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In this paper, the adaptive control design is investigated for the chaos synchronization of
two identical hyperchaotic Liu systems. First, an adaptive control law with two inputs is
proposed based on Lyapunov stability theory. Secondly, two other control schemes are
obtained based on a further analysis of the proposed adaptive control law. Finally,
numerical simulations are presented to validate the effectiveness and correctness of
these results.
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1 INTRODUCTION

Since it was introduced by Pecora and Carroll [1] in 1990, the synchronization of chaotic systems has
attracted increasing attention due to its possible applications in secure communication [2–4],
biomedical Engineering [5], information science [6], chemical reactions [7, 8], etc. Then a wide
variety of control methods of chaos synchronization have been studied such as the linear feedback
control [9, 10], the sliding mode control [11], the adaptive control [12–16], the backstepping control
[17, 18] and so on.

A hyperchaotic system is a chaotic system with at least two positive Lyapunov exponents
which improves the security by generating more complex dynamics and so hyperchaotic systems
have much more applications than low-dimension chaotic systems in the areas such as secure
communication and image encryption, etc. Therefore in the past three decades, an increasing
interest has been devoted to the study of chaos synchronization for hyperchaotic systems and
plenty of research works can be found in literature [13, 19–25]. However, there are few studies
about the adaptive synchronization of hyperchaotic Liu system that was introduced in [26]. A
difficulty for this problem is that it is not evident to construct a suitable Lyapunov function to
prove the stability of the error dynamics because of the special complex structure of hyperchaotic
Liu system, since such a Lyapunov function depends on how to choose the feedback gain of
controller in the slave system. Regarding those gains as unknown parameters, the use of adaptive
control concept to estimate those unknown gains may be helpful to solve this problem.
Therefore, this paper investigates the adaptive control design for the synchronization of
hyperchaotic Liu system. First, an adaptive control law with two inputs is proposed and
moreover, by introducing a suitable Lyapunov function, the main result is proved based on
Lyapunov stability theory and Barbalat’s lemma. In addition, two special cases of this adaptive
control scheme is further analyzed so that two other control laws are derived for the
synchronization of hyperchaotic Liu system.

This paper is organized as follows. Section 2 formulates the problem. In Section 3, an adaptive
control law for the synchronization of hyperchaotic Liu systems is proposed. In Section 4, two other
control laws are derived based on further analysis of the proposed adaptive control law. Numerical
simulations are given in Section 5. We conclude this paper in Section 6.
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2 SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

2.1 System Description
The hyperchaotic Liu system was proposed firstly in [26] and can
be described by the following differential equations

_x1 � a(x2 − x1),
_x2 � bx1 − x4 + x1x3,
_x3 � −cx3 + x4 − x1x2,
_x4 � dx1 + x2,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)

where a, b, c, d are positive real constants and x �
(x1, x2, x3, x4)⊤ ∈ R4 denotes the state vector. System (Eq.
1) was proved to exhibit hyperchaotic behavior when a �
10, b � 35, c � 1.4, d � 5. The projections of the chaotic
attractor onto the (x1, x2, x3) and (x2, x3, x4) spaces are shown
in Figure 1. Moreover, the state trajectories x1(t), x2(t), x3(t),
x4(t) are globally bounded for all t P 0 and hence, there exist
four positive real constants M1, M2, M3, M4 such that |x1(t)|
#M1,|x2(t)| #M2, |x3(t)|#M3, |x4(t)|#M4 hold for all t P 0.

2.2 Problem Formulation
Let system (Eq. 1) be the master system and the corresponding
slave system is described by the following equations:

_y1 � a(y2 − y1) + u1,
_y2 � by1 − y4 + y1y3 + u2,
_y3 � −cy3 + y4 − y1y2 + u3,
_y4 � dy1 + y2 + u4,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2)

where y � (y1, y2, y3, y4)⊤ ∈ R4 denotes the state vector and
u � (u1, u2, u3, u4)⊤ is the control vector to be designed.
Define the error states as ei � yi − xi, for i � 1, 2, 3, 4, and
thus the error dynamics can be described in the following
form:

_e1 � a(e2 − e1) + u1,
_e2 � be1 − e4 + y1e3 + x3e1 + u2,
_e3 � −ce3 + e4 − y1e2 − x2e1 + u3,
_e4 � de1 + e2 + u4.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3)

It is evident that the synchronization between (Eqs 1, 2) can be easily
achieved if we can use all measurements xi of (Eq. 1) to active all
controller ui in (Eq. 2). But the interesting question is: can we use
less information of (Eq. 1) to active only some of the controllers ui in
(Eq. 2)? The positive answer of this questionwill bemore applausive
since less sensors are needed for (Eq. 1) to measure only the
necessary states, and less energy will be consumed to actuate
some necessary ui in (Eq. 2). Consequently, the purpose of this
paper is, by using less measurement from (Eq. 1) and activating less
actuator for (Eq. 2), to design an adaptive control scheme in order to
achieve global chaos synchronization of two identical hyperchaotic
Liu systems, i.e., for any initial conditions y(0) ≠ x(0), we have

lim
t→∞

‖e(t)‖ � lim
t→∞

‖y(t, y(0)) − x(t, x(0))‖ � 0,

where e(t) � (e1(t), e2(t), e3(t), e4(t))⊤.

