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Since the Mueller matrix ellipsometer has been used as a highly accurate tool for thin film
measurement, the error analysis and repeatability enhancement of such a tool are of great
importance. The existence of the Poisson–Gaussian mixed noise and the random bias of
the trigger signal in the optical measurement system may reduce the repeatability and
accuracy of a measurement. Utilizing the probabilistic analysis, the random errors in the
Mueller matrix measurements are quantified. A quantitative analysis on the instrument
matrix has been carried out to assess the individual effects for different error sources. We
proposed a general optimal instrument matrix which is capable of minimizing the
estimation variance for both Gaussian additive noise and Poisson shot noise. Besides,
a peak-matching algorithm is proposed to compress the repeatability errors due to the bias
of the trigger signal and the limited sampling frequency. The effectiveness of the proposed
methods is shown using both virtual simulations and experiments carried out on our self-
developed instrument, which potentially paves a way to reduce the requirements on motor
performance, acquisition card resolution, and trigger accuracy, which are critical to cost
reduction.
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1 INTRODUCTION

Benefiting from the characteristics such as high-precision, fast, non-contact, easy-to-integrate,
ellipsometer has been used as a practical standard tool in the semiconductor industry [1, 2], for
optical properties measurements of thin films [3–5] and the thickness measurement of ultrathin
oxide films [6]. Besides, there exists an increasing trend in the modern ellipsometry to deal with
increasingly complex media such as biomedical specimens [7]. To achieve ultrahigh accuracy in a
measurement, various systematic errors as well as random errors [8–12] have to be seriously
considered.

Although an ellipsometer can provide ultrahigh measurement precision, it is always disturbed by
detector noise (such as signal-independent Gaussian additive noise and signal-dependent Poisson
shot noise) [13–16] and the bias of the trigger signal, which induce the random fluctuations and
offsets of the intensity signals. In ellipsometric experiments, the major sources of the random errors
are the inevitable thermally generated noise in light sources, detectors, and electronic circuits [17].
Usually, random noise can be reduced by signal averaging and can be measured by performing
multiple identical runs and by calculating the mean and standard deviation [18].

Reducing the estimation variance is a feasible way to improve the measurement precision [14, 16,
19–23]. Up to now, many researchers have explored reducing the estimation variance of Mueller
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matrix elements as well as the ellipsometric parameters to
improve the repeatability accuracy [13–16, 19–29], among
which optimizing the instrument matrices is an effective way
[15, 20, 22, 26]. The objective of these optimization methods may
focus on minimizing the total variance of all the 16 Mueller
matrix elements as well as the elements in the diagonal boxes for
most of the applications such as the isotropic film thickness
metrology. Since the elements on the off-diagonal blocks of such
samples are zeros, the measurement precision only depends on
the eight elements related to the ellipsometric parameters.
Therefore, the optimal instrument matrix for all the 16
Mueller matrix elements could no longer be the best option
for the accuracy enhancement [15].

In the instrumentation of the ellipsometer, trigger signals are
usually used to start intensity acquisition. In addition to the
random error sources mentioned previously that from the
detector, there is another random error source that arises from
the random bias of the trigger signals, which exhibits as the
random offset of the initial azimuth of the wave plates. Such a
random error due to the hardware constraints is mainly caused by
unstable trigger signals and the resolution limitation of the
acquisition board. Averaging the multiple measurements is a
commonly used and effective method to reduce the timing
repeatability error and various random errors in the existing
ellipsometer data processing [30]. However, such method may
distort the voltage data within the cycle when a random offset of
the intensity signal exists and then degrades the accuracy of the
measurement. Therefore, it is necessary to eliminate the random
offset of the acquired signal.

In this article, first, we measured the Gaussian additive noise,
the Poisson shot noise, and the signal drift caused by the random
bias of the trigger signal, and then the three kinds of random
errors are quantified using probabilistic analysis where the
associated error model can be used for the simulation
experiment. Second, a generalized random error propagation
model is proposed to describe the transitive relation between
the system parameters and theMueller matrix elements, when the
Gaussian additive noise, the Poisson shot noise, and the bias of
the trigger signal exist in the instrument system. Then, the system
matrices of the instrument are evaluated which make the
estimation variance of the Mueller matrix elements minimum.
At the same time, the random error caused by the bias of the
trigger signal in the ellipsometer has rarely been studied seriously.
So, an offset elimination method based on the peak-matching
algorithm is proposed, with which the offset can be reduced by 4
times. Then, the random error model is fed into the proposed
general error propagation model for verification. The results
show that the estimated variance can be effectively reduced by
the proposed method. Last, we use practical experiments to show
the effectiveness of the proposed methods. The results show that
the variance of the measured thickness of the standard silica is
significantly reduced with the proposed methods applied.

