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In biophotonics, novel techniques and approaches are being constantly sought to assist
medical doctors and to increase both sensitivity and specificity of the existing diagnostic
methods. In such context, tissue polarimetry holds promise to become a valuable optical
diagnostic technique as it is sensitive to tissue alterations caused by different benign and
malignant formations. In our studies, multiple Mueller matrices were recorded for formalin-
fixed, human, ex vivo colon specimens containing healthy and tumor zones. The available
data were pre-processed to filter noise and experimental errors, and then all Mueller
matrices were decomposed to derive polarimetric quantities sensitive to malignant
formations in tissues. In addition, the Poincaré sphere representation of the
experimental results was implemented. We also used the canonical and natural indices
of polarimetric purity depolarization spaces for plotting our experimental data. A feature
selection was used to perform a statistical analysis and normalization procedure on the
available data, in order to create a polarimetric model for colon cancer assessment with
strong predictors. Both unsupervised (principal component analysis) and supervised
(logistic regression, random forest, and support vector machines) machine learning
algorithms were used to extract particular features from the model and for
classification purposes. The results from logistic regression allowed to evaluate the
best polarimetric quantities for tumor detection, while the use of random forest yielded
the highest accuracy values. Attention was paid to the correlation between the predictors
in the model as well as both losses and relative risk of misclassification. Apart from the
mathematical interpretation of the polarimetric quantities, the presented polarimetric model
was able to support the physical interpretation of the results from previous studies and
relate the latter to the samples’ health condition, respectively.
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1 INTRODUCTION

Ellipsometry and polarimetry have established their duly and
justified realm for material characterization [1–6]. Yet, in the
purview of biomedical optics, tissue polarimetry strives toward a
novel domain for non-invasive, supplementary assistance in
histopathology [7–13]. Unlike skin cancer, whose origins could
be detected at an earlier stage of development due to its presence
predominantly in the areas of the human body available for direct
visual inspection, colon cancer is localized and diagnosed out of
straight sight of notice often at a later stage of development [14].
Such an inevitable obstacle could be overcome by adopting
various multimodal optical techniques for providing adequate
support to clinicians [15–19]. It was shown earlier that tissue
polarimetry techniques could be effectively combined to
juxtapose polarization and depolarization parameters from
different health conditions after scanning, embrace the
Poincaré sphere visualization for qualitative differentiation,
and construct various depolarization spaces [20–28]. Ample
diagnostic information related to the morphology of the tissue
specimens under study is encoded in their Mueller matrices [26,
29–32]. Nevertheless, the intertwined relation between the
samples’ polarization and depolarization properties and their
matrix elements is accessible only after the application of
pertinent decomposition algorithms [33–38]. For instance,
Cloude’s physical realizability is able to filter out experimental
errors and/or data noise [39, 40], while logarithmic [37, 41, 42],
Lu–Chipman [35, 43–45], or symmetric [36, 46] decompositions
were found capable of extracting the embedded diagnostic
information for the samples under study. With the increasing
size and amount of the experimental data, apt post-processing
algorithms are required, alongside the inclusion of statistical
analyses and implementation of the artificial intelligence (AI)
framework. The latter could be utilized to mimic human-like
intellect when handling large and complex datasets, images, etc.
Being part of AI, the vastly expanding field of machine learning
(ML) covers a wide spectrum of applications for solving multiple
scientific problems [47–53] as well as for cancer classification
[54–62]. Since conventional programming processes an input
data by means of particular syntax and semantics to produce a
desired output, such a method is prone to multiple errors
repetition. To overcome this issue, ML uses both the input
and output data to train an algorithm for an a priori defined
purpose. Depending on the purpose desired, ML algorithms can
be grouped into three distinct classes [63, 64], namely, supervised,
unsupervised, and reinforcement. The scope of the current study
is focused on an application with both supervised and
unsupervised ML algorithms for colon cancer assessment. In
this study, the data used were obtained from tissue polarimetric
experiments with various formalin-fixed, human ex vivo colon
samples, containing healthy and malignant zones. For all
specimens and health conditions a spatial x-y scan was
conducted, where for each of the measured locations a Mueller
matrix (MM) was obtained. Every MM was filtered for data noise
and measurements errors before applying a decomposition
algorithm and depolarization metrics calculus. Afterward, a
selection of a subset from all polarimetric quantities was carried

