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In this paper, we study two classes of a space curve evolution in terms of Frenet frame for
the visco-Da Rios equation in a 3-dimensional Riemannain manifold. Also, we obtain the
connection between the visco-Da Rios equation and nonlinear Schrödinger equation for
two classes in a 3-dimensional Riemannain manifold with constant sectional curvature.
Finally, we give the Bäcklund transformations of space curve with the visco-Da Rios
equation.
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1 INTRODUCTION

The study of the motion of curves is understanding many physical processes such as dynamics of vortex
filaments and Heisenberg spin chains. In particular, the dynamics of vortex filaments has provided for
almost a century one of the most interesting connections between differential geometry and soliton
equation. Lamb [1] described the connection between a certain class of the moving curves in Euclidean
space with certain integrable equations. Also, Murugesh and Balakrishnan [2] showed that there are two
other classes of curve evolution that get associated with a given solution of the integrable equation as
natural extensions of Lamb’s formulation and they investigated nonlinear Schrödinger (NLS) equations of
integrable equations with modified vortex filaments for two classes.

Vortex filament equation is also called Da Rios equation or localized induction equation. The theory of
solitons of Da Rios equation was discovered by Hasimoto proving that the solutions of Da Rios equation
are related to solutions of the cubic nonlinear Schrödinger equation, which is well known to be an equation
with soliton sloution [3–9] etc. In particular, Barros et al. [10] studied solutions ofDaRios equation in three
dimensional Lorentzian space form and they also gave classification of flat ruled surfaces with Da Rios
equation. Aydin et al. [11] investigated flat Hasimoto surfaces given by 1-parameter family of Da Rios
equation in pseudo-Galilean space. By using Da Rios equation, Grbović and Nešović [12] studied derived
the vortex filament equation for a null Cartan curve and obtained evolution equation for it’s torsion. Also,
they described Bäcklund transformation of a null Cartan curve in Minkowski 3-space as a transformation
whichmaps a null Cartan helix to another null Cartan helix. Qu,Han andKang [13] investigated Bäcklund
transformations relating to binormal flow and extended Harry-Dym flow as integrable geometric flows.
Some special solutions of the integrable systems are used to obtain the explicit Bäcklund transformations.
Also, Sariaydin [14] dealt with Bäcklund transformation for extended Harry-Dym flow as geometric flow,
and author gave new solutions of the integrable system from the aid of the extended version of the Riccati
mapping method.

On the other hand, Langer and Perline [15] introduced a natural generalization of the Da Rios equation
in higher dimensional space. Pak [16] find a complete description of the connection between the Da Rios
equation and nonlinear Schrödinger equation on complete 3-dimensional Riemannian manifold and he
also studied the case when viscosity effects are present on the dynamics of the fluids in a complete 3-
dimensional Riemannian manifold, that is, he considered the equation as follows:
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, (1.1)

where w is the viscosity and a non-negative constant. Equation 1.1 is
called the visco-Da Rios equation. If the viscosity w is zero, the
equation is reduced to Da Rios equation on Riemannian manifold,
and if the manifold is 3-dimensional Euclidean space, the equation is
classical Da Rios equation. Pak [16] discussed the visco-Da Rios
equation in a 3-dimensional Riemannian manifold for the first class
introduced by Lamb.

This paper is organized as the follows: In Section 2, we present a
brief review for evolutions of Frenet frame of a curve in 3-dimensional
Riemannianmanifold. In Section 3, we investigate the geometric flow
described by Eq. 1.1 for two classes introduced by Murugesh and
Balakrishnan, and give the connection between the visco-Da Rios
equation and nonlinear Schrödinger equation in 3-dimensional
Riemannian manifold with constant sectional curvature. Finally, in
Section 4 we discuss Bäcklund transformations associated with the
visco-Da Rios Eq. 1.1 for two classes of a curve in a 3-dimensional
Riemannian manifold.

