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The compaction density of sand-gravel materials has a strong gradation correlation, mainly
affected by somematerial source parameters such as P5 content (material proportion with
particle size greater than 5mm), maximum particle size and curvature coefficient. When
evaluating the compaction density of sand-gravel materials, the existing compaction
density evaluation models have poor robustness and adaptability because they do not
take into full consideration the impact of material source parameters. To overcome the
shortcomings of existing compaction density models, this study comprehensively
considers the impact of material source parameters and compaction parameters on
compaction density. Firstly, asymmetric data were fused and a multi-source
heterogeneous dataset was established for compaction density analysis. Then, the
Elman neural network optimized by the adaptive simulated annealing particle swarm
optimization algorithm was proposed to establish the compaction density evaluation
model. Finally, a case study of the Dashimen water conservancy project in China is
employed to demonstrate the effectiveness and feasibility of the proposed method. The
results show that this model performs high-precision evaluation of the compaction density
at any position of the entire working area which can timely correct the weak area of
compaction density on the spot, and reduce the number of test pit tests.

Keywords: evaluation of compaction density, sand-gravel dam, material source parameter, Elman neural network,
modified particle optimization algorithm

1 INTRODUCTION

As a cohesionless coarse-grained soil material, sand-gravel material has higher strength and
deformation modulus after compaction. It has the advantages of capacity to absorb large seismic
energy, and adaptability to diverse foundation conditions [1]. In China’s vast southern Xinjiang
region, natural sand-gravel materials with abundant reserves are broadly distributed in riverbeds and
the Gobi Desert. The sand-gravel dam has become one of the most common dam types in water
conservancy and hydropower development in this region because of its use of local materials, simple
structure, good deformation adaptability, and few construction procedures and other characteristics.
In the process of dam filling and rolling, efficacious control of compaction density is indispensable to
ensure the safe operation of the dam, which directly affects the stability and durability of the dam.
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Improving the compaction density of sand-gravel dam can
effectively reduce engineering accidents such as seepage
damage and dam cracking [2].

According to the current construction specifications [3], the
conventional method of dam compaction density control at the
construction site is an association of controlling compaction
parameters during construction operation and post-operation
quality-control (i.e., spot tests of material density). It relies on
manual sampling inspection of compaction density and control of
compaction parameters [4]. The conventional compaction
density control method can neither guarantee the compaction
density of the entire construction area nor satisfy the demand for
intelligent and efficient construction.

In recent years, with several ultra-high earth-rock dams,
traditional construction and evaluation methods have become
inadequate. The intelligent construction of dams has shown
strong development momentum, comprehensively enhancing the
overall level of engineering construction information management.
The real-time compaction monitoring system(RCMS) has been
extensively investigated and applied in dam quality control. It can
realize the entire-process and fine control during dam rolling
construction and provide a real-time evaluation method that can
reflect the construction quality of the entire work area.

The existing earthwork compactionmonitoring systemmainly
consists of a real-time monitoring system of rolling compaction
parameters and a compaction density evaluation model. Among
them, the former was initially proposed and applied in road
construction. With the advance of technology and research,
continuous compaction control (CCC) [5, 6], intelligent
compaction (IC) [7, 8] and roller integrated compaction
monitoring (RICM) [9–11] systems have been successively
applied. Nevertheless, considering the considerable variations
between road construction and earth-rock dam construction in
physical properties, construction technology and quality control
indexes, these researches are not completely applicable to earth-
rock dam construction [12].

During the last decade or so, through the unremitting efforts of
many scholars, the compaction monitoring system in the
construction of earth-rock dams has gradually matured. Zhong
et al. [13, 14] put forward a real-time monitoring technology for
dam construction quality, which can effectively control
compaction parameters and ensure better construction quality,
and has been successfully applied to Nuozhadu Project. Chen
et al. [15] developed an improved unmanned driving technology
for construction machinery without changing the oil circuit,
circuit control system and mechanical structure, and applied it
to the Chushandian Reservoir in Henan Province to verify the
applicability and effectiveness of the technology. Huang et al. [16]
developed a real-time construction quality supervising system for
face rockfill dams to supervise the working surface’s compaction
parameters, including rolling track, rolling times, rolling speed
and compacted thickness, which has been successfully applied in
the construction of the concrete face rockfill dam of Shuibuya
hydropower station. Zhang et al. [17] presented an unmanned
rolling compaction system for rockfill materials during
construction, and proved the effectiveness and high efficiency
of the system in the field application of the Qianping reservoir

project. Liu et al. [12] utilized RTK-GPS and RICM technology to
monitor the compaction value and rolling construction parameters
(such as compaction passes, vibration status and compacted
thickness, etc.) in the construction process of earthwork, and
proposed a method for evaluating the compaction density of
earth-rock dam based on the simultaneous control of
compaction degree and rolling construction parameters.