Such a significant enhancement indicates that the
requirements on motor performance, acquisition card
resolution, and trigger accuracy can be reduced with the help
of the proposed method, which may be highly valuable for the
cost reduction of instrumentation.

2 INSTRUMENT AND PRINCIPLE

Figure 1 illustrates a system layout of a single wavelength
ellipsometer (SWE), which consists of three parts: a CW
He–Ne laser (HRS015B 100-240VAC, Thorlabs,
United States), a polarization state generator (PSG), and a
polarization state analyzer (PSA). The light source is installed
on an adjustment frame to precisely control the laser light path.
The laser light transmits through an optical isolator (IO-2D-
633-VLP, Thorlabs, United States) which prevents the
interference of reflected light and is divided into two beams
with an intensity ratio of 1:9 by a beam splitter (BS025,
Thorlabs, United States). One of the beams enters a detector
1 (PDA36A2, Thorlabs, United States) directly for the
elimination of the intensity fluctuations of the light source
and the other enters the main optical path. After passing
through a bandpass filter (FLH633-5, Thorlabs,
United States) and being reflected on a mirror (64-013,
Edmund, United States), the light incidents on a sample
through the PSG at an angle of 65°. Then, the reflected light
from the sample was modulated by the PSA and collected by the
detector 2 (PDA36A2, Thorlabs, United States).

With the aforementioned configuration, the instrument
can acquire the full Mueller matrix of the sample. The light
path is controlled by six diaphragms with an adjustable
aperture size. In order to fulfill the requirements of high-
precision real-time measurement, a high-precision data
acquisition card (USB6281, NI, United States) is required.
In addition, our self-developed SWE is equipped with a
micro-spot component for the measurement in specific
situations.

It should be emphasized that in order to improve the
measurement accuracy and stability of the instrument as much
as possible, the azimuth angle of each optical component in the
instrument and the gain coefficients of the photodetector can be
optimized.

Figure 2 shows the SWE that we built it in the laboratory.
Since we have adopted sophisticated mechanical design and
manufacturing, the self-built SWE has high accuracy. Due to
the unique optical path design, a series of factors such as light
source fluctuation error, ambient light interference, incident
angle tilt error, and improper installation error of the
polarizer and wave plate, can be eliminated. In order to
minimize the beam-wandering effect, we adopt the specific
mechanical design. The pitching of the laser can be adjusted
accurately by the adjusting device I. A dual-aperture III and
dual-reflecting-mirror II design is introduced to ensure the
accurate alignment of the laser in PSG. By adjusting the
attitude of the reflecting mirrors to guide the laser pass
through the small apertures, the accuracy of the alignment
can be evaluated by observing the shape of the laser spot. In
the PSA part, another pair of apertures V and a dual-axis
moving stage IV are used. A camera is used to analyze the spot
shape when the stage is moving. When the optical path is
perfectly aligned, the small round spot will be achieved. In this
way, the beam-wandering effect could be significantly
compressed.
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When a thin film is measured, the light intensity matrix Idec
received by the photodetector can be expressed bymultiplying the
matrixG of the PSG, theMueller matrixMS of the sample, and the
matrix A of the PSA.

Idec � A ·MS · G , (1)

The Stokes vector of the incident beam after passing through
the PSG and the reflective beam after passing through the PSA are
described as Eqs 2 and 3, respectively [31].

SkPSG � {R[−Ck
1] ·MC1(δ1) · R[−Ck

1]} · {R[−P] ·MP · R[P]} · Sin ,
(2)

FIGURE 1 | Critical components and beam path of the SWE. The ellipsometer is composed of a He–Ne laser light source (He–Ne laser), an optical isolator (IO), a
beam splitter (BS), two detectors (D1 and D2), a narrowband filter (FB), a beam expander (BE)(GBE-03A, Thorlabs, United States), six apertures (AP1-AP6)(SM1D12CZ,
Thorlabs, United States), two mirrors (M1 and M2), two polarizers (P1 and P2)(LPVISC100-MP2, Thorlabs, United States), two continuously rotating wave plates (WP1
andWP2)(WPQ10M-633, Thorlabs, United States), two focus lenses (L1 and L2), and a CCD camera (Mer-503-20 GM-P, DAHENG, China). Incident and reflected
beams are denoted in red.

