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Shape-from-shading (SFS) is an important method to reconstruct three-dimensional (3D)
shape of a surface in photometry and computer vision. Lambertian surface reflectance and
orthographic camera projection are two fundamental assumptions which generally result in
undesirable reconstructed results since inaccurate imaging model is adopted. In this
paper, we propose a new fast 3D shape reconstruction approach via the SFS method
relaxing the two assumptions. To this end, the Oren-Nayar reflectance and perspective
projection models are used to establish an image irradiance equation which depicts the
relationship between the 3D shape of non-Lambertian surfaces and its corresponding two-
dimensional (2D) shading image. Considering the light attenuation of the near point source,
the image irradiance equation is transformed into a static Hamilton-Jacobi partial
differential equation (PDE) by solving a quadratic equation. The viscosity solution of the
resultant Hamilton-Jacobi PDE is approximated by using optimal control theory and
iterative fast marching method starting from a viscosity supersolution. The performance
of the proposed approach is evaluated on both synthetic and real-world images and the
experimental results demonstrate that the proposed approach is accurate and fast.
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INTRODUCTION

Shape-from-shading (SFS) is an important method to reconstruct three-dimensional (3D) surfaces in
the field of photometry and computer vision. The work has been initiated by Horn [1, 2] who
established an image irradiance equation depicting the relationship between the 3D shape of a surface
and its corresponding two-dimensional (2D) shading image. Inspired by his work, a lot of different
SFS methods are extensively studied (for surveys, see [3, 4]). In these methods, Lambertian surface
reflectance and orthographic camera projection are two fundamental assumptions. Even for the
diffuse surfaces, however, the Lambertian model has been proved to be inaccurate expression of the
reflectance property [5–7]. Furthermore, the image can be seen as formed through a so-called pin-
hole camera which should be modeled by perspective projection. Since these methods do not adopt
accurate physical and/or optical imaging model, the reconstructed results lack accuracy.

Recently, Tankus et al. [8] changed the classical orthographic projection assumption to a
perspective one and formulated the image irradiance equation. They suggested the orthographic
fast marching method of Kimmel and Sethian [9] as the initial solution and then approximated the
perspective image irradiance equation using an iterative fast marching method. Another perspective
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SFS was addressed by Courteille et al. [10] who considered the
“pseudo-Eikonal equation” and solved it with a prior knowledge.
Yuen et al. [11] proposed an alternative perspective SFS which is
also based on the fast marching method of Kimmel and Sethian
[9]. Their method, however, does not require the iterative process.
It is well worthmentioning that Prados and his colleagues [12, 13]
had made a great contribution to the SFS field. They presented a
more realistic imaging model for SFS problem, where the
orthographic camera projection is substituted by the
perspective projection and the light source is assumed to be
placed at the optical center of the camera. Moreover, a light
attenuation term 1/d2 (d defines the distance between the 3D
surface point and the position of the light source) has been
considered. They generalized the SFS problem and related the
derived image irradiance equation with a Hamiltonian and
approximated its viscosity solution using optimal control
strategy. With their work, Ahmed and Farag [6, 7] replaced
Lambertian reflectance by a more advanced Oren-Nayar
reflectance and proposed a non-Lambertian SFS method. In
addition, they used the Lax-Friedrichs sweeping scheme [14]
to solve the explicit partial differential irradiance equation and
got a promising reconstructed result. Although [6, 7] worked well
on the non- Lambertian surfaces, they still need the exact values
on the boundary. Moreover, it is difficult to find a good estimate
for the artificial viscosity term and it would take too much time to
reach the stopping criterion. To avoid these problems, Vogel and
Cristiani [15] used the Upwind scheme to get a more efficient
solution with less convergence time. Ju et al. [16] extended the
work of Galliani et al. [17]. They used spherical surface
parameterization to Oren-Nayar reflectance model and thus
could deal with an arbitrary position of the light source.
Compared with the method of [6, 7, 15], this work can obtain
a very compact and elegant image irradiance equation.
Unfortunately, the solving process need transform the fast
marching method described in Cartesian coordinates [18] into
spherical coordinates. Tozza and Falcone [19, 20] presented
another non-Lambertian SFS method using a semi-Lagrangian
approximation scheme and proved a convergence result.
However, their work still assumes an orthographic camera
projection and a distant light source. More recently, some SFS
approaches have been proposed by deep learning techniques
[21–23]. Yang and Deng [21] addressed the SFS problem by
training deep networks with only synthetic images which can not
be rendered by any external shape dataset. Henderson and Ferrari
[22] presented a unified framework for both reconstruction and
generation of 3D shapes, which was trained to model 3D meshes
using only 2D supervision. Tokieda et al. [23] proposed a high-
frequency shape recovery from shading method using CNN
which the U-Net structure was employed. The approaches
[21–23] can achieve state-of-the-art performance. However,
they need sufficient amount of data for training.