In terms of the evaluation model of compaction density, some
related researches have been conducted by scholars. Multiple
linear regression models and neural network frameworks are used
to establish compaction density evaluation models. Yang and Shi
[18] analyzed the impact of rainfall on vibration compaction
value (VC) in detail through an experimental test of the Longtan
RCC dam, and established the corresponding nonlinear
regression model. Liu et al. [19] established a corresponding
multiple linear regression model considering the impact of rolling
parameters and the moisture content on compactness, and
verified its validity in the NZD dam project in southwest
China. Thompson et al. [20] fully considered the influence of
soil type and moisture content, and respectively established
multiple regression models of dry soil density, Kriging impact
value (CIV), dynamic cone penetration value (DCP) and soil
stiffness (ELWD) represented by MDP and water content as
independent variables. Wang et al. [21] constructed a
compacting quality evaluation model based on support vector
regression with chaotic firefly algorithm (CFA), which provided a
new idea for compaction density evaluations that combine
intelligent bionic algorithms with data mining algorithms.

Although many scholars have conducted in-depth studies on
the evaluation model of compaction density in various aspects,
these evaluation models have the following problems in the real-
time monitoring system. Firstly, the existing compaction density
evaluation models mainly focus on the fine-grained soil with a
small particle size distribution range (less than 120 mm) and lack
of research on the sand-gravel materials with an extensive particle
size distribution range (more than 200 mm). Secondly, the
existing evaluation model does not fully consider the changes
of soil attributes (moisture content and gradation), which means
that the same index values may not represent the same density
under different soil attributes [19]. The dry density of filling
materials during dam construction has a gradation correlation.
However, in the construction quality control of dammaterial, the
influence of P5 content on dry density is mainly considered. In
contrast, the effects of maximum particle size, variable coefficient
and curvature coefficient are not fully considered. In the dam
material grading analysis, the traditional grading screening
method separates the test pit materials. However, there are
numerous shortcomings, such as low sampling rate,
cumbersome operation process, interference of human factors
in the test process and results. The obtained material source
parameter data is quite scarce. One of the most significant and
arduous issues of current research is effectively combining and
analyzing the asymmetric data of a small amount of material
parameter data and a large amount of rolling construction
parameter data in the compaction density evaluation model.
Thirdly, the relationship between dry density and its factors is
complicated and fuzzy. The existing compaction density
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evaluationmodel established by the regressionmodel is intuitive and
straightforward and suitable for a few parameters and known curve
types [22]. It is arduous to reach an appropriate regressionmodel for
multi-parameter and nonlinear relationships. When evaluating the
compaction density of sand-gravel materials, the robustness and
adaptability of the existing models become worse due to the
significant difference in the particle size of filling materials.

In order to overcome the shortcomings of the investigation
above, this paper selected sand-gravel materials as the research
object, statistically collects and collates the detected data of test
pits on filling units of different divisions after the rolling
construction as well as the compaction parameters at the test
pit position obtained from the RCMS as the historical database. A
multi-source heterogeneous dataset was established by
integrating rolling construction parameter data, material
source parameter data and compaction density data.
Moreover, in order to improve the accuracy of the compaction
density forecasting model, Elman neural network (ENN) is
introduced to construct a compaction density evaluation
model of the sand-gravel dam coupled with dam material
source parameters and compaction parameters. Given the
inherent problems of ENN such as slow convergence speed
and falling into local optimum easily [23], this paper adopts
an adaptive simulated annealing particle swarm optimization
algorithm to optimize Elman neural network (ASAPSO-ENN).
The prediction ability of the proposed model is verified by field
test data in the Dashimen water conservancy project and
compared with other models based on evaluation indexes.

2 METHODOLOGY

The workflow of the proposed methodology is illustrated in
Figure 1, which mainly includes three parts: the acquisition of

evaluation parameters, the establishment of neural network
models and the comprehensive evaluation of compaction
density. Firstly, the data of rolling construction parameters,
material source parameters and compaction density were
obtained, and a multi-source heterogeneous dataset collected
by different data acquisition systems is established. Secondly,
the Elman neural network optimized by the adaptive simulated
annealing particle swarm optimization algorithm is used to
construct the compaction density evaluation model. The
material source parameter and rolling parameter data are
applied to the inputs, whereas the compaction density data
from the in-situ test is the output. A better learning effect can
be achieved by adjusting the neural network topology, the
number of iterations, and the error accuracy of learning.
Finally, the proposed methodology is applied to the sand-
gravel dam’s compaction density evaluation in China’s
hydropower project.