2 PRELIMINARIES

Let (M, 〈,〉) be a 3-dimensional Riemannian manifold and ∇
denotes the Levi-Civita connection of M. Let TpM denotes the set
of all tangent vectors to M at p ∈ M. For a vector X in TpM, we
define the norm of X by ‖X‖ � ������

〈X,X〉
√

.
Let C: I → M be a smooth curve parametrized by arc-length s

and {t � DC
ds ,n, b} be the Frenet frame of the curve C. We denote

by DX
ds (s) ≔ ∇tX(s) for the derivative of a vector field X along the

curve C(s). Then the Frenet equations define the curvature κ(s)
and the torsion τ(s) along C(s) as follows:

D

ds

t
n
b

⎛⎜⎝ ⎞⎟⎠ �
0 κ 0
−κ 0 τ
0 −τ 0

⎛⎜⎝ ⎞⎟⎠ t
n
b

⎛⎜⎝ ⎞⎟⎠. (2.1)

It is well-known that the time evolutions of the moving frames
{t, n, b} are expressed as

D

dt

t
n
b

⎛⎜⎝ ⎞⎟⎠ �
0 α β
−α 0 γ
−β −γ 0

⎛⎜⎝ ⎞⎟⎠ t
n
b

⎛⎜⎝ ⎞⎟⎠, (2.2)

where α, β and γ are smooth functions which determine the
motion of the curve C. Also, the compatibility conditions

D

dt

D

ds
t( ) � D

ds

D

dt
t( ),

D

dt

D

ds
b( ) � D

ds

D

dt
b( )

imply

zκ

zt
� zα

zs
− τβ,

zτ

zt
� zγ

zs
+ κβ,

zβ

zs
� κγ − τα.

(2.3)

3 NONLINEAR SCHRÖDINGER EQUATION
FOR TWO CLASSES
3.1 Nonlinear Schrödinger Equation for the
Second Class
Consider the second frame {B,M, �M} for the second class of the
unit speed curve as follows:

B � b,
M � n − it( )ϕ1,
�M � n + it( )ϕ1,

(3.1)

where ϕ1 � ei∫κ and �X represents the complex conjugate of X.
Now to get the repulsive type nonlinear Schrödinger equation

(NLS−) of the second class of the curve evolution, we take the
second Hasimoto transformation defined by [17].

ϕ � τϕ1. (3.2)

FromEq. 3.1, the following lemma shows away of changing the old
moving frame {t, n, b} into the new complex valued frame {B,M, �M}.

Lemma 1. We have

t
n
b

⎛⎜⎝ ⎞⎟⎠ �

i

2
ϕ1 − i

2
ϕ1 0

1
2
ϕ1

1
2
ϕ1 0

0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M
�M
B

⎛⎜⎝ ⎞⎟⎠. (3.3)

Now we consider

X � zC
zs

� b (3.4)

and a geometric flow

zC
zt

� g1t + g2n + g3b, (3.5)

where g1, g2 and g3 are smooth functions with parameters s and t.
Since the parameters s and t are independent, and Levi-Civita

connection is symmetric, we have

D

ds

zγ

zt
( ) � D

ds
g1t + g2n + g3b( )

� zg1

zs
− κg2( ) t + zg2

zs
+ κg1 − g3τ( )n + zg3

zs
+ τg2( ) b,

D

dt

zγ

zs
( ) � D

dt
b � −βt − γn,

which imply

−β � zg1

zs
− κg2,

−γ � zg2

zs
+ κg1 − τg3,

zg3

zs
� −τg2.

(3.6)

Suppose that the geometric flow zC
zt of the spatial curve C on a 3-

dimensional Riemannian manifold satisfies the visco-Da Rios
equation as follows:
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zC
zt

� zC
zs

∧
D

ds

zC
zs

+ w
zC
zs� τt + wb.

(3.7)

Then, we can choose g1 � τ, g2 � 0 and g3 � w in Eqs. 3.5, 3.6
leads to

β � −zτ
zs
, γ � −κτ + wτ.