3 ADAPTIVE SYNCHRONIZATION OF
HYPERCHAOTIC LIU SYSTEM

In the following, we will present our result by activating only two
controllers (u2 and u4) in (Eq. 2) with only two measurements (x2
and x4) of (Eq. 1) to solve the global synchronization problem.

Theorem 3.1. The master system (Eq. 1) and the slave system
(Eq. 2) can be global synchronized by the following controllers

u1 � 0, u2 � k1e2, u3 � 0, u4 � k2e4, (4)

where k1 and k2 denote the feedback gains which are updated by
the following adaptive laws

_k1 � −c1e22, _k2 � −c2e24, (5)

FIGURE 1 | Chaotic attractor of hyperchaotic Liu system.
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with γ1 and γ2 being arbitrary positive constants.
Proof. Under the adaptive control laws (Eqs 4, 5), the error

dynamics (Eq. 3) reads

_e1 � a(e2 − e1),
_e2 � be1 − e4 + y1e3 + x3e1 + k1e2,
_e3 � −ce3 + e4 − y1e2 − x2e1,
_e4 � de1 + e2 + k2e4,
_k1 � −c1e22,
_k2 � −c2e24.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(6)

Consider the following Lyapunov function

V � 1
2
(ρe21 + e22 + e23 + e24) +

1
2c1

(k1 + L1)2 + 1
2c2

(k2 + L2)2, (7)

where L1, L2 and ρ are positive constants which will be determined
later. Calculating the differentiation of (Eq. 7) with respect to time t
along trajectories of system (Eq. 6), we obtain

_V � ρe1 _e1 + e2 _e2 + e3 _e3 + e4 _e4 + 1
c1

(k1 + L1) _k1 + 1
c2

(k2 + L2) _k2
� ρae1(e2 − e1) + e2(be1 − e4 + y1e3 + x3e1 − L1e2)
+ e3(−ce3 + e4 − y1e2 − x2e1) + e4(de1 + e2 − L2e4)

� −ρae21 − L1e
2
2 − ce23 − L2e

2
4 + (ρa + b + x3)e1e2

− x2e1e3 + de1e4 + e3e4

≤ − (ρa − d

2
)e21 − L1e

2
2 − (c − 1

2
)e23 − (L2 − d + 1

2
)e24

+ (ρa + b +M3)|e1e2| +M2|e1e3|
� −|e|⊤P1|e|,

(8)

where |e| � (|e1|, |e2|, |e3|, |e4|)⊤, M2 and M3 represent the
boundedness of x2 and x3, and P1 is a symmetric matrix of the
following form

P1 �

ρa − d

2
−ρa + b +M3

2
−M2

2
0

−ρa + b +M3

2
L1 0 0

−M2

2
0 c − 1

2
0

0 0 0 L2 − d + 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

Clearly, if the symmetricmatrix P1 is positive definite, then we have
_V≤ 0. Moreover, it is well known that P1 is positive definite if and
only ifΔk > 0, for 1 ≤ k ≤ 4, whereΔk denotes the Leading Principle
Minor of order k of P1. A straightforward calculation gives

Δ1 � ρa − d

2
,

Δ2 � L1Δ1 − (ρa + b +M3)2
4

,

Δ3 � c − 1
2

( )Δ2 − L1
M2

2

4
,

Δ4 � L2 − d + 1
2

( )Δ3.

(10)

From the condition Δk > 0, for 1 ≤ k ≤ 4, and (Eq. 10), it is easy to
obtain

FIGURE 2 | Error synchronization by the control law (Eq. 4) associated with (Eq. 5).
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L1 >max{(ρa + b +M3)2
4aρ − 2d

,
(c − 1/2)(ρa + b +M3)2
(2c − 1)(2aρ − d) −M2

2

},
L2 >

d + 1
2

, ρ> 1
2a

( M2
2

2c − 1
+ d).