2.1 Acquisition and Establishment of a
Multi-Source Heterogeneous Dataset
The factors affecting the compaction density of the sand-gravel
dam include compaction parameters and material source
parameters. The data of compaction parameters can be
obtained in a real-time compaction quality monitoring system.
RCMS is independently developed by our research group, as
shown in Figure 2, including vehicle-mounted terminal
equipment (Figure 2A), data transmission system (Figure 2B)
and software platform system (Figure 2C). During the filling and
rolling construction of the sand-gravel dam, many vehicle-
mounted terminal devices are installed on the vibratory roller,
and the sampling equipment is generally set to a sampling
frequency of 1 Hz to collect the rolling construction
parameters. The collected construction parameter data include

FIGURE 1 | The framework of the proposed methodology.
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the vehicle coordinates, rolling thickness, vibration frequency
and acceleration, etc. These rolling construction parameter data
are huge, and each filling unit will generate nearly one million
pieces of construction information. The collected data is
transmitted to the management platform and the industrial
board installed in the mechanical cab through the data
transmission system to guide and remind the construction
operation.

The material source parameter data and compaction
density data can be obtained from pit testing of the
finished work area. The pit testing includes dry density
measurements and grading analysis of test pit material
after compaction, whose specific processes are shown in
Figure 3. Dry density measurements were carried out by
the water-filling method. The grading analysis was
conducted via sieving to obtain the P5 content, curvature
coefficient and maximal particle size of the sand-gravel
materials samples, which is carried out simultaneously with
dry density measurements. Regarding detected data of test pits

in the construction area, there are only a few quality testing
groups for each unit project (only about 3–5 groups), and it is
impossible to get their values in every position on the surface. In
order to incorporate a small amount of material source
parameter data with a large number of construction
parameter data, and realize the comprehensive evaluation of
the compaction density of the entire unit engineering, this paper
collects and collates the detected data of test pits on filling units
of different divisions after the rolling construction as the
historical database. According to the position coordinates of
the test pits, the compaction parameters at the corresponding
points were found from the RCMS, and a multi-source
heterogeneous dataset was established by integrating rolling
construction parameter data, material source parameter data
and compaction density data.

2.2 ASAPSO-ENN Model
The flowchart diagram of the proposed ASAPSO-ENNmodel can
be demonstrated as Figure 4. This section will elaborate on the

FIGURE 2 | Real-time compaction monitoring system.

FIGURE 3 | Material source parameters and compaction density data collection.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 8062314

Liu et al. Compaction Density Evaluation Model

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Elman neural network and intelligent optimization algorithm
adopted by the proposed model in this paper.

2.2.1 Elman Neural Network
Elman neural network is a multi-layer dynamic neural network
proposed by Elman in 1990 [24]. Because of its dynamic recursive
structure, it has a good approximation ability to nonlinear
function, so it is widely used in blasting vibration velocity
forecasting [25], spatiotemporal drought prediction [26],
ammonia adsorption forecasting [27] and other related fields.
As shown in Figure 5, Elman neural network is divided into four
layers: input layer, hidden layer, output layer and context layer.
The connection of the input, hidden and output layer is similar to
that of feedforward neural networks. However, the difference is
that the context layer is added to store the output value of the
neuron of the hidden layer at the previous moment. The output of
the hidden layer is re-used as the input to the hidden layer by
taking over the delay and storage of the context layer. This kind of
connection enables the network to enjoy a memory function for

historical state data, thereby increasing the ability of the network
to deal with dynamic information. The spatial equation of state of
Elman neural network at k moment is:⎧⎪⎪⎨⎪⎪⎩ z(k) � g(ωj,q• h(k))

h(k) � f(ωj,m•c(k) + ωi,j•u(k − 1))
c(k) � h(k − 1)

(1)

where h(k), c(k) and z(k) respectively represent the output vectors
of the hidden layer, the context layer and output layer at the
moment k; u(k-1) is the input layer vector at the moment k-1; g(•)
and f(•) are transfer functions of output layer and hidden layer
respectively; ωi,j, ωj,m and ωj,q are connection weights between
input layer and hidden layer, context layer and hidden layer,
hidden layer and output layer respectively. The weights of the
Elman network are adjusted byminimizing themean square error
(MSE), the minimum mean square error is adopted to adjust the
weights of Elman network in this study. The formulation of MSE
is listed as follows:

FIGURE 4 | Flowchart diagram of the proposed ASAPSO-ENN model.
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MSE � 1
N

∑N
k�1

[z(k) − zt(k)]2 (2)

where z(k) is the actual value at time k, zt(k) is the predicted value
at time k.