In the current study, based on our previous work [24–27], we
propose a new fast perspective SFS approach for non-Lambertian
surface reconstruction. The Oren-Nayar reflectance model is also
adopted to approximate the surface reflectance property. Then,
with a point light source close to the projection center of the
camera which performs perspective projection, we formulate the

image irradiance equation that can be transformed into a
quadratic equation. The main contribution of our work is that
we establish a static Hamilton-Jacobi partial differential equation
(PDE) by solving the quadratic image irradiance equation that
contains the 3D shape, after which we attempt to get the viscosity
solution of the resultant PDE by using optimal control theory and
iterative fast marching method. It is worth mentioning that the
light attenuation term 1/d2 has also been employed to remove the
ambiguity which leads SFS to be an ill-posed problem. Compared
with other existing SFS approach, the proposed approach is more
accurate and faster.

The remainder of the paper is structured as follows. In section
2, we give the SFS imaging model of non-Lambertian surfaces to
derive the image irradiance equation that serves as the basis for
our approach. Section 3 presents a new method to approximate
the viscosity solution of the image irradiance equation using
optimal control theory and iterative fast marching method.
Experimental results on both synthetic and real-world images
are performed and discussed in section 4. Finally, we conclude
our approach in section 5.

IMAGE IRRADIANCE EQUATION

SFS Imaging Model of Non-Lambertian
Surfaces
To derive the image irradiance equation of non-Lambertian SFS,
we firstly make a brief review of the imaging process for the SFS
problem which describes the relationship between the 3D shape
of a surface and its corresponding 2D shading image. It is well-
known that the following relationship between the image
irradiance and the surface reflected radiance [1, 25] is
modeled as:

Ei � Ls
π

4
(D
F
)2

cos4 χ, (1)

where Ei is image irradiance, which is usually considered to be
proportional to the image brightness I. Ls defines the surface
reflected radiance along the direction of the camera. The camera
lens focuses light from the surface on the imaging sensor (i.e., the
image plane) and D, F are its diameter and focal length,
respectively. χ is the angle between optical axis and the line of
sight to a 3D surface point of a corresponding 2D image point.
The term cos4 χ implies non-uniform image irradiance even for
uniform radiance, but the actual optical system of the camera is
generally designed to correct it. Consequently, we may consider
the image irradiance Ei to be proportional to the surface reflected
radiance Ls, i.e., Ei � ηLs.

For an ideal diffuse surface and a distant point light source, the
surface has a Lambertian reflectance and the reflected radiance
can be expressed as [1]:

Ls(θi) � ρ

π
I0 cos θi, (2)

where ρ is the diffuse albedo and I0 is the intensity of the point
light source. The term cos θi is the scalar product between the
surface normal vector n and the light source vector L.
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However, the Lambertian model has been proved to be
inaccurate expression of the reflectance property for the real-
world diffuse surfaces [5–7]. In order to eliminate the inaccuracy
resulting from the assumption of the Lambertian surface
reflectance, Oren and Nayar [5] developed an advanced
reflectance model for rough diffuse surfaces. Assuming that
the surface is composed of extended symmetric V-shaped
cavities and each V-cavity has two planar facets following the
Lambert’s law, they applied the roughness model that the surface
roughness is specified using a probability function for the facet
orientations to obtain the expression for the surface reflected
radiance. For a Gaussian distribution, with reflection geometry
shown in Figure 1A, Ls is formulated as:

Ls(θi,φi; θr,φr; σ) � ρ

π
I0 cos θi(A + Bmax[0, cos(φr − φi)]
sin α tan β), (3)

where θi, φi and θr, φr are the slant, tilt angles of L and the
camera vector V, respectively,

A � 1 − 0.5
σ2

σ2 + 0.33
, B � 0.45

σ2

σ2 + 0.09
, (4)

α � max[θi, θr] and β � min[θi, θr]. The parameter σ denotes the
standard deviation of the Gaussian distribution and is employed
as a measure of the surface roughness.