out, in order to form tissue polarimetric model with predictors,
which non-redundantly summarizes all polarization and
depolarization properties of both colon’s healthy and cancerous
tissue zones. In order to avoid multicollinearity and overfitting, the
main model was split into two submodels, and consequently, all
unsupervised and supervised ML algorithms were applied for both
submodels independently. Finally, the performance of each ML
algorithm with each of the submodels was evaluated by means of
computing the corresponding confusion matrix, areas under the
curves (AUC), and loss and relative risk calculations related to
misclassifications.

2 THEORY

When dealing with light propagation in a turbid medium, it is
feasible to adopt the Stokes–Mueller calculus and operate with
real and measurable quantities. Hence, the full Stokes vector S �
(S0,S1,S2,S3)

T is able to provide description for all polarization
states even if time dependence S(t) is on avail. Knowledge of both
the total degree of light polarization ρ ∈ [0, 1] and light intensity I
facilitate the adoption of more explicit definitive convention [33,
39]as follows:

S � I 1, p( )T, p � ρu,

u � cos 2θ( )cos 2ϵ( ), sin 2θ( )cos 2ϵ( ), sin 2ϵ( )[ ]T, (1)

where p and u are the polarization and Poincaré vectors,
respectively. The latter translates the conversion from
Cartesian to spherical coordinate system, thus making possible
to visualize and utilize the Poincaré sphere representation with
the available polarimetric data, where θ ∈ [ − π/2, π/2] and ϵ ∈ [ −
π/4, π/4] are the azimuth and the angle of ellipticity, respectively.
The individual polarization fingerprint of a turbid medium under
study is encoded in its Mueller matrix (M) from which one could
read all polarization and depolarization properties related to both
the surface and structural sample properties/characteristics.
Every output Stokes vector (So) is linearly dependent on the
input one (Si) and also on M, obeying the relation So = Mij·Si. A
minimum of four input and four output polarization co-
variations are required to obtain a full Mueller matrix by
solving a system of four linear equations for each i [65]:

SoQ/−Q � Mi1 ±Mi1∕ 2

SoU∕ V � Mi1 +Mi3∕ 4,
(2)

where Q/-Q denote horizontal/vertical and U/V denote +45°/
right circular polarization states, while i,j � ∈ [1, 4]. Physically
realizable, depolarizing M must be represented as weighted
averages of non-depolarizing M. By this way each Mueller
matrix is to preserve the value of ρ parameter for totally
polarized input light beam. Imprecise calibration, data noise,
and experimental errors may lead to the violation of the Cloude’s
condition for physical realizability [34, 66], and a filtration
procedure is required. In such a case, one needs to solve the
eigenvalue-eigenvector problem for the Hermitian covariance
matrix H [33]:
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H � 1
4
∑4
i,j�1

Mij σi ⊗ σj( ), (3)

where σi are the four Pauli spin matrices and the symbol ⊗
denotes the Kronecker product. If all eigenvalues (λi) of H are
positive, then the corresponding M is in compliance to the
Cloude’s condition. On the contrary, if the aforementioned
condition is not met, then all negative λi are assigned to zero,
and the filtered covariance (Hf) and Mueller Mf matrices are
obtained likewise [33]:

Hf � VΛV−1, mf
ij � tr σi ⊗ σj( )Hf

ij[ ]. (4)

Here, the matrix V is constructed from the eigenvectors of H,
while Λ � diag (λi) and contains only positive eigenvalues, while
small mf

ij indicates an element of the filtered Mueller matrix. If
one is interested only in the polarimetric properties, by setting tr
(Hf) � 1 or simply normalizing the eigenvalues sum to unit, both
processes of transmissivity and reflectivity can be disregarded.
Next, additional depolarization information can be extracted
from Hf, which will be correspondingly related to the
depolarization properties of the underlying medium and Mf,
respectively. Three depolarization indicators could be plainly
derived from λi (H

f), whereas the following set of equations is
valid when tr (Hf) � 1 and λ1 ≥ λ2 ≥ λ3 ≥ λ4 [33]:

P1 � λ1 − λ2, P2 � λ1 + λ2 − 2λ3, P3 � λ1 + λ2 + λ3 − 3λ4.