2.2.2 Particle Swarm Optimization Algorithm
Particle swarm optimization algorithm is an evolutionary
computation technique proposed by Kenney and Eberhart
in 1995 [28], which is derived from the behavior research
of birds predation. The algorithm is a global optimization
method based on swarm intelligence theory, guided by swarm
intelligence generated by cooperation and competition
among particles in the swarm. In PSO, the solution of each
optimization problem is regarded as a flying particle in the
search space. All particles enjoy a fitness value determined by
the optimized objective function, and each particle has a

velocity that determines the direction and distance of its
flight. Particles adjust their velocity and position dynamically by
integrating individual cognition and social cognition, searching in
the solution space, and finding the optimal solution through
iteration [29]. When the search space is D-dimensional and the
size of the particle swarm is N, the velocity and position of the
particle during each iteration (Figure 6) is updated by the following
relation:

vid(t + 1) � ωvid(t) + c1r1(Pbestid(t) − xid(t))
+c2r2(Gbestid(t) − xid(t)) (3)

xid(t + 1) � xid(t) + vid(t + 1) (4)

where i � 1,2. . .N; d � 1,2. . .D; t is the number of iterations; ω is
the inertia weight; c1 and c2 are the learning factors; r1 and r2 are
random numbers between 0 and 1, which are used tomaintain the
diversity of the population; vid(t) and xid(t) respectively represent
the velocity and position in the d-dimensional space of the ith
particle at iteration t; Pbestid(t) and Gbestid(t) denote the
historical optimal positions of individual particle and group
particles at iteration t, respectively.

According to Eq. 3, the update of particle velocity consists of
three parts. The first part reflects the degree of the particle affected
by the current velocity, which is related to the current state of the
particle and balances exploitation (local search) and exploration
(global search). The second part is the self-cognition of particles,
reflecting the impact of their historical memory. The third part is
the social cognition of particles, which reflects the information
sharing and cooperation among particles. Under the joint action
of these three parts, the particle adjusts its position and velocity
continuously according to the historical experience and the
information-sharing mechanism to find the optimal solution
to the problem. From what has been discussed above, the
inertia weigh ω and learning factors are essential parameters
that affect the optimization performance of the algorithm
[30, 31].

FIGURE 5 | Topology structure of Elman neural network.

FIGURE 6 | Search trajectory of particle swarm optimization.
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Although the PSO algorithm shows remarkable performance,
it has disadvantages such as local convergence and prematurity
when dealing with complex and high-dimensional optimization
problems. In order to overcome the above shortcomings, this
paper modifies the original algorithm from the aspects of inertia
weight and learning factor, and introduces a simulated annealing
method to ensure that the algorithm can jump out of the local
optimal solution.

2.2.3 Adaptive Particle Swarm Optimization
2.2.3.1 Adaptive Adjusted Inertial Weight
Inertia weight is a critical important parameter in PSO algorithm,
which describes the impact of the velocity of the previous
generation on the current generation. The appropriate value
for the inertia weight can effectively balance the global and
local optimization ability of PSO algorithm. Generally, the
larger inertia weight is favorable to global exploration, while
the smaller inertia weight tends to facilitate local exploration to
fine-tune the current search area [32].The selection of inertia
weight is proportional to the algorithm’s convergence speed and
global search ability, and inversely proportional to the local
search ability. In order to improve the optimization velocity of
the particle swarm algorithm and avoid the algorithm from falling
into the local optimal solution, this paper adopts the hyperbolic
tangent function of the independent variable in the interval [-5, 5]
to control the inertia weight coefficient for nonlinearly adaptive
variation. The adaptive inertia weight formula defined in this
paper is as follows:

ω � ωmin + ωmax

2
+ tanh( − 5 + 10p

Tmax − t

Tmax
)pωmax − ωmin

2
(5)

where Tmax is the maximum iteration number; t is the current
iteration number; ωmax and ωmin are the maximum and
minimum inertia weighs respectively; A large number of
experiments have proved that the algorithm performance will
be greatly improved when ωmax � 0.95 and ωmin � 0.4 [33].