FIGURE 2 | Instrumentation of SWE (A) front view and (B) top view.
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Hk
PSA � {R[−A] ·MA · R[A]} · {R[−Ck

2] ·MC2(δ2) · R[−Ck
2]} ,

(3)

where the θ (θ � P, A) is the azimuth angle of the corresponding
component in the PSG and PSA, and δy (y � 1, 2) is the
retardation due to the weak linear birefringence of the
polarizer material. The first and second compensators are
driven by two servo hollow motors (AgilityRH, Applimotion,
United States), and their fast axis azimuths are changing
according to the relations: C1

k � ω1tk + CS1 and C2
k � ω2tk +

CS2, where CS1 and CS2 are the initial azimuths of the
compensators.

In a single measurement cycle, the matrixG andA consisted of
the Stokes vector SPSG

k and HPSA
k that outputs polarized light

from the PSG and PSA can be expressed as:

G � [S1PSG S2PSG S3PSG /SKPSG] , (4)

A � [H1
PSA H

2
PSA H

3
PSA /HK

PSA] , (5)

We use nonlinear regression intensity fitting algorithm (the
Levenberg–Marquardt algorithm) to quickly and accurately
extract the sample’s Mueller matrix and optical parameters
from the measured periodic signal. To achieve high
performance of the instrument, the system needs to be
carefully calibrated [32]. The instrument was calibrated by
carrying out the measurements on the standard silica film
samples. Since the theoretical Mueller matrices of the sample
could be calculated from the refractive indices (n, k), thicknesses
d, and incidence angles θ of the measurements, the instrument
can provide the measured Mueller matrices. Utilizing the
intensity fitting method [33], the parameters of the system p �
(d, θ, P, A, δ1, δ2, C1, C2) could be accurately determined. Since in
the present work we mainly focus on the issues induced by
Gaussian additive noise, Poisson shot noise, and the bias of
the trigger signal, the details of the calibration could refer to
[34]. Besides, we have developed a broadband MME and
proposed a series of general methods on system calibration
[34], wave plate alignment, and calibration [35–39] as well as
depolarization correction [40] to ensure the performance of the
developed instrument. The system parameter p can be obtained
from the following equation:

p � argmin
p∈Ωp

[Imeas − Icalc(p)]TΓ+
Imeas[Imeas − Icalc(p)] , (6)

where Imeas is the actual measurement intensity matrix, and Icalc is
the theoretical intensity matrix. Ωp indicates the value range of
the system parameter. Then, the system parameter MS can be
obtained from the following equation:

MS � argmin
MS∈ΩM

[Imeas − Icalc(p,MS)]TΓ+
Imeas[Imeas − Icalc(p,MS)] ,

(7)

whereΩM indicates the value range of the systemMueller matrix,
Γ + Imeas is the Moore–Penrose pseudo-inverse of the covariance
matrix of the measured intensity matrix, and Γ + Imeas�(Γ + Imeas

·Γ Imeas)−1·Γ T Imeas. Then, the thickness d can be obtained from
the following equation:

d � argmin
d∈Ωd

[Mmeas −Mcalc(a*, d)]TΓ+
Mmeas[Mmeas −Mcalc(a*, d)] ,

(8)

where Ωd indicates the value range of the thickness, a* denotes
the priori value of reconstruction and Mmeas is the measurement
Mueller matrix andMcalc is the theoretical Mueller matrix and Γ +
Mmeas is the Moore–Penrose pseudo-inverse of the covariance
matrix of the measuredMueller matrix and Γ +Mmeas�(Γ +Mmeas

·Γ Mmeas)−1·Γ T Mmeas.

3 SOURCES OF ERRORS AND
CALIBRATION

In this article, Gaussian additive noise, Poisson shot noise, and
the random bias of the trigger signal have become three of the
most important factors affecting the repeatability accuracy. The
variances of the final measurement results of the Mueller matrix
element and thickness are influenced by these three factors
seriously. The distribution of the three kinds of random errors
must be calibrated respectively.

