL(G(C)) with multiplicity 1.

2) (3+m)±
������
(3+m)2−8

√
2 ∈ SL(G(C)) with multiplicity 1.

3) (n+m+2)±
�����������
(n+m+2)2−4(n+1)

√
2 ∈ SL(G(C)) with multiplicity 1.

4) (n+m+4)±
�����������
(n+m+4)2−4(n+3)

√
2 ∈ SL(G(C)) with multiplicity 1.

5) (m+2)±
������
(m+2)2−4

√
2 ∈ SL(G(C)) with multiplicity (n − 1).

6) (m+4)±
�������
(m+4)2−12

√
2 ∈ SL(G(C)) with multiplicity (n − 1).

7) 4sin2(kπ
2m) + 1 ∈ SL(G(C)) with multiplicity 2 (n + 1), k � 1, 2,

. . . , m − 1.

Therefore, the first-order coherence of C is as follows:

H 1( ) � 1
2Na

∑N
i�2

1
λi

� 1
4 n + 1( ) m + 1( )

1
m + 1

+ 3 +m

2
+ n +m + 2

n + 1
+ n +m + 4

n + 3
(

+ n − 1( ) m + 2( ) + n − 1( ) 4 +m( )
3

+ 2 n + 1( )∑m−1

k�1

1

4sin2
kπ

2m
+ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Therefore, 1) when m is fixed, n → ∞, one has
H(1) → 2m+5

6m+6 + 1
2(m+1)∑m−1

k�1
1

4sin2(kπ
2m)+1

; 2) when n is fixed, m →

∞, H(1)→ 1
8(n+1)+ 1

4(n+1)2+ 1
4(n+1)(n+3)+1

3(n−1n+1)+1
2∫10 1

4sin2πx2 +1 dx.
Hence, H(1) → 1

3 + 1
2∫10 1

4sin2πx2 +1dx ≈ 0.55.

The second-order coherence of C is

H 2( ) � 1
2Na

∑N
i�2

1

λ2i

� 1
4 n + 1( ) m + 1( )

1

m + 1( )2 +
m + 3( )2 − 4

4
+ m + n + 2( )2 − 2 n + 1( )

n + 1( )2(
+ m + n + 4( )2 − 2 n + 3( )

n + 3( )2 + n − 1( ) m + 2( )2 − 2[ ] + n − 1( ) m + 4( )2 − 6[ ]

+2 n + 1( )∑m-1
k�1

1

4sin2
kπ

2m
+ 1( )2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Then, one has H(2)(C) → m2+6m+6
2(m+1) + 1

2(m+1)∑m−1
k�1 1

(4sin2(kπ
2m)+1)2

> 5
18 � H(2)(C), and it can be derived that

H(2)/m → 1
2, as m, n → ∞.

3.4 The Consensus Indices for Network
Topology G(D) and G(D)
In this subsection, the two layered star-composed multi-agent
network D and D are considered, where DdD◦Ek, and D is a
duplex complete bipartite graph structure Km,m,
i.e., D � Km,m × P2. As shown in Figure 4, the black nodes
form into a duplex structure, in which each layer is the
complete bipartite graph.

Through the similar methods of former subsection, it can be
derived that

SL G D( )[ ] � 0 2m m 2 2m + 2 m + 2
1 1 2 m − 1( ) 1 1 2 m − 1( )( ),

and then we have H(1)(D) � 1
2Na

∑N
i�2

1
λi
→ 0; H(2)(D) → 0, as

m → ∞.
To the case with network structure G(D): [G(D)]◦Ek,

SL[G(D)] has the following form:

1) 0 and (k + 1) ∈ SL(G(D)) with multiplicity 1.

2) (2m+k+1)±
����������
(2m+k+1)2−8m

√
2 ∈ SL(G(D)) with multiplicity 1.

3) (m+k+1)±
���������
(m+k+1)2−4m

√
2 ∈ SL(G(D)) with multiplicity 2 (m − 1).

4) (3+k)±
������
(3+k)2−8

√
2 ∈ SL(G(D)) with multiplicity 1.

5) (2m+k+3)±
������������
(2m+k+3)2−8(m+1)

√
2 ∈ SL(G(D)) with multiplicity 1.

FIGURE 3 | An example of G(C): (Sn × P2)◦Pm, n � 5, m � 3.
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FIGURE 4 | An example of D, m � 3, p � 3.

FIGURE 5 | The change of H(1) for the four networks, n � 4.

FIGURE 6 | The change of H(2) for the four networks, n � 4.

FIGURE 7 | The change of H(1) for A.

FIGURE 8 | The change of H(1) for B.

FIGURE 9 | The change of H(1) for C.
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6) (m+k+3)±
������������
(m+k+3)2−4(m+2)

√
2 ∈ SL(G(D)) with multiplicity

2 (m − 1).
7) 1 ∈ SL(G(D)) with multiplicity 4m (k − 1).

Then the coherence for D can be derived as follows:

H 1( ) � 1
2Na

∑N
i�2

1
λi

� 1
8m 1 + k( )

1
k + 1( ) +

2m + k + 1
2m

+ 2 m − 1( )m + k + 1
m

+ 3 + k

2
(

+2m + 3 + k

2 m + 1( ) + 2 m − 1( )m + 3 + k

m + 2
+ 4m k − 1( )),

when the number of leaves, i.e., k is fixed, and m → ∞, then
H(1) → k

2k+2; and if m is fixed, and k → ∞,

then H(1) → 5m−3
16m2 + 1

16m2+16m + m−1
4m2+8m + 1

2.