Thus, from the third equation in Eq. 2.3 and the above
equations we obtain

α � 1
τ

z2τ

zs2
− κ2 + κw

and have the following theorem for the time evolution
equations:

Theorem 1. The geometric flow Eq. 3.7 implies the time
evolutions of frame fields, the curvature and the torsion of a
spatial curve C with the second frame in a 3-dimensional
Riemannian manifold as follows:

D

dt

t
n
b

⎛⎜⎝ ⎞⎟⎠ �
0

τss
τ
− κ2 + κw −τs

−τss
τ
+ κ2 − κw 0 −κτ + τw

τs κτ − τw 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

t
n
b

⎛⎜⎝ ⎞⎟⎠,

(3.8)

κt � τss
τ
− κ2 + κw( )

s
+ ττs,

τt � −κτ + τw( )s − κτs,
(3.9)

where we denote zζ
zs � ζ s and

zζ
zt � ζ t.

Remark 1. System Eq. 3.9 has a solution as

κ s, t( ) � 1
2

w − 2b
a

( ),
τ s, t( ) � a sech

a

2
s + bt + c( ),

where a, b, c are constants with a ≠ 0.
Lemma 2. Let {B,M, �M} be the complex - valued second frame

of the curve C defined by Eq. 3.1 in 3-dimensional Riemannian
manifold. If the geometric flow Ct of the curve C satisfies the
visco-Da-Rios equation, the Riemannian curvature tensor R
satisfies the following:

R Ct, Cs( )M � −iR1213|ϕ|2M + ϕ R1323 − iR1313( )B, (3.10)

where R1213 � 〈R(t, n)t, b〉, R1323 � 〈R(t, b)n, b〉 and R1313 �
〈R(t, b)t, b〉.

Proof. In fact R(Ct, Cs)M � R(τt + wb, b)(n − it)ϕ1 �
ϕR(t, b)n − iϕR(t, b)t implies Eq. 3.10.

Theorem 2. The visco-Da Rios equation for the second frame
of the curve C in 3-dimensional Riemannian manifold given as

zC
zt

� zC
zs

∧
D

ds

zC
zs

+ w
zC
zs

(3.11)

is equivalent to the non-linear Schrödinger equation

ϕt � iϕss + wϕs + F ϕ( )ϕ, (3.12)

where a complex valued function F(ϕ) � i
2|ϕ|2 − R1323 +

iR1313 − i∫R1213|ϕ|dt + i
2D(t) for some real valued function D(t).

Proof. First, we can compute the derivative of the vector M
with the help of Eq. 3.8 as:

D

dt
M � D

dt
n − it( )ei∫ κds⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

� wϕ + iϕs( )B + iQ s, t( )M,

it follows that we have

D

ds

D

dt
M( ) � D

ds
wϕ + iϕs( )B + iQM( )

� wϕs + iϕss + iQϕ( )B − τ wϕ + iϕs( )n + iQsM,

where Q(s, t) � κ − κ2 + κw − τss
τ . Since n � 1

2 ϕ1M + 1
2ϕ1

�M
and ϕ � τϕ1, the last equation becomes

D

ds

D

dt
M( ) � wϕs + iϕss + iQϕ( )B

+ iQs − 1
2
wϕ�ϕ − 1

2
iϕs

�ϕ( )M + −1
2
wϕ2 − 1

2
iϕϕs( ) �M.

(3.13)

Also, one finds

D

dt

D

ds
M( ) � ϕtB + 1

2
−wϕ�ϕ + iϕ�ϕs( )M − 1

2
wϕ2 + iϕϕs( ) �M.

(3.14)

On the other hand, the Riemannian curvature identity is given by

R Ct, Cs( )M � D

ds

D

dt
M − D

dt

D

ds
M, (3.15)

it follows that from Eqs. 3.13, 3.14 we have

R Ct, Cs( )M � wϕs + iϕss + iQϕ − ϕt( )B + iQs − 1
2
i|ϕ|2s( )M.