First of all, we measured the thermal noise and dark noise of
the detectors at different gain levels which are typical Gaussian
additive noise. Figure 3 shows the probability density function
histogram of the Gaussian additive noise such as dark noise and
thermal noise of the two detectors at 632.8 nm. The dark noise
obeyed Gaussian distribution as expected. Then, the mean and
variance can be obtained from the detected data through the
Gaussian fitting. The generic signal independent noise (Gaussian
additive noise) model can be described by

P(x) � 1



2π

√
δ
e−(x−μ)/2δ2 , (9)

where P(x) is probability density function, x is the value of the
dark noise, μ is the mean of x, δ is the standard deviation of x, and
δ2 is the variance of x.

As shown in Figure 3, the bars represent the probability
density function from the measurements, and the red line
shows the Gaussian fit. The dark noise’s mean value of
detector 1 is 0.0184 V when we take different gain levels. The
variances of 10 dB, 20 dB, and 30 dB are 3.2e-05, 4.3e-05, and
7.8e-05, respectively. The dark noise’s mean values of detector 2
are 0.0140 V, 0.0141, and 0.0143 V for the gain levels 10 dB,
20 dB, and 30 dB, respectively. The variances of 10 dB, 20 dB, and
30 dB are 6.0e-05, 6.5e-05, and 9.2e-05, respectively.

The gain 30 dB is usually selected in the actual measurement.
The variance and the mean values of the dark noise of the detector
2 are 9.2e-05 and 0.0143 V, respectively. The generic signal
independent noise model is given by Eq. 6. We generate the
intensity measurements in the simulation, and eachmeasurement
is corrupted by the noise-obeying Gaussian distribution model in
the following section.
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Second, the Poisson shot noise of detector 2 was calibrated
separately as shown in Figure 4. A silicon photoelectric detector
captures a periodic intensity produced by a rotating polarizer.
The mean and variance of the Poisson shot noise are calculated
after multiple measurements. Poisson shot noise will be modeled
from the measured raw data.

As shown in Figure 5, the variance of the Poisson shot noise
and the mean of the intensity conform the cubic nonlinear

relation. A general analytical model is deduced to describe the
Poisson shot noise as

P(x) � a · PPoisson(x) + b · P2
Poisson(x) + c · P3

Poisson(x) , (10)

PPoisson(x) � λxe−λ

x!
, (11)

where P(x) is the probability density function, PPoisson(x) is the
probability density function of Poisson distribution, a, b, and c are

FIGURE 3 | Calibration results of Gaussian additive noise of detector 1 and detector 2.

FIGURE 4 | Solution for Poisson shot noise calibration of the detector (A) schematic diagram and (B) experiment setup.

FIGURE 5 | Calibration results of Poisson shot noise of detector 2 at (A) 20 dB and (B) 30 dB at 632.8 nm.
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the adjustment parameters, and λ is equal to the expected value of
x when that is also equal to its variance. The maximum variances
of intensity measurements are 3 × 10-4 and 9 × 10-4 for gain levels
20 dB and 30 dB, respectively.

We use the proposed analytical model to generate the
simulated shot noise and get its mean and variance
respectively. Measured noise and normalized noise calculated
by the general analytical model are shown in Figure 5, and the
data match well. We generate the intensity measurements in the
simulation, and each measurement is corrupted by the noise-
obeying Poisson distribution model in the following section.

Last, usually due to the delay or advancement of the external
trigger and the limited sampling frequency of the acquisition
board, the initial point of each measurement will be offset, which
causes the timing repeatability error. It can be observed that the
period shift intensifies with the increase of measurement time.
Such error is shown as the initial angle deviation of the two wave
plates associated to the motor speed and sampling frequency.

The intensity data are collected in the same cycle each time
after the acquisition board is triggered, and we take the
measurement 30 times. Figure 6 shows that the 30
measurements result with 5,000 points in a cycle are
superimposed together when the sampling frequency is
20 kHz. It can be observed that there is a staggered situation
between cycles which is completely random due to the triggers
start randomly and inaccurately. The period is staggered by about
2 ms (0.002 s), which causes the distortion of the data when these
periodic data are taken on an average. Therefore, it is necessary to
reduce the timing repeatability error through hardware or
algorithm. The motors rotate the wave plate with the speed of
1,440°/s and 7,200°/s, so that the period shift will cause the offset
of the initial azimuth of the wave plates. The relationship between
the range of the initial azimuth deviation should be the same as
the relationship between the motor speed because the range of the
initial azimuth deviation is calculated by multiplying the motor
speed and the offset time 2 ms. The random initial azimuth bias
ranges of first and second wave plates are CS1±1.44° and CS2±7.2°,
respectively.