(5)

The overall depolarization ability PΔ and polarization purity PI
could be summarized explicitly as [33]:

PΔ �
�����������������
1
3

2P2
1 +

2
3
P2
2 +

1
3
P2
3( )√
, PI �

��������������
1
3

P2
1 + P2

2 + P2
3( )√
. (6)

From Eq. 5 and Eq. 6, two limiting cases could be identified:
pure non-depolarizing media, when Pi � PΔ � PI � 1, and pure
depolarizing media, when Pi � PΔ � PI � 0. In some cases it may
become useful to form and visualize three-dimensional
depolarization space(s) as natural Σλi and indices of
polarimetric purity ΣIPP, in order to evaluate the (de)
polarization properties of an arbitrary Mueller matrix, instead
of using the scalar quantities in Eq. 6. Yet, even more information
is encoded inHf via the Cloude’s entropy S, which is related to the
spatial heterogeneity of a given sample of interest [33]:

S � −∑4
i�1

λi log4 λi( ). (7)

Unlike Pi, PΔ, and PI, S � 1 would lead to an assumption of
heterogeneous inner structure, responsible for a complete
randomization of the input light polarization state(s). On the
contrary, S � 0 would presume homogeneous inner structure,
indicative for a complete preservation of ρ for fully
polarized light.

Currently, the concepts for physical modeling and physical
interpretation of a measured Mueller matrix are of growing
importance for both theoreticians and experimentalists.
However, such tasks are out of the triviality scope, especially

for highly anisotropic and heterogeneous structures such as bio-
tissues. Once Mf is obtained, on a straightforward manner, it
could be useful and even computationally efficient for large
number of measurements to acquire another two polarimetric
quantities such as the net diattenuation D and net polarizance
P [39]:

D � 1
m11

������∑
j

m2
1j

√
, P � 1

m11

������∑
i

m2
i1

√
,

i, j � 2, 3, 4, 0≤D, P≤ 1.

(8)

From a phenomenological point of view, eachMf can undergo
certain decomposition algorithm(s), in order to extract particular
polarimetric characteristics. The interpretation of depolarizing
systems and samples has been extensively studied either with
Lu–Chipman [35, 43] or logarithmic decompositions [37, 41].
The former may exhibit forward and reverse forms, thus yielding
two asymmetric depolarizers containing either polarizance or
diattenuation. On the other hand, the latter assumes a
transversally homogeneous and longitudinally inhomogeneous
anisotropic medium with continuous distribution of all optical
features throughout the sample volume. Such a condition might
not be met due to macroscopic variations of the refractive index
and, additionally, the high anisotropic structure of bio-tissues.
Furthermore, a variety of samples require implementation of
angular-resolved measurements and also assumption for pure
depolarizer with non-polarizance and diattenuation. Hence, an
arbitrary Mf can be decomposed into the so called symmetric
factorization in such a way so that the canonical depolarizer is
placed between pairs of diattenuators and retarders [36, 46]:

Mf � MD2MR2MΔM
T
R1
MD1. (9)

For better clarity, it is convenient to adopt a partitioned form
for all product matrices in Eq. 9, that is, their general form reads
as follows:

MD � 1 �D
T

�D mD

[ ], MR� 1 �0
T

�0 mR

[ ], MΔ�diag 1, d1, d2, d3( ),
(10)

where the 3 × 3 sub-matrices mD and mR are constructed from
the diattenuation vector �D and the retardance value φ,
respectively. All di are termed as the principal depolarization
factors and could be utilized to form another three-dimensional
depolarization space—the canonical one ΣΔ. By this way,
additional polarimetric information can be extracted from Mf

after finding each product matrices from Eq. 9 (from here on, the
Mf entering the symmetric decomposition will be used
interchangeably with Mf). To achieve this, first, one needs to
find the diattenuation matrices by solving the
eigenvector–eigenvalue problem of [36]:

MT
f GMfG( )ξ1 � β2ξ1, MfGM

T
f G( )ξ2 � β2ξ2, (11)

whereG � diag (1,-1,-1,-1) is the Minkowski metric tensor and β2

is a common eigenvalue. When the eigenvectors ξ1,2 � (1, �D1,2)T
are found, then the diattenuation vectors can be used to obtain
mDi and MDi:
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mD �
������
1 −D2

√
I + 1 −

������
1 −D2

√( )D̂D̂
T
, (12)

where I is 3 × 3 identity matrix and D̂ is the unit vector along �D.
Once the diattenuation matrices are determined, one can put and
calculate:

M−1
D2
MfM−1

D1
� MR2MΔM

T
R1

� M′ � β �0
T

�0 m′
⎡⎣ ⎤⎦. (13)

SinceM′ andMΔ contain no diattenuation and polarizance, by
virtue of SVD the 3 × 3 sub-matrixm′ can be reckoned, which will
be sufficient to construct the retarder matrices MR1,2 and the
canonical depolarizer matrixMΔ, thus completing the symmetric
decomposition algorithm. After this step, it becomes possible to
calculate the retardance and the net depolarization values from
the following:

φ � cos−1
tr mR( ) − 1

2
[ ],

Δ � 1 − d1| | + d2| | + d3| |
3

, 0≤Δ≤ 1.
(14)

3 MATERIALS AND METHODS

3.1 Ex vivo Colon Samples
A cooperation framework for optical examination of cancerous
tissues (approval #286/2012 of the local Ethical Committee)
between the Institute of Electronics—Bulgarian Academy of
Sciences and the Surgical Department of University Hospital
“Tsaritsa Yoanna—ISUL,” Sofia was initially formed. As a result,
multiple tissue samples for optical measurements were provided,
initially diagnosed by the physicians. The tissue samples included
in this study were excised during standard surgical procedure for
tumor removal. Part of the excised tumors underwent standard
pathology evaluation and the other part of the tumors with the
adjacent healthy tissue sections were transported to the optical
laboratory. No additional contrast agents were used. The samples’
safe-keeping was done via modified Kreb’s solution under
isothermal conditions. First, at the Biophotonics Laboratory,
Institute of Electronics, their fluorescence spectra were
evaluated with different modalities [67–69]. Although the
fluorescence measurements and inelastic scattering are not the
subject of this study, we planned to apply the ML approach to the
obtained fluorescence spectra for future studies. Afterward, a
fixation in 10% formaline solution of the tissue samples was done.
For this study in elastic scattering mode, in total five samples were
selected for polarimetric measurements in the optoelectronics
laboratory, Oulu University. The investigated samples include
colon and gastric adenocarcinoma, G2: moderately differentiated
(intermediate grade) and G3: poorly differentiated (high grade).
The thickness range for both healthy and tumor tissue zones is of
several millimeters and, therefore, the polarimetric
measurements were performed in reflection geometry with
angular configuration of the experimental setup shown in side
view for better clarity in Figure 1.

3.2 Polarimetric Set-Up
For the current study, the angles of incidence and detection were
fixed at 55° and 30°, respectively. Schematically, the optical system
is shown in Figure 1, where the presented optical configuration
allowed us to measure a full Mueller matrix of an arbitrary sample
with Stokes polarimeter by performing only four sequential
measurements.

For each of the input polarization states (H,V,P,R), a
continuous modulation was performed with commercially
available polarimetric device (Thorlabs Ltd., United States),
utilizing a rotating quarter-wave plate and a fixed linear
polarizer. The polarimetric device has been initially calibrated
by the manufacturer, while the whole optical system was tested in
reflection geometry to measure a mirror Mueller matrix, whose
theoretical form is diag (1,1,1,1). As a results, for each matrix
element a RMSE value of 0.02 was calculated (i.e., see [26]). Tube
systems were used to protect all measurements of undesired stray
light, while for reproducibility, a motorized x-y translation stage
was employed. All samples and their corresponding healthy and
cancerous zones were scanned two-dimensionally with each of
the abovementioned input polarization states. The whole region
of interest was selected to be 1 mm2, while the step size in both x-y
directions—0.2 mm, respectively. The combination of a
supercontinuum fiber laser—SC (Leukos Ltd., France) and an
acousto-optic tunable filter—AOTF (Leukos Ltd., France) was
used to produce a probing wavelength of 635 nm (FWHM 8 nm)
and output power—2 mW. The beam was collimated with the
help of two sequentially placed irises. To rotate the azimuth of the
linearly polarized laser beam, a half-wave plate was used. For
acquisition of input circularly polarized light, an electrically-
driven liquid crystal variable quarter-wave plate was employed.
Objective lenses (10×), lens L2, 100 μm pinhole, and lens L3 were
adopted to collect the scattered light and factor out any out-of-
focus photons. Finally, the 90–10 beam splitter and the CMOS
camera provided more precise focus adjustments. All Mueller
matrix elements were obtained following the approach presented
in [26]. In total, 330 healthy and 340 tumorMueller matrices were
measured and filtered with Cloude’s physical realizability
method. Afterward, the filtered matrices were decomposed
using the symmetric decomposition and the depolarization
metric calculus, as described in Section 2.