(3.16)

Combining Eqs. 3.11, 3.16 we get

wϕs + iϕss + iQϕ − ϕt � ϕ R1323 − iR1313( ),
Qs − 1

2
|ϕ|2s � −R1213|ϕ|2, (3.17)

and the second equation of Eq. 3.17 implies

Q s, t( ) � 1
2
|ϕ|2 − ∫R1213|ϕ|2ds +D t( ),

where D(t) is a real valued function with a parameter t. Thus,
the first Eq. 3.17 leads to a non-linear Schrödinger equation

ϕt � iϕss + wϕs + F ϕ( )ϕ
with a complex valued function F(ϕ) � i

2|ϕ|2 − R1323 +
iR1313 − i∫R1213|ϕ|dt + i

2D(t).
Now, we consider a 3-dimensional Riemannian manifold with

constant sectional curvature.
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Theorem 3. The visco-Da Rios equation for the second frame
of the curve C in 3-dimensional Riemannian manifold with
constant sectional curvature c is equivalent to the focusing
non-linear Schrödinger equation

iΦt � −Φss − 1
2
|Φ|2Φ,

with a transformation Φ(s, t) � ϕ(s, t)ew
2
4 t−1

2∫t(D(r)+c+w2)dr−1
2ws.

Proof. It is well known that a 3-dimensional Riemannian
manifold has a constant sectional curvature c if and only if

〈R X,Y( )W,Z〉 � c 〈X,W〉〈Y,Z〉 − 〈Y,W〉〈X,Z〉( ) (3.18)

for tangent vectors X, Y, Z and W. From this, we get

R1323 � 〈R t, b( )n, b〉 � 0, R1213 � 〈R t,n( )b, b〉 � 0.

So, the non-linear Schrödinger Eq. 3.12 in Theorem 2 is
reduced to

ϕt � iϕss + wϕs +
i

2
|ϕ|2 +D t( ) + c( )ϕ. (3.19)

Now, we put

Φ s, t( ) � ϕ s, t( )eA,
where A � w2

4 it − i
2∫t(D(r) + c + w2)dr − i

2ws, its partial
derivatives with respect to t and s imply

ϕt � e−A(Φt − i
w2

4
Φ + i

2
D t( ) + c + w2( )Φ,

ϕs � e−A Φs + i

2
wΦ( ),

ϕss � e−A Φss + iwΦs − 1
4
w2Φ( ).

Thus, Eq. 3.19 is expressed as the focusing non-linear
Schrödinger equation:

iΦt � −Φss − 1
2
|Φ|2Φ.

Example 1. The visco-Da Rios equation for the second frame of
the curve C in 3-dimensional Riemannian manifold with constant
sectional curvature c is transformed into the non-linear Schrödinger
equation Eq. 3.19 by using the second Hasimoto transformation Eq.
3.2. To solve the non-linear Schrödinger equation:

ϕt � iϕss + wϕs +
i

2
|ϕ|2 +D t( ) + c( )ϕ, (3.20)

the starting hypothesis is

ϕ s, t( ) � f s −mt( ) � f ρ( ),
where ρ � s − mt. We substitute above relation into Eq. 3.20

to get:

m
df ρ( )
dρ

� −i d
2f ρ( )
dρ2

− w
df ρ( )
dρ

+ i

2
κ2 ρ( ) +D t( ) + c( )f ρ( ).

Suppose that the curve C has constant curvature, that is, κ(ρ) �
constant(� κ0), and D(t) � 0. Then the last equation leads to

d2f

dρ2
− i m + w( ) df

dρ
+ 1
2

κ20 + c( )f � 0,

whose solution is

f ρ( ) � ϕ s, t( ) � c1e
−1
2 i −m−w+

����������
m+w( )2+2 κ20+c( )√( ) s−mt( )

+c2e
1
2 i m+w+

����������
m+w( )2+2 κ20+c( )√( ) s−mt( ),

where c1 and c2 are integration constants.

3.2 Nonlinear Schrödinger Equation for the
Third Class
The third frame {N,P, �P} for the third class of the unit speed
curve is given by

N � n,
P � t + ib,
�P � t − ib.

We consider the third Hasimoto transformation defined
by [2].

ψ � κ − iτ,

then one has

D

ds
P � ψn.

The following lemma shows a way of changing the old moving
frame {t, n, b} into the new complex valued frame {N,P, �P}, and it
is useful late.