The adaptive inertia weight function shown in Figure 7 adopts
a nonlinear control strategy. In the initial stage of the search, the
inertia weight decreases slowly, and the particles have sufficient
time to conduct a large range of global searches, which is

beneficial to reduce the situation of falling into the local
optimum. In the middle stage, the inertia weight is
approximately linearly decreasing, which gradually enhances
local search ability. While at a later period, the rate of change
of inertia weight slowed down again, focusing on meticulous local
search to accurately determine the global optimal solution.

2.2.3.2 Adaptive-Adjusted Learning Factors
Particle swarm optimization algorithm is a gradual convergence
in the iterative process, and the diversity of the population will
inevitably decrease during the entire iterative process, which is
not conducive to the particle seeking the optimal solution. Based
on the standard PSO algorithm, this paper performs second-
order oscillation processing on the particle velocity update to
further increase the diversity of the population and improve the
global and local convergence balance performance of the
algorithm. The improved optimization algorithm focuses on
global search in the initial stage, emphasizes the self-cognition
ability of particles, pays attention to the ergodicity of particle
motion and reduces the probability of falling into a local optimal
solution. With the increase of the number of iterations, the
algorithm strengthens the communication between particles so
that the position of the optimal solution of the population has a
more significant impact on the search of each particle, and the
local search is focused on the vicinity of Gbestid(t). The modified
formula is as follows:

vid(t + 1) � ωvid(t) + c1r1(Pbestid(t) − (1 + ξ1)xid(t)
+ ξ1xid(t − 1)) + c2r2(Gbestid(t) − (1 + ξ2)xid(t)
+ ξ2xid(t − 1))xid(t + 1)

� xid(t) + vid(t + 1)
(6)

where the value of the second-order oscillation factor ξ1 and ξ2 are
as follows [34]:

ξ1 <
2

����
c1r1

√ − 1
c1r1

, ξ2 <
2

����
c2r2

√ − 1
c2r2

if t< Tmax

2
(7)

ξ1 ≥
2

����
c1r1

√ − 1
c1r1

, ξ2 ≥
2

����
c2r2

√ − 1
c2r2

if t≥
Tmax

2
(8)

2.2.4 Adaptive Simulated Annealing Particle Swarm
Optimization
A simulated annealing algorithm is a global searchmethod based on
a metal annealing mechanism, which can achieve the optimal
objective function solution in the sense of probability. According
to a certain probability in the process of finding the extreme value, it
allows the objective function to deteriorate within a limited range to
jump out of the local optimal solution and finallymake the algorithm
converge to the global optimal value. The simulated annealing
algorithm is introduced into the APSO algorithm, accepting the
deteriorating solution. When the temperature is higher, the
probability of the algorithm accepting the deteriorating solution
becomes higher. As the temperature decreases, the probability of the
algorithm accepting the deteriorating solution decreases, which is
convenient for the algorithm to break away from the restraint of the
local extreme value and finally find the global optimal solution. For

FIGURE 7 | Diagram of adaptive variation of inertia weight.
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optimization problems, internal energy can be abstracted as the
fitness function, and the solving process of the algorithm is as follows
[35, 36]:

Step 1): Initialize the annealing temperature Tk, generate a
random initial solution x0 and calculate the corresponding
objective function value f(x0).
Step 2): Perturb the current solution x0 to generate a new
feasible solution x’, calculate the corresponding objective
function value f(x’), and get Δf � f(x’)- f(x0).
Step(3): According to the probability formula (min{1, exp(-Δf/
Tk)} > random[0,1]) to receive x’, where random[0,1] is a
random number within the range [0,1].
Step(4): Annealing operation: Tk+1 � αTk (where α is the
temperature decline coefficient, α<1). If the convergence
criterion is fulfilled, the annealing process ends. Otherwise,
repeat Step 2) and Step 3) until the convergence conditions are
fulfilled.

So far, the complete pseudo-code of ASAPSO algorithm is
described in Algorithm 1.

Algorithm 1. Procedure ASAPSO

2.3 Material Source Parameters Generation
in Engineering Applications
The sand-gravel material consists of subrounded and rounded
particles, which are not easy to break in the rolling construction
process and have higher strength and deformation modulus after
compaction [37]. The grading curve of the sand-gravel materials
after rolling construction is close to the original grading curve of
the material field [38]. This paper takes the asphalt concrete core
sand-gravel dam filling material of the Dashimen water
conservancy project as the research object. According to a large
amount of geological exploration data in the early stage of the dam
filling construction, the sand-gravel materials used to fill the dam
shell are derived from the layers formed in the same geological
period. The historical causes and geological movements
experienced in the sand-gravel material accumulation are the
same, so the physical characteristics of the sand-gravel materials
in this layer are pretty similar. The particle composition has
apparent regularity for the sand-gravel materials from the same
layer. This regularity should be consistent in the whole stratum and
obey a specific probability density distribution law.