4 RESULTS AND DISCUSSION

4.1 Polarimetry
As can be seen from Figure 2, upon inclusion of all experimental
data from various colon samples with tumors at different stages of
development, a superimposing for the majority of the data points
from both health conditions could be observed. Hence, the inter-
patient variability restricts us to evaluate two separate clusters
corresponding to the measurements of healthy and cancerous
zones of colon specimens or to find specific trends within either
Poincaré sphere or the three depolarization spaces. As a result,
supplementary techniques and algorithms for data processing
must be included all of which will be addressed in the following
subsections.
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FIGURE 1 | Schematic representation of the experimental setup. Reprinted with permission from [26]© The Optical Society (Optica Publishing Group).

FIGURE 2 | Visualization of polarimetric data at all spatial locations for both colon tissue zones measurements ◦—healthy and ◇—tumor via: (A) Poincaré sphere
for probing (or incident) circular polarization, (B) natural, (C) IPP, and (D) canonical depolarization spaces.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 8147875

Ivanov et al. Polarization-Based Histopathology with Machine Learning

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


4.2 Data Post-processing
After inspection of the initial data processing sequence from Eq. 1
through Eq. 14, it became possible to extract 20 polarimetric
quantities that describe unambiguously the polarimetric response
of the tissue samples and are to be used as predictors, namely,
λ1,2,3,4, P1,2,3, PΔ, PI, S, D, P, D1,2, d1,2,3, Δ, and φ1,2. Initially, the
mean values and their standard deviations were calculated, where
for both health conditions the second statistical moment of the
mean for φ2 was found to be approximately three times higher
than the second statistical moment of the mean for φ1, thus
considering φ2 as an unreliable predictor and, consequently, it
was omitted. Second, the Shapiro–Wilk normality test [70, 71]
was computed on a significance level α � 0.05, where test’s results
indicated non-Gaussian distribution for all polarimetric
quantities. Thus, further on non-parametric statistical tests
and machine learning algorithms (MLAs), which do not
require data from normal distribution were used. Next, for
each of the polarimetric parameters pairs grouped as healthy
vs tumor, the Mann–Whitney test [70, 72] was computed for the
same α, in order to find out whether the polarimetric pairs were
drawn from different or similar distributions. Only for λ1,2, P1, D,
P, and D1,2, the test indicated that these parameters were drawn
from different distributions (all tests were considered as
statistically significant if the computed p-value < α).
Afterward, the dataset was reorganized with each column j
being a polarimetric quantity, where the measurements from
both health conditions were concatenated by rows. Then a factor/
categorical variable was added to indicate the health condition as
either 0–healthy or 1–tumor. Finally, with the exception of the
categorical variable, all other quantities were normalized with the
following functionF n � (x(j) − xmin(j)) · (xmax(j) − xmin(j))−1,
in order to restrict them as dimensionless variables that vary within
the closed interval [0,1]. Additional feature selection is necessary, in
order to avoid the use of highly correlated predictors and
multicollinearity, respectively. For instance, Δ, S, PΔ, and PI were
removed from themainmodel since they are derived from di, λi, and
Pi, and according to the Mann–Whitney test, their data for both
health conditions are drawn from the same distribution.Moreover, a
priori high correlation is also expected for λi and Pi after inspection of
Eq. 5, therefore two submodels were formed: one omitting all
Pi—shortly denoted as—“eigenvalue model” and one omitting all
λi referred as—“IPP model.” The remaining predictors: D, P, D1,2,
d1,2,3, and φ1 were included in both submodels.