Lemma 3. We have

t
n
b

⎛⎜⎝ ⎞⎟⎠ �
0

1
2

1
2

1 0 0

0 − i
2

i

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N
P
�P

⎛⎜⎝ ⎞⎟⎠. (3.21)

Now we consider

X � zC
zs

� n

and a geometric flow

zC
zt

� h1t + h2n + h3b, (3.22)

where h1, h2 and h3 are smooth functions with parameters s and t.
By applying compatibility condition D

ds
zC
zt � D

dt
zC
zs and Eq. 2.2,

we obtain

α � − h1( )s + κh2,
γ � h3( )s + τh2,

h2( )s � −κh1 + τh3.

Suppose that the geometric flow zC
zt of the spatial curve C on a 3-

dimensional Riemannian manifold satisfies the visco-Da Rios Eq.
3.11. Then we have

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 8109204

Gürbüz and Yoon Visco-Da Rios Equation

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


zC
zt

� τt + wn + κb, (3.23)

which implies that

h1 � τ, h2 � w, h3 � κ

from this, one finds

α � −τs + κw,
γ � κs + τw.

Thus, we ave
Theorem 4. The geometric flow Eq. 3.23 implies the time

evolutions of frame fields, the curvature and the torsion of the
spatial curve C with the third frame in a 3-dimensional
Riemannian manifold as follows:

D

dt

t
n
b

⎛⎜⎝ ⎞⎟⎠ �
0 −τs + κw

1
2

κ2 + τ2( )
τs − κw 0 κs + τw

−1
2

κ2 + τ2( ) −κs − τw 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

t
n
b

⎛⎜⎝ ⎞⎟⎠,

(3.24)

κt � −τs + κw( )s − 1
2
τ κ2 + τ2( ),

τt � κs + τw( )s + 1
2
κ κ2 + τ2( ). (3.25)

Now, we prove that the third Hasimoto transformation is
solution of a non-linear Schrödinger equation of the visco-Da
Rios equation for the third frame of the unit speed curve.

Theorem 5. The visco-Da Rios equation Eq. 3.11 for the third
frame of the curve C in 3-dimensional Riemannian manifold is
equivalent to the non-linear Schrödinger equation

ψt � −iψss − wψs + G ψ( ), (3.26)

where a complex valued function G(ψ) is given by

G ψ( ) � − i
2
|ψ|2 + i∫ κR1323 − τR1213( )dt + i

2
D t( )( )ψ

+τ R1212 + iR1232( ) + κ R1232 + iR2323( )
for some real valued function D(t).
Proof. It follows directly a similar method of proof of Theorem 2.
Suppose that a 3-dimensional Riemannian manifold has a

constant sectional curvature c. Then, Riemannian curvature
tensor Eq. 3.18 implies

R1323 � 0, R1213 � 0, R1232 � 0

from this, Eq. 3.26 can be rewritten as the form:

ψt � −iψss − wψs +
i

2
−|ψ|2 +D t( ) + 2c( )ψ. (3.27)

Now, if we consider a transformation defined by

Ψ � ψe
−i w2

4 t+1
2∫ D t( )+2c+w2( )dt+ws( )

, (3.28)

then this transformation implies that Eq. 3.27 is expressed as
the non-linear Schrödinger equation

iΨt � Ψss + 1
2
|Ψ|2Ψ.

Thus, we have
Theorem 6. The visco-Da Rios equation for the third frame of

the curve C in 3-dimensional Riemannian manifold with constant
sectional curvature c is equivalent to the non-linear Schrödinger
equation

iΨt � Ψss + 1
2
|Ψ|2Ψ,

where the transformation Ψ is given by Eq. 3.28.

4 BÄCKLUND TRANSFORMATION AND
VISCO-DA RIOS EQUATION

In this section, we study the Bäcklund transformations of
integrable geometric curve flows in 3-dimensional Riemannian
manifold.