Therefore, there always exist positive L1, L2 and ρ satisfying
the above conditions so that _V≤ 0 and thus V is positive
and decrescent. It follows that the equilibrium point
(e1� 0, e2 � 0, e3 � 0, e4 � 0, k1 � k*1, k2 � k*2) of systems (Eq. 6)
is uniformly stable which implies, from (Eq. 6), that
_e1(t), _e2(t), _e3(t), _e4(t) are also uniformly stable. Moreover, it is
easy to conclude from (Eq. 8) that the error states e1(t), e2(t), e3(t),
e4(t) are quadratically integrable function, i.e., e1(t), e2(t), e3(t), e4(t)
∈ L2. Therefore, according to Barbalat’s lemma, given any initial
conditions, we have always e1(t)→ 0, e2(t)→ 0, e3(t)→ 0, e4(t)→ 0
(t → ∞) and k1 → k*1, k2 → k*2 (t → ∞), which imply that the
master system (Eq. 1) and slave system (Eq. 2) are globally
asymptotically synchronized under the adaptive control law (Eq.
4) associated with (Eq. 5).

Remark 3.1. In the Lyapunov function (Eq. 7), a positive
constant ρ has to be introduced to guarantee the positive definite
of the symmetric matrix P1.

Remark 3.2. The feedback gains k1 and k2 will converge to two
constants k*1 and k*2, respectively, which depend on not only the
initial condition k1(0) and k2(0), but also the value of c1 and c2.

4 FURTHER ANALYSIS OF THEOREM 3.1

In Theorem 3.1, the feedback gains k1 and k2 are defined to be
updated by the adaptive laws (Eq. 5), i.e.,

_k1 � −c1e22, _k2 � −c2e24,
where c1 and c2 are arbitrary positive constants. Two interesting
questions arise:

• If c1 � c2 � 0 that implies _k1 � _k2 � 0, i.e., k1 and k2 are both
constants equal to their initial values, then is the control law
(Eq. 4) still valid?

• If the feedback gains k1 and k2 are equal (for the sake of
implementation simplicity), i.e., k1 � k2, how to modify the
adaptive law (Eq. 5) such that the chaos synchronization
can still be achieved?

In the following, we will answer the above two questions and
derive two other special control laws for the chaos
synchronization of hyperchaotic Liu system.

4.1 Case 1: k1 and k2 Are Constants
Proposition 4.1. The master system (Eq. 1) and the slave system
(Eq. 2) can be global synchronized by the following linear
feedback controller

u1 � 0, u2 � k1e2, u3 � 0, u4 � k2e4, (11)

where the feedback gains k1, k2 satisfy

k1 <min{ − (ρa + b +M3)2
4aρ − 2d

,−(c − 1/2)(ρa + b +M3)2
(2c − 1)(2aρ − d) −M2

2

},
k2 <−d + 1

2
,

(12)

with

ρ> 1
2a

( M2
2

2c − 1
+ d). (13)

Proof. The proof of the above result is quite similar to that of
Theorem 3.1. Consider the following Lyapunov function

V � 1
2
(ρe21 + e22 + e23 + e24), (14)

where ρ is a positive constant which will be determined later. Taking
the differentiation of (Eq. 14) with respect to time t and following the
similar procedure in the proof of Theorem 3.1, we obtain

_V≤ −(|e1|, |e2|, |e3|, |e4|)P2(|e1|, |e2|, |e3|, |e4|)⊤, (15)

where

P2 �

ρa − d

2
−ρa + b +M3

2
−M2

2
0

−ρa + b +M3

2
−k1 0 0

−M2

2
0 c − 1

2
0

0 0 0 −k2 − d + 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(16)

It is easy to see that the symmetric matrix P2 has the same structure
with P1, given by (Eq. 9), and the only difference is that L1 and L2
are replaced by −k1 and −k2, respectively. Therefore, by a similar
procedure of the proof of Theorem 3.1, we can obtain that P2 is
positive definite if and only if the following conditions are satisfied

k1 < min{ − (ρa + b +M3)2
4aρ − 2d

,−(c − 1/2)(ρa + b +M3)2
(2c − 1)(2aρ − d) −M2

2

}
k2 <−d + 1

2
, and ρ> 1

2a
( M2

2

2c − 1
+ d).

Therefore, there always exist k1, k2 and ρ satisfying the above
conditions so that _V≤ 0 and thus V is positive and decrescent.
Clearly _V � 0 if and only if ei � 0, 0 ≤ i ≤ 4 which means the set
R � {e ∈ R4: _V � 0} contains no other trajectories except {e1 � 0,
e2 � 0, e3 � 0, e4 � 0}. Therefore, by the LaSalle invariance principle,
starting with arbitrary initial values, e � 0 is asymptotically stable
which implies that the chaos synchronization of hyperchaotic Liu
system is achieved by the control law (Eqs 11, 12).