4.3 Machine Learning
4.3.1 Unsupervised Machine Learning and Principal
Component Analysis (PCA)
For n number of predictors, there are n(n-1)/2 scatter plots to
summarize and graphically represent the available data. For large
number of n, such approach would be computationally and
analytically ineffective as most of the plots may be redundant,
for instance 55 plots to be analyzed for each of the submodels.
Therefore, we started the ML approach with the principal
component analysis. For each of the submodels PCA was
applied to summarize the available data, as shown in Figure 3,
where from Figure 3A it was calculated that 7 principal
components (PCs) retain more than 95% of the total variance

for the eigenvalue model and 6 PCs—for the IPP model. By this
way, PCA can be combined with classification MLAs, in order to
use the non-redundant features only from both submodels, and
any other collinear or highly correlated features could be avoided
(i.e., all collinear features will result in a single PCA component).
To project the experimental data onto the principal component
space, one can compute the principal component scores (PCS).
As a result, there is no correlation between all PCS of both
submodels, as shown in Figures 3B,C, whereas 95% of the total
variance is sustained. Such an approach would facilitate in
increasing the final classification accuracy.

4.3.2 Supervised Machine Learning
First, the datasets for both submodels without the PCs were
randomly split to obtain two data subsets for training and testing
as follows: 570 samples (85% of the total data) for training and
100 samples (15% of the total data) for testing. To evaluate the
best predictors for tumor detection (see Figure 4), logistic
regression (LR) was trained independently with both
submodels but without using their PCS. By this way, it was
found out that the inclusion of λ1 is deteriorating for the
model performance, and this parameter was consequently
removed from the analysis. In Figure 4 the top and bottom
axes include 1D distribution of the predictors’ normalized data,
for both health conditions (0–Healthy, 1–Tumor), respectively. It
could be well observed that d1, R1, and λ2 show excellent detection
performance for malignant formations, where the uncertainty
intervals (in grey) remain close to the probability values (all blue
lines). Although the probabilities for P, D2, and P1 parameters are
lower and have higher uncertainties compared to the former
triplet of polarimetric parameters, each one of the latter triplet
could also be identified with sufficient probability values.
Typically, malignant tumor formations cause morphological
alterations in tissues and alter the collagen extracellular matrix
as well as the cellular organelles by modifying their sizes and
shapes. This leads to changes in tissue heterogeneity, followed by
reduced number of scattering events as R1 may indicate. Also,
Rayleigh–Mie transition of light scattering regime occurs that in
turn affects light (de) polarization [10, 11, 46]. Whereas the
depolarization parameter d1 can be considered as a weight
coefficient for the Stokes component S1, higher polarimetric
purity would indicate less depolarizing media. Such a
conclusion is consistent with previously reported results for
colon tumor tissues [26, 45]. Additionally, both polarizance
and diattenuation (especially D2 from the symmetric
decomposition) were also found with higher values for the
tumor tissue zones of colon in [26]. By this way, this
polarimetric doublet may be considered as noteworthy tumor
markers for the angular-resolved measurements with wide angle
acceptance or any angles of incidence and detection different
from normal.

Next, solely for the classification purpose LR, random forest
(RF), and support vector machines (SVM) algorithms were again
trained with the corresponding PCS data subsets for both
submodels, split again randomly with the same proportions.
All MLAs models underwent initial tuning to pick up the best
possible hyperparameters. In the case of RF, a randomly selected
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fraction of k � N1/2 from all predictors was drawn without
replications to create an ensemble of decision trees. For both
submodels, having three predictors per split was found to be the
most optimal choice. By setting the number of trees to 30, we
reached the same classification accuracy as with 500 trees, while
the training time was reduced by an order of magnitude. Without
replications, there are 35 possible predictor combinations (3
randomly selected PCs and their scores from total 7) for the
eigenvalue model and 20 possible predictor combinations (3

randomly selected PCs and their scores from 6) for the IPP model,
calculated from Ck