In mathematical-statistical analysis, Weibull distribution has
strong applicability to all types of test data. It can be applied to
large sample data and has good applicability to small sample data.
It can obtain a more accurate estimation of the gradation
parameters distribution, which is a commonly used probability
statistical method. The expression of the two-parameter Weibull
distribution function and the corresponding density function can
be expressed as [39]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F(x) � 1 − exp[ − (x
η
)ξ⎤⎦

f(x) � ξ

η
(x
η
)ξ−1

exp⎡⎣ − (x
η
)ξ⎤⎦ (9)

where F(x) is the distribution function; f(x) is the density
function; x is the random variable; ξ is the shape parameter,
and η is the scale parameter.

In order to determine the overall distribution of material
source parameters more accurately, this paper firstly
determines the distribution model with two-parameter Weibull
distribution as the material source parameters through the
goodness of fit test. Then 1000 groups of regenerated sub-
samples were extracted from the above empirical distribution
function by the Bootstrap sampling method. These regenerated
sub-samples were fitted with Weibull distribution to obtain 1000
groups of shape parameters and scale parameters. The mean
values of these shape and scale parameters were counted as
parameter estimation of Weibull distribution of material
source parameters. This paper’s parameterized Bootstrap
sampling method is better than the traditional Bootstrap
sampling method. With the continuous development of
construction, the sample data of material source parameters
will gradually increase. The statistics obtained using the
parameterized Bootstrap method in this paper can effectively
reflect the distribution of material source parameters.
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3 CASE STUDYONCOMPACTIONDENSITY
OF SAND-GRAVEL DAM

3.1 Project Overview
In this section, based on real-time monitoring data and pit testing
data collected from the asphalt concrete core sand-gravel dam of
the Dashimen water conservancy project in the Xinjiang Province
of China, the compaction density of the dam surface is evaluated
by using themethod presented in this paper. The retaining dam of
the Dashimen water conservancy project is a 128.8-meter-high
sand-gravel dam with an asphalt concrete core wall, and its
structural design is shown in Figure 8. The main engineering
quantities of the dam filling materials include about 3.128 million
cubic meters of sand-gravel materials, about 161,000 cubic meters
of transition material, about 14,000 cubic meters of asphalt
concrete, and about 185,000 cubic meters of available rockfill
materials. Sand-gravel materials account for 90% of the total
filling amount, thus this paper mainly analyzes and studies the
compaction density control of sand-gravel materials.

3.2 Establishing the ASAPSO-ENN Model
This study collected and sorted out the 130 groups of quality
inspection data of the sand-gravel material area from March 20,
2018 to November 4, 2019. The material source parameters in the

quality inspection data include P5 content, maximal particle size,
curvature coefficient, the material proportion with particle size
less than 0.0075 mm(<0.0075 mm) and uneven coefficient. By
matching the spatial coordinates of the pit testing data, rolling
construction parameter data (vibration frequency, acceleration,
rolling thickness, rolling velocity) at the test pit location can be
readily retrieved from the real-time compaction quality
monitoring system (RCMS). By integrating compaction
parameters data, material source parameters data and
compaction density data, a multi-source heterogeneous
structure dataset was established for neural network learning,
which contained nine input features and one target output.

The input features in the dataset are relatively comprehensive
and may contain some redundant features or irrelevant features,
which greatly increase the training time and computational
complexity of the neural network learning algorithm and may
reduce the accuracy of the model prediction. In this paper, the
Pearson correlation coefficient is utilized to select correlation
features and redundancy features from the aspects of correlation
and redundancy. Firstly, correlation analysis between each
feature and the compaction density is conducted to remove
the features irrelevant to the predicted target, and the
corresponding correlation coefficient is shown in Figure 9. In
order to retain useful information as much as possible and avoid

FIGURE 8 | Standard cross section of Dashimen asphalt concrete core dam.