Taking Eq. 3 into Eq. 1, the image irradiance equation of non-
Lambertian SFS is now:

Ei(θi,φi; θr,φr) � η
ρ

π
I0 cos θi(A + Bmax[0, cos(φr − φi)]
sin α tan β). (5)

Since the image irradiance is usually considered to be
proportional to the image brightness, we denote I � πEi/ηρI0
and the image irradiance Eq. 5 is rewritten as:

I(θi,φi; θr,φr) � cos θi(A + Bmax[0, cos(φr − φi)] sin α tan β).
(6)

Image Irradiance Equation of
Perspective SFS
As shown in Figure 1B, for a perspective camera projection
whose center is O, S(X,Y,Z) represents the 3D shape of
interested surface for a certain image domain Ω, and can be
parameterized by

S(X,Y,Z) � z(x, y)
F

(x, y,−F), (x, y) ∈ Ω, (7)

where F> 0 and z(x, y)> 0 is the distance between the surface
point (X, Y, Z) and O −XY plane. To get a surface normal
vector, we calculate the tangent vectors in both x and y
directions, respectively and compute their cross product.
Then the normal vector n(x, y) at the point (X, Y, Z) is
formulated as:

n(x, y) � (F zz

zx
, F

zz

zy
, z + x

zz

zx
+ y

zz

zy
). (8)

With the point light source whose attenuation term 1/d2 has been
considered to remove the ambiguity which leads SFS to be an ill-
posed problem is located near the projection center O, the light
source vector L(x, y) at the point (X,Y, Z) is given by

L(x, y) � (−x,−y, F) (9)

and the parameters in Oren-Nayar reflectance model satisfy

θi � θr � α � β, φi � φr. (10)

Therefore, the image irradiance Eq. 6 is simplified to

I(θi) � 1
d2

(A cos θi + B sin2θi). (11)

Since the term cos θi is the scalar product between n(x, y) and
L(x, y), substituting Eqs 8, 9 into Eq. 11, we can obtain the image
irradiance equation of perspective SFS:

FIGURE 1 | Imaging model for perspective SFS. (A) Reflection geometry model of a surface and (B) Perspective projection model of a camera.
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I(x, y) � 1
d2

(A Q(x, y)
V(x, y,∇u) + B

V(x, y,∇u)2 − Q(x, y)2
V(x, y,∇u)2 ),

(12)

where u � ln z(x, y), V(x, y,∇u) �


















(Fzu/zx)2 + (Fzu/z

√
y)2 + (xzu/zx + yzu/zy + 1)2, Q(x, y) � F/(x2 + y2 + F2)1/2,
d � z(x, y)/Q(x, y) � eu/Q(x, y).

METHOD OF SOLVING THE IMAGE
IRRADIANCE EQUATION

Obviously, the image irradiance Eq. 12 can be described by a
quadratic equation with respect to the variable V(x, y,∇u). Then
the equation is transformed into(I(x, y)e2uQ(x, y)−2 − B)V(x, y,∇u)2 − AQ(x, y)V(x, y,∇u)

+BQ(x, y)2 � 0. (13)

Solving the quadratic Eq. 13 and satisfyingV(x, y,∇u)> 0, we
have

V(x, y,∇u) � A +





























A2 − 4(I(x, y)e2uQ(x, y)−2 − B)B√
2(I(x, y)e2uQ(x, y)−2 − B) Q(x, y).

(14)

Now, we can obtain a novel image irradiance equation

− 1

A −





























A2 − 4(I(x, y)e2uQ(x, y)−2 − B)B√

+ 1
2BQ(x, y)




































(F zu

zx
)2

+ (F zu

zy
)2

+ (x zu
zx

+ y
zu

zy
+ 1)2

√√
� 0.

(15)

It is easy to see that Eq. 15 does not have classical solutions
since it is a first-order non-linear PDE. Thus one can appeal to the
notion of viscosity solution [28, 29] that is a solution in the weak
sense. For the PDE (15), to ensure the uniqueness of the viscosity
solution, Dirichlet boundary conditions usually need to be
imposed, and therefore a static Hamilton-Jacobi PDE could
be got

{ H(x, y, u, g) � 0,∀(x, y) ∈ Ω,
u(x, y) � χ(x, y),∀(x, y) ∈zΩ, (16)

where χ(x, y) is a real function which is defined on zΩ and

H(x, y, u, g) � −(A −





























A2 − 4(I(x, y)e2uQ(x, y)−2 − B)B√ )−1

+W(x, y) 






















F2
∣∣∣∣∣∣∣∣∣∣∣∣g∣∣∣∣∣∣∣∣∣∣∣∣2 + ((x, y) · g + 1)2√

(17)

is the associated Hamiltonian, where W(x, y) � (2BQ(x, y))−1
and g � (zu/zx, zu/zy). According to [12, 29] and our previous
work [24], using viscosity solution and optimal control theories,
the Hamiltonian (17) can be addressed as a control-type
formulation