Now, we construct the Bäcklund transformation of the
geometric flow Eq. 3.7 of the visco-Da Rios equation for the
second frame of the curve C. Considering another curve related
C by

~C s, t( ) � C s, t( ) + μ s, t( )t + ] s, t( )n + ξ s, t( )b, (4.1)

where μ, ν and ξ are the smooth functions of s and t. Using Eqs.
3.4, 3.8, a direct computation leads to

z~C
zs

� μs − κ]( )t + ]s + κμ − τξ( )n + 1 + ξs + τ]( )b, z
~C
zt

� τ + μt + ] −τss
τ
+ κ2 − κw( ) − ξτs( )t

+ ]t + μ
τss
τ
− κ2 + κw( ) + ξ κτ − τw( )( )n

+ w + ξt − μτs + ] −κτ + τw( )( )b. (4.2)

Let ~s be the arclength parameter of the curve ~C. Then

d~s � ‖C̃s‖ds �
�����������������������������������
μs − κ]( )2 + ]s + κμ − τξ( )2 + 1 + ξs + τ]( )2

√
ds:

� Ωds.

It follows that the unit tangent vector of the curve ~C is
given by

~t � p1t + p2n + p3b, (4.3)

where p1 �Ω−1(μs − κ]), p2 �Ω−1(]s + κμ − τξ) and p3 �Ω−1(1 + ξs
+ τ]). Differentiating Eq. 4.3 with respect to ~s, we get

D

d~s
~t � p1s − κp2

Ω t + p2s + κp1 − τp3

Ω n + p3s + τp2

Ω b

which gives the curvature of the curve ~C:
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~κ �
���������������������������������������
p1s − κp2( )2 + p2s + κp1 − τp3( )2 + p3s + τp2( )2√

Ω ≔
Θ
Ω.

(4.4)

It follows that form Eq. 2.1 the principal normal vector of the
curve ~C is given by

~n � p1s − κp2

Θ t + p2s + κp1 − τp3

Θ n + p3s + τp2

Θ b. (4.5)

Thus, Eqs. 4.3, 4.5 Imply

~b � p2 p3s + τp2( ) − p3 p2s + κp1 − τp3( )
Θ t + −p1 p3s + τp2( ) + p3 p1s − κp2( )

Θ n

+p1 p2s + κp1 − τp3( ) − p2 p1s − κp2( )
Θ b

: � q1t + q2n + q3b.

(4.6)

From its derivative with respect to ~s, we obtain the torsion of
the curve ~Cas:

~τ � − 1
ΩΘ p1s − κp2( ) q1s − κq2( ) + p2s + κp1 − τp3( ) q2s + κq1 − τq3( )[

+ p3s + τp2( ) q3s + τq3( )]
≔ − 1

ΩΘΓ.

(4.7)

Now, we assume that the flows of the curves C and ~C are
governed by the same integrable system, that is, the curve ~C also
fulfills the geometric flow of the visco-Da Rios equation for the
second frame as follows:

z~C
zt

� ~τ~t + w~b. (4.8)

Then, the Bäcklund transformation of the geometric flow
of the visco-Da Rios equation for the second frame with the
help of Eqs. 4.2, 4.3, 4.6, 4.7 turns out to be the following
result.

Theorem 7. The geometric flow Eq. 3.7 of the visco-Da
Rios equation for the second frame in 3-dimensional
Riemannian manifold is invariant with respect to the
Bäcklund transformation Eq. 4.1 if μ, ν and ξ satisfy the
system

μt + τ + ] −τss
τ
+ κ2 − κw( ) − ξτs � − Γ

ΩΘp1 + wq1,

]t + μ
τss
τ
− κ2 + κw( ) + ξ κτ − τw( ) � − Γ

ΩΘp2 + wq2,

ξt + w − μτs + ] −κτ + τw( ) � − Γ
ΩΘp3 + wq3.

Finally, we construct the Bäcklund transformation of the
geometric flow (3.7) of the visco-Da Rios equation for the
third frame {N,P, �P} of the curve C. Considering another
curve related C by

~C s, t( ) � C s, t( ) + ρ s, t( )t + σ s, t( )n + ς s, t( )b, (4.9)

where ρ, σ and ς are the smooth functions of s and t.
Using Eqs. 3.23, 3.24, a direct computation leads to

z~C
zs

� ρs − κσ( )t + 1 + σs + κρ − τς( )n + ςs + τσ( )b,
z~C
zt

� τ + ρt + σ τs − κw( ) − 1
2
ς κ2 + τ2( )( )t

+ w + σt + ρ −τs + κw( ) − ς κs + τw( )( )n
+ κ + ςt + σ κs + τw( ) + 1

2
ρ κ2 + τ2( )( )b.