H 2( ) � 1
2Na

∑N
i�2

1

λ2i

� 1
8m 1 + k( )

1

k + 1( )2 +
2m + k + 1( )2 − 4m

8m2 + m − 1( ) m + k + 1( )2 − 2m[ ]
m2

⎛⎝
+ 3 + k( )2 − 4

8
+ 2m + 3 + k( )2 − 8 m + 1( )

8 m + 1( )2 + 2 m − 1( ) m + 3 + k( )2 − 2 m + 2( )
m + 2( )2

+4m k − 1( )).

If the number of leaf nodes k is fixed, then one has
limm→∞H(2) � 4k−1

8(k+1); and if m is fixed, we have H(2)/
k → m2+8m−7

64m3 + 1
64m(m+1)2 + (m−1)

4m(m+2)2, (k → ∞).

FIGURE 10 | The change of H(1) for D.

FIGURE 11 | The change of H(2) for A.

FIGURE 12 | The change of H(2) for B.

FIGURE 13 | The change of H(2) for C.

FIGURE 14 | The change of H(2) for D.
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Remark 2. To the dual-layered star-composed networksA, B ,C
and D, if the two counterpart nodes of the leaf nodes of different
layers are designed to have connections with each other, then the
robustness of the acquired duplex networks is better than that does
not have links between the counterpart leaf nodes. For instance, to
A (see Figure 1), if the graph structure is changed from (Kn ×
P2)◦Ek to (Kn◦Ek) × P2, then by Lemma 3, it can be derived
that the coherence performance is better than before.

Remark 3. A limitation of the framework in this article is that the
graph is undirected, and one may consider some reasonable
directed cases in future research. In addition, another worthy
research direction may be focused on extending the two-layered
case into multilayered ones.

4 SIMULATION AND COMPARISON

In this section, the comparisons of performance for these two-
layeredmulti-star networks are made. One can see from Section 3
that the convergence speed of A,B,D has the following relation:
λ2(A) � λ2(B) � λ2(D)> λ2(C) � 1, and if the number of center
nodes and leaf nodes are both equal, then the convergence speed
of the four multi-star networks has the following relation:

((p + 3) −
����������
(p + 3)2 − 8

√
)/2 � λ2(A) � λ2(B)�λ2(D)> λ2(C) �

((k + 2) −
����������
(k + 2)2 − 4

√
)/2. Furthermore, one can get the

maximum convergence speed of A, B, and D,
i.e., �λ2max � 3 − �

7
√

, and the maximum convergence speed of
C is λ2max(C) � (5 − ��

21
√ )/2. One can see that the convergence

speed of the two-layered multi-star network is irrelevant with the
number of center nodes n.

To the network coherence for the duplex networks and the
two-layered multi-star ones, two perspective comparisons are
made; that is, vertically, A and A, B and B, etc. The following
asymptotic relations can be acquired:

limn→∞H(1)(A) � limn→∞H(1)(A) + (2k − 1)/(2k + 1).
limn→∞H(2)(A) � limn→∞H(2)(A) + (16k − 13)/(16k + 16).
limn→∞H(1)(B) � limn→∞H(1)(B) + p/(2p + 2).
limn→∞H(2)(B)/p � limn→∞H(2)(B), and for C, when m is

large enough.
limn→∞H(1)(C) � limn→∞H(1)(C) + �

5
√

/10,
limn→∞H(2)(C)≫H(2)(C) when m is a larger constant. For D,
we have limn→∞H(1)(D) � limn→∞H(1)(D) + 1/(k + 1).

limn→∞H(2)(D) � limn→∞H(2)(D) + (4k − 1)/(8k + 8);
Horizontally, A,B, C,D and A,B,C,D. It can be inferred that

the operation of adding star topologies to D has less influence on
both first- and second-order coherence than to A.

The variance of the first- and second-order coherence for
A,B,C,D is shown in Figures 5–14. From the results in Section
3 and Figures 5, 6, when n is fixed, one can see that C has the best
first-order robustness of the four networks.B andD have similar first-
order robustness, and B is slightly better than D, and of them,
H(1)(A) has the largest value. To the second-order case, C has
the largest value of the four; this is just the opposite of the first-order
case. Around n � 20,H(2)(D) is less than that ofA at first, and then
its value is gradually between A and B (see Figure 6).

Figures 7–14 show the change of the first- and second-order
coherence of the four networks with respect to the two
parameters n and p (n, p ∈ [3, 100]). It can be seen that the
simulation verifies the results well.

CONCLUSION

In this research, the convergence speed and robustness of the
consensus for several dual-layered multi-agent systems, which can
be measured by the algebraic connectivity and the network
coherence, are studied. In particular, the methods of graph
spectra are applied to analyze the graph structure and derive the
network coherence for the multi-agent networks, and it is found that
there exist some asymptotic properties for the indices. When the
number of leaf and center node p, n is large enough, the operation of
adding star topologies will make the first-order coherence of A
increase approximately at 1, and 1

2 to B and D,
�
5

√
10 to C.

Finally, the consensus-related indices of the duplex networks
with the same number of nodes but non-isomorphic structures
have been compared and simulated, and it is found thatA has the
worst first-order network coherence of these networks, but it
has the fastest convergence speed and the best second-order
coherence; C has the best first-order robustness, but it has the
worst robustness in the second-order case. Both the first-
order coherence and second-order coherence of D are
between A and B.
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