N � N!·(k!(N-k)!)−1. For all decision trees in the
ensemble (including replications), the possible number of predictor
combinations for training is 4,960 for both submodels, calculated from
Kk

N �(N + k-1)!·(k!(N-1)!)−1. By this way, RF algorithm could be
considered as more reliable MLA for tumor classification, even if the
dataset size is small and/or there is a presence of correlated predictors.
The out-of-bag (OOB) error was found ≈5% for the eigenvalue model
and ≈11% for the IPP model. In the case of SVM algorithm, after

FIGURE 3 | (A) PCA for N number of components, explaining the corresponding percentage of variance σ2 for both submodels. Correlation matrices for (B) 7 PCs
and their scores—eigenvalue model and (C) 6 PCs and their scores—IPP model.

FIGURE 4 | Probability for tumor detection, calculated from LR: (A) d1, (B) R1, (C) λ2, (D) P, (E) D2, and (F) D2. For subfigures A, B, D, and E the results are
comparable for both submodels, while subfigures C and F were computed from the eigenvalue and the IPP model, respectively (φ1 ≡ R1 and λ1 ≡ l1).
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cross-validation a polynomial kernel of third degree was found to
provide the best classification accuracy with both submodels.
Additional regularization C [63, 64] was necessary to add a penalty
for each misclassified data point. Usually, small values of C result in
smaller margin, low bias, and high variance in the model and vice
versa for large C values [63, 64]. After the cross-validation cycle, the
optimal values of C were found to be 1 for both submodels.

After the application of the aforementioned MLAs for
classification, various other metrics were used to evaluate the
classifiers’ performances. For instance, their accuracy, sensitivity,
specificity, relative risk of misclassification (Rr), receiver operating
characteristic (ROC) curve, and the corresponding area under curve
(AUC). While the sensitivity represents the portion of the correctly
predicted true positive (TP) values (or in this study—the tumor
class), the specificity is related to the amount of the correctly
predicted true negative (TN) values (analogously—the healthy
class). For the ideal classifier, the accuracy (sum of all true
predicted classes normalized to the sum of all true and all false
predicted classes), sensitivity, and specificity should be 100%.
However, due to the presence of wrongly predicted class values
such as false positive (FP—healthy tissue but detected as tumor class)
and false negative (FN—tumor tissue but detected as healthy class),
the models’ detection performance deteriorate. In this regard, the
relative risk of misclassifications can be calculated as follows:

Rr � FP

FP + TN
· TP

TP + FN
[ ]−1

. (15)

Ideally, lesser misclassified values will lead to closer proximity
of the ROC curve to a stepwise profile. As there is no perfect
model, losses introduced from wrongly predicted class values will
always be a considerable factor, which can be simply calculated as
1-AUC. The results from all classification MLAs are presented in
Figure 5 and in Table 1.

From the graphical representation of the figures above and the
values in Table 1, it becomes possible to outline both submodels
performances for tumor tissue classification. To sum up, all MLAs
trained with the corresponding PCS provide reliable accuracy and

AUC values close to 1. The eignevalue submodel seems to perform
better than the IPPmodel with lower OOB error and higher diagnostic
quantities. Whereas the LR algorithm is better suited to evaluate the
predictor’s probability for tumor detection and has higher specificity
values than SVM, the latter MLA has higher sensitivity values than LR
and is better suited to predict the healthy class. On the other hand, the
RF algorithm yielded the best results for classification with negligible
losses and misclassification risk. However, a parallel should be drawn
between RF and SVM. The former can be computed with only two
hyperparameters—the number of variables/predictors per each
random split and the number of trees. On the other hand, the
latter is dependent and highly sensitive to the kernel choice and
degree, regularization parameter(s), and choices for support vectors
and margins all of which influence the variance-bias trade-off.
Additionally, the posterior probabilities for both classes were found
to differ at most for RF, whereas for SVM, the difference between these
values was very small, thus reducing the reliability of SVM for
classification for the current study.

5 CONCLUSION

In this study, multiple formalin-fixed, ex vivo, human colon
samples, containing healthy and malignant formations, were

FIGURE 5 | ROC curves for (A) eigenvalue model (trained with 7 PCs and their scores) and (B) IPP model (trained with 6 PCs and their scores).