H(x, y, u, g) � −(A −





























A2 − 4(I(x, y)e2uQ(x, y)−2 − B)B√ )−1

+ sup
a∈B2(0,1)

{ − lc(x, y, a) − f c(x, y, a) · g},
(18)

where B2(0, 1) is the unit ball of center 0 in R2, fc(x, y, a) �
−W(x, y)RT(x, y)D(x, y)R(x, y) a and lc(x, y, a) �
−









1 − ||a||2

√
/2B −W(x, y)RT(x, y)v(x, y) · a with

R(x, y) � ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
( x(x2 + y2)−1/2 y(x2 + y2)−1/2
−y(x2 + y2)−1/2 x(x2 + y2)−1/2 ), x2 + y2 ≠ 0,

( 1 0
0 1

), x2 + y2 � 0,

(19)

D(x, y) � ( 










x2 + y2 + F2

√
0

0 F
),

v(x, y) � ( 




















(x2 + y2)(x2 + y2 + F2)−1√
0

). (20)

We approximate H(x, y, u, g) by

H(x, y, g) ≈ − (A −





























A2 − 4(I(x, y)e2uQ(x, y)−2 − B)B√ )−1

+ sup
a∈B2(0,1)

{ − lc(x, y, a) +min[− f1(x, y, a), 0]g+
1 +max[− f1(x, y, a), 0]g−

1 +min[− f2(x, y, a), 0]g+
2 +max[− f2(x, y, a), 0]g−

2 }, (21)

where fk(x, y, a) is the k th component of f c(x, y, a) and g+
k , g

−
k

stand for the corresponding forward and backward difference
approximations of the k th component of g respectively.
Obviously, for the approximation method (21), it is
necessary to solve the optimum problem and we can use
optimal control theory and our proposed approach in [24] to
get it.

The explicit time marching scheme for the Hamilton-Jacobi
PDE (16) applying the forward Euler as the time discretization
could be described in the form:

un+1 � un − ΔtH(x, y, g), (22)

where Δt is a time step. In order to accelerate the convergence
speed of scheme (22), our proposed iterative fast marching
strategy in [24] is adopted.

The method to approximate the viscosity solution of
the resultant Hamilton-Jacobi PDE (16) is organized as
follows:
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1) Initialization (iteration n � 0). Set u0 � u0(xi, yj), where
(xi, yj) is the discretization of (x, y) at grid point (i, j) and
u0 is a viscosity supersolution. In this paper, u0(xi, yj) �
0.5 ln(A) − 0.5 ln(I(xi, yj)Q(xi, yj)−2).
2) Iterative Marching (iteration n + 1).
(1) Definitions. Each grid point (i, j) is assigned to one of three
sets, known, front, unknown, in the following:

• Known is the set of the initial grid points corresponding to
the extremums of u. Known points are the seeded points
whose values will not be recalculated.

• Front is the set of the neighbours of known points, not in
known. In our method, front points are the four nearest
neighbours of known points and their values will be
recalculated later.

• Unknown is the rest of the grid points, where there is not
yet a calculation for u.

(2) Marching.
• Let (imin, jmin) be the point among all front points that has
the smallest u value.

• Remove the point (imin, jmin) from front and add it to known.
• Label as neighbours any points (imin, jmin + 1),
(imin + 1, jmin), (imin, jmin − 1), (imin − 1, jmin) which are
either in front or unknown. If the neighbour belongs to
unknown, add it to front and remove it from unknown.

• Recalculate the value of u at the four nearest neighbours of
(imin, jmin) that are in front by applying the scheme (22).

• If all grid points are known then exit, otherwise return to
top of marching.

FIGURE 2 | Experimental results on Vase and Mozart surfaces. (A)Ground truth surfaces, (B) Synthetic shading images, (C) Reconstructed surfaces by Vogel and
Cristiani’s approach, (D) Surface errors between (C) and (A), (E) Reconstructed surface by our proposed approach, (F) Surface errors between (E) and (A), and (G)
Central cross section of ground truth and reconstructed surfaces.
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(3) Convergence test. If ‖un+1 − un‖L1 ≤ δ, where δ is a given
stopping strategy, the method converges and stops; otherwise
returns to 2). In this paper, δ � 10−5.

EXPERIMENTAL RESULTS AND
DISCUSSION

Several experiments on two synthetic Vase and Mozart and one
real-world shading images have been carried out in order to
evaluate the performance of the proposed approach. We compare
our proposed approach with Vogel and Cristiani’s approach [15]

because it has a better performance than Ahmed and Farag’s
approach [6, 7]. We implement the two approaches in Matlab,
using C mex functions. All the experiments are conducted on a
computer with a Xeon E5-1650 processor and 16 GB of DDR3
memory. The unit in the experiments is pixel.