FIGURE 9 | Correlation coefficient between each feature and compaction density.
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losing essential features for target prediction, features with
correlation coefficients greater than 0.1 are selected for
subsequent analysis. Then the features are sorted from largest
to smallest according to the correlation coefficient, and the
correlation coefficient between the features is calculated to
eliminate redundant features. Suppose the correlation
coefficient between any two features is greater than 0.75. In
that case, it indicates a strong correlation between them, and
the feature whose correlation coefficient ranks behind is
eliminated. When one of the two features is eliminated, the
remaining feature will retain unconditionally. After analysis, it

is found that the correlation coefficient between excitation
frequency and acceleration is higher than 0.75, so the
acceleration is eliminated. Finally, six attributes, namely P5
content, maximum particle size, curvature coefficient, vibration
frequency, rolling thickness, and rolling velocity, were chosen to
evaluate the compaction density of sand-gravel material.

The data after the above feature selection is subjected to
abnormal data cleaning and normalization operations. Then the
author randomly selects 104 sets of data in the effective dataset
after data processing as the training group, and 26 sets of data as
the test group. In order to reflect the improvement in prediction
accuracy of the proposed model, the authors compare the
prediction results of the ASAPSO-ENN model with those of
ENN, PSO-ENN and APSO-ENN on the test dataset. The
parameters in Table 1 are used to establish a single ENN
model. Then PSO, APSO and ASAPSO algorithms are
respectively adopted to optimize the initial weights and
thresholds of ENN. In this paper, PSO, APSO and ASAPSO
have different adjustment strategies for particle motion, and the
parameter settings of these three algorithms are shown in
Table 2.

The particle swarm optimization algorithm uses the mean
square error (MSE) as the fitness function. The algorithm is
compared with the PSO and APSO algorithm to prove the
effectiveness and accuracy of the ASAPSO algorithm in this
paper. Figure 10 shows the evolution curve of these
algorithms. As can be seen from the figure, APSO has
made adaptive improvements to the algorithm’s inertia
weight and learning factor on the traditional benchmark
PSO, making the traditional benchmark PSO algorithm
jump out of the local optimal solution to a certain extent.
In this paper, the simulated annealing operation is introduced
on the basis of APSO, which significantly enhances the ability
to jump out of the local optimal solution and improves the
accuracy of search results. In addition, the algorithm
proposed in this paper also has certain advantages in
convergence speed.

Then, to demonstrate the accuracy of the compaction
density evaluation model constructed by the proposed
algorithm in this research, four commonly applied error
evaluation indicators are introduced, namely the
determination coefficient R2 Eq. 10, the mean square error
MSE Eq. 2, the root mean square error RMSE Eq. 11, and the
mean absolute error MAE Eq. 12.

R2 � 1 − ∑N
k�1[z(k) − zt(k)]2∑N
k�1[z(k) − zp(k)]2 (10)

RMSE �

�����������������
1
N

∑N
k�1

[z(k) − zt(k)]2
√√

(11)

MAE � 1
N

∑N
k�1

|z(k) − zt(k)| (12)

where z(k) is the actual value at time k; zt(k) is the predicted
value at time k; zp(k) is the mean of the actual value at time k;
and N is the total number of testing samples dataset.

TABLE 1 | Parameter settings of ENN.

Parameter Value

Input layer nodes 6
Hidden layer nodes 8
Output layer nodes 1
Number of hidden layer 1
Transfer function {’tansig’,’purelin’}
Transfer function trainlm
Performance function MSE
Learning rate 0.01
Maximum training epochs 1000
Expected error 0.0001

TABLE 2 | Parameter settings of PSO, APSO and ASAPSO.

Parameter Optimization algorithm Value

Population size PSO, APSO and ASAPSO 30
Maximum evolutional generation PSO, APSO and ASAPSO 60
Inertia weight PSO 0.95

APSO and ASAPSO [0.4,0.95]
Learning factors c1 and c2 PSO, APSO and ASAPSO 2
Second-order oscillation factor APSO and ASAPSO Eqs 7, 8
Particle velocity range PSO, APSO and ASAPSO [−2, 2]
Particle position range PSO, APSO and ASAPSO [−5, 5]
Maximum temperature ASAPSO 30
Temperature decline coefficient ASAPSO 0.95

FIGURE 10 | The evolution curve of these algorithms.
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The evaluation indicators of each prediction model are
demonstrated in Figure 11. The figure indicates that the
proposed model ASAPSO-ENN is the best performer. The
ASAPSO-ENN model proposed in this paper can be
effectively used to evaluate compaction density.