4.2 Case 2: k1 and k2 Are Equal
Proposition 4.2. The master system (Eq. 1) and the slave system
(Eq. 2) can be synchronized by the following adaptive controller

u1 � 0, u2 � ke2, u3 � 0, u4 � ke4, (17)
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where k denotes the feedback gain which is updated by the
following adaptive law

_k � −c(e22 + e24), (18)

with c being an arbitrary positive constant.
Proof. Following the same procedure as that in the proof of

Theorem 3.1, by considering the following Lyapunov function

V � 1
2
(ρe21 + e22 + e23 + e24) +

1
2c
(k + L)2 (19)

where ρ and L are positive constants which will be determined
later, we obtain

_V≤ −(|e1|, |e2|, |e3|, |e4|)P3(|e1|, |e2|, |e3|, |e4|)⊤, (20)

with

P3 �

ρa − d

2
−ρa + b +M3

2
−M2

2
0

−ρa + b +M3

2
L 0 0

−M2

2
0 c − 1

2
0

0 0 0 L − d + 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Clearly, the symmetric matrix P3 has the same structure with P1,
given by (Eq. 9), in which L1 � L2 � L. Thus, by a similar procedure

of the proof of Theorem 3.1, we can obtain that P3 is positive
definite if and only if the following conditions are satisfied

L >max
⎧⎨⎩d + 1

2
,
(ρa + b +M3)2

4aρ − 2d
,
(c − 1/2)(ρa + b +M3)2
(2c − 1)(2aρ − d) −M2

2

⎫⎬⎭
ρ > 1

2a
( M2

2

2c − 1
+ d).

The rest of the proof is exactly the same as that in the proof of
Theorem 3.1.

5 NUMERICAL SIMULATIONS

In this section, numerical simulations by MATLAB will be given
to validate the correctness and effectiveness of the proposed
controller designs. Fourth order Runge-Kutta method is
applied to approximate the solution of differential equations
with a small chosen fixed time step size. The system
parameters are set to a � 10, b � 35, c � 1.4, d � 5 so that the
Hyperchaotic Liu system exhibits chaotic behavior when no
control is applied.

In order to compare the three control laws proposed in
Theorem 3.1, Proposition 4.1 and Proposition 4.2, we will use
the same initial conditions x(0) and y(0) for all the three
numerical simulations. The initial conditions of the master
system are chosen as x1(0) � 15, x2(0) � 22, x3(0) � −46 and

FIGURE 3 | Error synchronization by the control law (Eq. 11) associated with (Eqs 12, 13).
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x4(0) � −21 while the initial conditions of the slave system are
chosen as y1(0) � 18, y2(0) � −13, y3(0) � −1 and y4(0) � 37.

First, consider the adaptive control law (Eq. 4) associated with
(Eq. 5) proposed in Theorem 3.1 and select c1 � 10, c2 � 20 and
the initial conditions of the feedback gain by k1(0) � k2(0) � 1.
Figure 2 shows that the error states are asymptotically stable to
zero while the control gains k1 and k2 tend to two negative
constants, respectively, as t tends to infinity.

Second, consider the control law proposed in Proposition 4.2
and select upper bounds of M2 and M3 by M2 � 52, M3 � 82
(according to the bounded simulation results depicted in
Figure 1). From conditions (Eqs 12, 13), a direct calculation
gives that k1 < −30 097 and k2 < −3 and we choose k1 � −31 000
and k2 � −5. Figure 3 shows that the error states asymptotically
converge to zero, as t tends to infinity.

Finally, consider the adaptive control law (Eq. 17) associated
with (Eq. 18) proposed in Theorem 3.1 and select c � 10 and
k(0) � 1. Figure 4 shows that the error system is asymptotically
stable to zero and the control gain k tends to a negative constant
as t tends to infinity.

6 CONCLUSION

This paper has addressed the adaptive synchronization problems of
hyperchaotic Liu systems. An adaptive control scheme has been

proposed for the asymptotically synchronization of two identical
hyperchaotic Liu systems. This result was proved according to
Lyapunov stability theory and Barbalat’s lemma by constructing a
suitable Lyapunov function.Moreover, through further discussions
of the main result, two other control schemes have been derived.
The numerical simulations verify the effectiveness and correctness
of the control laws proposed in this work.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

SL: Conceptualization,Methodology, Project administration, Funding
acquisition. YW: Validation, Investigation, Writing–Original
Draft. GZ: Supervision, Writing–Review and Editing.

FUNDING

This work is supported by the Natural Science Foundation of
China (No. 61573192).
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