TABLE 1 | Supplementary table associated with all classification MLAs
performances, where all numerical values are in %. All MLAs were trained with
7 PCs and their scores for the eigenvaluemodel and 6 PCs and their scores for the
IPP model.

Accuracy Sensitivity Specificity AUC Loss Ri

LR—(λi) 87 85 91 93 7 11
LR—(Pi) 84 80 89 87 13 14
RF—(λi) 97 100 93 99 1 7
RF—(Pi) 95 93 98 98 2 3
SVM—(λi) 88 92 83 90 10 18
SVM—(Pi) 77 93 59 92 8 45
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measured with custom-built polarimetric setup in reflection
geometry. Analogously to [25, 26, 46], where a single, human
colon specimen and tumor grade were considered for binary
classification of all measured sites, in the current study the same
experimental approach was extended for multiple colon samples
and tumor grades, respectively. All experimental Mueller
matrices were filtered for data noise and/or experimental
errors using Cloude’s physical realizability method. Both
symmetric decomposition and the depolarization metric
calculus were used in order to extract the (de)polarization
fingerprint of the samples under examination. By this way,
the symmetric decomposition could be regarded as very well
suited decomposition algorithm for angular-resolved
measurements by providing a pure, canonical depolarizer
Mueller matrix and matrices for the corresponding
counterparts of D1 − D2 and R1 − R2. Also, the polarimetric
purity calculus enriched the polarimetric dataset and provided
more predictors to be used for ML. Due to the inter-patient
variability and the different tumor stages, a superimposing
between the dataset points was observed. With the help of
statistical analysis, the most prominent polarimetric
quantities were selected for inclusion in two tissue
polarimetric models. Additionally, normalization and feature
selection were performed in order to deal with dimensionless
quantities and to avoid highly correlated predictors. Due to the
small dataset size, random split of dataset with proportions 50:
25:25 [%] for training:validating:testing was not feasible.
Instead, a random split as 85:15 [%] for training:testing was
used, thus providing more training data to feed the MLAs.
Trained by this way, LR provided the predictors’ probability for
tumor detection, where d1, R1, λ2, P, D2, and P1 were found most
prominent diagnostic markers. Additionally, the data of these
polarimetric quantities for both health conditions, with the
exception of d1 and R1, were found to be drawn from
different distributions, according to the Mann–Whitney test
on a significance level α � 0.05. The combination of training
parameters was optimized after computing PCA and training all
classification MLAs with the PCs and their scores describing
95% of the total variance. By this way, any collinear and/or the
redundant features were eliminated from both polarimetric
models, hence reducing the computational time for training.
Similar approaches and methods have been applied with success
very recently to other kinds of biological samples [73].
Additional hyperparameters’ optimizations and cross
validation were carried out to improve the classification
accuracy. To conclude, the classification with the eigenvalue
model is more accurate than the classification with the IPP
model, whereas RF provided the best results for that purpose.
For a single sample and colon cancer grade tissue polarimetry
could be utilized as a supplementary diagnostic to support the
golden standard histology analysis by a pathologist as previously
reported in the studies mentioned in references [25, 26, 46].
However, when more samples are used with different grades of
colon cancer, the experimental data may suffer from the inter-
patient variability issue and as presented in Section 4.1,
Figure 2 to produce superimposing results. In combination,
both unsupervised and supervised MLAs may provide an

adequate solution to overcome this obstacle. The results from
the current study were also found to be consistent to the
previously reported results in the studies mentioned in
references [25, 26, 46]. The scope of the current pilot study
involved small number of samples and measurements;
therefore, only a qualitative approach was adopted for the
two-class classification problems: either healthy or tumor.
With more samples and measurements at avail, the methods
proposed in the current study could be extended for multi-class
classification, that is, the prediction of the tumor grade. This will
require a transition to handle and process larger data frames, use
additional boosting algorithms [63, 64] to increase the
classification accuracy, and delve into reinforcement and
deep learning, as well as to adopt parallel computing to
reduce the computational time. By this way artificial
intelligence has a great potential to come into force in
supporting both physicists and physicians for classification
and differentiation between healthy versus tumor colon
tissues or for cancer diagnostics in general.
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