3.3 Compaction Density Assessment for the
Entire Filling Construction Area
Based on the compaction density evaluation method of the
entire filling construction area proposed in Section 3.2, we
selected the filling unit DSMD52 of the asphalt concrete core
sand-gravel dam of the Dashimen water conservancy project as
the test area to evaluate the effectiveness of the compaction
density evaluation method. The compaction work area was
divided into 1 m ×1 m grids, and the compaction parameter
data at the grid points can be obtained in the real-time
compaction quality monitoring system. Then the Weibull
distribution function of each material source parameter
(Table 3) is calculated according to the method described in
Section 2.3, which is used to generate the material source
parameters at each grid point. Further, the rolling
compaction and material source parameters are input into
the trained ASAPSO-ENN model to predict dry density at
grid points. After that, the compaction density covering
100% of the compaction area can be estimated by Kriging
interpolation. According to the dam material design
requirements, the overall passing rate of the dry density (ρd
≥ 2.282 g/cm3) of whole sand-gravel materials should be more
than 97%. It can be seen from Figure 12 that the percentage of
the compaction density exceeding 97% is 100%, indicating that
the work area fulfills the construction design requirements and
the compaction density reaches the corresponding standards.

FIGURE 11 | Comparison of error evaluation indicators of different evaluation models.

TABLE 3 | Distribution function of material source parameters.

Material source parameter Shape parameter ξ Scale parameter η Distribution function F(x)

P5 content 36.88 74.88 Fn(x) � 1 − exp[−( x
74.88)36.88]

Curvature coefficient 3.67 5.01 Fn(x) � 1 − exp[−( x
5.01)3.67]

Maximal particle size 6.01 327.95 Fn(x) � 1 − exp[−( x
327.95)6.01]

FIGURE 12 | Distribution of compaction density predicted by ASAPSO-
ENN model.
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Through the model proposed in this paper, the dry density of the
entire working area can be predicted in real-time during the rolling
construction process. In addition, the weak area of compaction
density can be remedied on the spot, which effectively solves the
problem that the post-evaluation method cannot remedy in time. At
the same time, the model can perform a high-precision evaluation of
the compaction density at any position of the entire working area
based on considering the impact of the material source parameters,
reducing the number of test pit tests.

4 CONCLUSION AND PROSPECT

The compaction density of sand-gravel materials has a strong
gradation correlation, which is mainly affected by some material
characteristic parameters such as P5 content, maximum particle
size and curvature coefficient. When evaluating the compaction
density of sand-gravel materials, the existing compaction density
evaluationmodels have poor robustness and adaptability because it
does not fully consider the impact of material source parameters.
Systematic research on the compaction density evaluation of sand-
gravel materials is carried out based on the Dashimen water
conservancy project in China to overcome the shortcomings of
existing compaction density models. In this paper, the Elman
neural network optimized by the adaptive simulated annealing
particle swarm optimization algorithm is proposed to establish the
compaction density evaluation model, which realizes the dynamic
compaction density assessment of the construction layer. The
major contributions of this research are summarized as follows:

1. This research collects and collates the detected data of test pits on
filling units of different divisions after the rolling construction as
well as the compaction parameters at test pit position obtained
from the RCMS as the historical database, and a multi-source
heterogeneous dataset was established by integrating rolling
construction parameter data, material source parameter data
and compaction density data. Realize the fusion of asymmetric
data (material source and rolling parameters), providing data
support for the comprehensive evaluation of the compaction
density for the entire working area.

2. In order to improve the stability and reliability of the predicted
output of ENN, the adaptive simulated annealing particle
swarm optimization algorithm is used to optimize the
internal parameters of ENN iteratively. It greatly enhances
the ability of the algorithm to jump out of the local optimal
solution and improves the accuracy of search results compared
with the traditional benchmark algorithm.

3. The ASAPSO-ENN model proposed in this study can be
effectively used to evaluate compaction density. Through the
model proposed in this paper, the dry density of the entire

working area can be predicted in real-time during the rolling
construction process. The weak area of compaction density can
be remedied on the spot in time. At the same time, the model
can perform a high-precision evaluation of the compaction
density at any position of the entire working area based on
considering the impact of the material source parameters,
reducing the number of test pit tests.

In this study, the bionic intelligent algorithm and the neural
network model are combined to improve the neural network
model’s prediction performance effectively. The model in this
paper is suitable for detecting the compaction density of sand-
gravel materials with large particle size distribution (0–400 mm).
It should be noted that this research only collects and collates the
test pit data of Dashimen water conservancy project. In the future,
more field test pit data of different hydraulic engineering will be
collected to establish multi-source heterogeneous historical
datasets under different geological conditions to obtain a more
accurate evaluation model of sand-gravel material.
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