Experimental Results on Synthetic Images
Figure 2 illustrates the experimental results on Vase and Mozart
surfaces. Figure 2A shows the ground truth surfaces which are
benchmark Dataset given by Zhang et al. [3]. Figure 2B illustrates
the synthetic shading images of Vase and Mozart surfaces with
the surface roughness σ � 0.2 and image domain Ω � 128 × 128.

TABLE 1 | Comparisons of approaches for Vase and Mozart surfaces.

Surface Method MA (pixel) RMS (pixel) CPU time (s)

Vase Vogel and Cristiani’s approach 0.7916 1.3365 0.19
Vase Our proposed approach 0.1419 0.2950 0.04
Mozart Vogel and Cristiani’s approach 1.4706 2.2806 0.26
Mozart Our proposed approach 0.3204 0.8784 0.05

FIGURE 3 | Real-world shading image and reconstructed surface. (A) Shading image, (B) Reconstructed surface by Vogel and Cristiani’s approach, (C)
Reconstructed surface by our proposed approach, and (D) Reconstructed surface by our proposed approach with Lambertian reflectance.
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Figures 2C,D show the reconstructed surfaces and errors by
Vogel and Cristiani’s approach respectively. Figures 2E,F show
the reconstructed surfaces and errors by our proposed approach
respectively. Figure 2G illustrates the central cross section of
ground truth and reconstructed surfaces of Vase and Mozart
surfaces.

It is seen from Figures 2C–G that both Vogel and Cristiani’s
and our approaches can give satisfactory surface reconstruction.
Furthermore, we can see that our proposed approach produces
reconstruction results with smaller errors and exhibits better than
Vogel and Cristiani’s approach. The performance of Vogel and
Cristiani’s approach and our proposed approach is further
quantitatively described by the mean absolute (MA) error,
root mean square (RMS) error and running time. The MA
and RMS errors defines as:

MA � 1
m × n

∑m
i�1
∑n
j�1

∣∣∣∣zij − ~zij
∣∣∣∣, (23)

RMS �


















1

m × n
∑m
i�1
∑n
j�1

∣∣∣∣zij − ~zij
∣∣∣∣2√√
, (24)

where m × n denotes the size of the image domain Ω and zij, ~zij
denote the reconstructed surface and the ground truth surface
respectively.

Table 1 demonstrates the quantitative comparisons of
approaches for Vase and Mozart surfaces. It can be observed
obviously that our proposed approach has muchmore superiority
both in the MA and RMS errors. The MA and RMS errors of our
proposed approach are about one-fifth and one-fourth of Vogel
and Cristiani’s approach for the Vase, and about one-fifth and
one-third for the Mozart, respectively because our image
irradiance equation is approximated by using control-type
Hamiltonian and iterative fast marching method while Vogel
and Cristiani’s is approximated by Upwind scheme. In addition, it
is also seen that our approach is much faster than Vogel and
Cristiani’s approach as the same reason above.

Experimental Results on Real-World Image
Figure 3 illustrates the experiments on the real-world shading of
a paper cylinder which is shown in Figure 3A. Figures 3B,C
demonstrate the reconstructed surfaces by Vogel and Cristiani’s
approach and our proposed approach respectively. Figure 3D
shows the special case of our proposed approach with Lambertian
reflectance, that is, the surface roughness σ � 0. From the
experimental results illustrated in Figures 3B,C, it is also seen
that both Vogel and Cristiani’s and our approaches can give
satisfactory surface reconstruction for the real-world shading.
Furthermore, our approach also exhibits a slightly better
performance that is more vivid than Vogel and Cristiani’s
approach. It is well worth noting that Figure 3D shows a

worse performance since it uses the Lambertian model which
is inaccurate expression of the reflection property.

CONCLUSION

We have proposed a fast 3D shape reconstruction approach
for non-Lambertian surfaces via perspective SFS and viscosity
solution. We first formulated the image irradiance equation as
a quadratic equation with respect to the variable that contains
the 3D shape of the surface and thus a static Hamilton-Jacobi
PDE was derived by solving the quadratic equation. We
employed an optimal control scheme and an iterative fast
marching strategy to compute the viscosity solution of the
resultant PDE. Finally, the experimental results verified that
our proposed approach can provide satisfactory surface
reconstruction with a higher accuracy in less running time.
Further study of non-Lambertian SFS includes faster
approximated methods and the more accurate imaging
models.
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