(4.10)

Let ~s be the arclength parameter of the curve ~C and Ω denote
the norm of the tangent vector C̃s of the curve ~C. Then, the unit
tangent vector of the curve ~C is given by

~t � u1t + u2n + u3b, (4.11)

where u1 � Ω−1(ρs − κσ), u2 � Ω−1(σs + κρ − τς) and u3 � Ω−1(1 +
ςs + τσ).

Equation 4.11 Implies

D

d~s
~t � u1s − κu2

Ω t + u2s + κu1 − τu3

Ω n + u3s + τu2

Ω b. (4.12)

It follows that the curvature of the curve ~C is given by

~κ �
��������������������������������������
u1s − κu2( )2 + u2s + κu1 − τu3( )2 + u3s + τu2( )2

√
Ω ≔

Σ
Ω.

(4.13)

Also, from Eqs. 4.12, 4.13 the principal normal vector of the
curve ~C becomes

~n � u1s − κu2

Σ t + u2s + κu1 − τu3

Σ n + u3s + τu2

Σ b. (4.14)

Thus, Eqs. 4.11, 4.14 Imply

~b � v1t + v2n + v3b, (4.15)

where

v1 � Σ−1 u2 u3s + τu2( ) − u3 u2s + κu1 − τu3( )[ ],
v2 � Σ−1 −u1 u3s + τu2( ) + u3 u1s − κu2( )[ ],
v3 � Σ−1 u1 u2s + κu1 − τu3( ) − u2 u1s − κu2( )[ ]

and its derivative with respect to ~s gives

~τ � − Ξ
ΩΣ, (4.16)

where we put

Ξ � u1s − κu2( ) v1s − κv2( ) + u2s + κu1 − τu3( ) v2s + κv1 − τv3( )
+ u3s + τu2( ) v3s + τv3( ).

Suppose that the flows of the curves C and ~C are governed by
the same integrable system, that is, the curve ~C also fulfills the
geometric flow of the visco-Da Rios equation for the third frame
as follows:

z~C
zt

� ~τ~t + w~n + ~κ~b. (4.17)

Then, the Bäcklund transformation of the geometric flow of
the visco-Da Rios equation for the third frame with the help of
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Eqs. 4.10, 4.11, 4.13.16.–.4.4.16 turns out to be the following
result.

Theorem 8. The geometric flow Eq. 3.23 of the visco-Da Rios
equation for the third frame in 3-dimensional Riemannian
manifold is invariant with respect to the Bäcklund
transformation Eq. 4.17 if ρ, σ and ς satisfy the system

ρt + τ + σ τs − κw( ) − 1
2
ς κ2 + τ2( )

� 1
ΩΣ −Ξu1 + wΩ u1s − κu2( ) + v1Σ2( ), σt + w + ρ −τs + κw( )
− ς κs + τw( )

� 1
ΩΣ −Ξu2 + wΩ u2s + κu1 − τu3( ) + v2Σ2( ), ςt + κ

+ σ κs + τw( ) + 1
2
ρ κ2 + τ2( )

� 1
ΩΣ −Ξu3 + wΩ u3s + τu2( ) + v3Σ2( ).

5 CONCLUSION

One of classical nonlinear differential equations integrable by
through inverse scattering transform is the Da Rios equation. In
this study, we consider the visco-Da Rios equation zC

zt �
zC
zs ∧

D
ds

zC
zs + w zC

zs with the viscosity w of a space curve in a 3-
dimensional Riemannian manifold. From this, we show that the
visco-Da Rios equation of two classes of the space curve in a

3-dimensional Riemannian manifold with constant sectional
curvature is geometric equivalent to the nonlinear Schrödinger
equation by using modified Hasimoto transformations, and we
also give the Bäcklund transformations of space curves with the
visco-Da Rios equation.
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