AUTHOR=Nakamasu Akiko M. TITLE=Correspondences Between Parameters in a Reaction-Diffusion Model and Connexin Functions During Zebrafish Stripe Formation JOURNAL=Frontiers in Physics VOLUME=Volume 9 - 2021 YEAR=2022 URL=https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2021.805659 DOI=10.3389/fphy.2021.805659 ISSN=2296-424X ABSTRACT=Different diffusivities among interacting substances actualize the potential instability of a system. When these elicited instabilities manifested as forms of spatial periodicity, they are called Turing patterns. Simulations using general reaction-diffusion (RD) models had demonstrated that pigment patterns on the body trunk of growing fish follow a Turing pattern. Laser ablation experiments performed on zebrafish revealed apparent interactions among pigment cells, which allowed for a three-components RD model to be derived. However, the underlying molecular mechanisms responsible for Turing pattern formation in this system had been remained unknown. A zebrafish mutant with a spotted pattern was found to have a defect in Connexin41.8 (Cx41.8) which, together with Cx39.4, exists in pigment cells and controls pattern formations. Here, molecular-level evidence derived from connexin analyses was linked to the interactions among pigment cells described in previous RD modeling. Channels on pigment cells were generalized as “gates,” and the effects of respective gates were deduced. The model used partial differential equations (PDEs) enabled numerical and mathematical analyses of characteristics observed in the experiments. Furthermore, the improved PDE model including nonlinear reaction terms enabled the consideration of the behavior of components realistically.