4 ERROR PROPAGATION SIMULATION
AND OPTIMIZATION METHOD

The errors caused by Gaussian additive noise and Poisson shot
noise are random errors that affect the repeatability accuracy of the
system. Besides, the timing repeatability error caused by the limited
sampling frequency and random trigger is a random error as well.

According to the system model and error propagation model,
the variance caused by the random error can be calculated. First,
we inject the instrument random error into the SWE system, and
then we can calculate the variance of the Mueller matrix and the
thickness of the film. In order to evaluate the effect of the random
error on the measurement accuracy, we address the noise
properties of MME by theoretical analysis and simulations and
further determine the correlation between the random errors and
the estimate variance of the measurement system for the
optimization.

4.1 Error Propagation
In this article, the data analysis for MME is the nonlinear
regression iteration. Standard ellipsometry measures the
ellipsometric parameters of the samples. We can estimate the
ellipsometric parameters by measuring the Mueller matrix MS.
Let us denote [15].

MS �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
m11

m21
m31

m41

m12

m22
m32

m42

m13

m23
m33

m43

m14

m24
m34

m44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (12)

the 4 × 4 Mueller matrix of the sample. The ellipsometric
parameters can be measured by anMME, which consists of a light
source, a PSG with an instrument matrix G, and a PSA with an
instrument matrix A. Equation 1 can be expressed in the form of
vector as [14–16, 19]:

Vec(Ik) � Vec(Ak ·MS · Gk) � (GT
K ⊗ Ak)Vec(MS)(k ∈ [1, K]) ,

(13)

FIGURE 6 | Time repeatability error due to the synchronization error of the external trigger and the limited sampling frequency of data acquisition.
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where k represents the tk-measured flux, and K is the number of
sampling point.

Ik � S0 · (GT
K ⊗ Ak) · Vec(MS) , (14)

where Vec (MS) is a 16-dimensional vector obtained by reading
the Mueller MatrixMS in a lexicographic order and ⊗ denotes the
Kronecker product. Gk and Ak are vectors, and they can be
derived by Eqs. 2 and 3, respectively. S0 is the intensity of the
light source, as

Gk(Ck
1 , P, δ1 ) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
cos2(2Ck

1)cos(2P) + sin(2Ck
1)cos(2Ck

1)cos(2P) +/

sin2(2Ck
1)cos(2P)cosδ1 − sin(2Ck

1)cos(2Ck
1)sin(2P)cosδ1

sin2(2Ck
1)sin(2P) + sin(2Ck

1)cos(2Ck
1)cos(2P) −/

sin(2Ck
1)cos(2Ck

1)cos(2P)cosδ1 + cos2(2Ck
1)cos(2P)cosδ1

−sin(2Ck
1)cos(2P)sinδ1 + cos2(2Ck

1)sin(2P)sinδ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

(15)

Ak(Ck
2 , A, δ2 ) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
cos2(2Ck

2)cos(2A) + sin(2Ck
2)cos(2Ck

2)sin(2A) +/

sin2(2Ck
2)cos(2A)cosδ2 − sin(2Ck

2)cos(2Ck
2)sin(2A)cosδ2

sin2(2Ck
2)sin(2A) + sin(2Ck

2)cos(2Ck
2)cos(2A) −/

sin(2Ck
2)cos(2Ck

2)cos(2A)cosδ2 + cos2(2Ck
2)sin(2A)cosδ2

sin(2Ck
2)cos(2A)sinδ2 − cos2(2Ck

2)sin(2A)sinδ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(16)

Since the initial fast axes of the retarders are C1
initial andC2

initial

and K flux measurements are performed during the fundamental
optical period π/ω with a rotating frequency ratio [41, 42] of 5ω:
Nω, the fast-axes azimuth combinations of (C1

k, C2
k) can be

determined as [13, 36].

(Ck
1 , C

k
2 ) � {5(k − 1)

K − 1
π + Cinitial

1 ,
N(k − 1)
K − 1

π + Cinitial
2 }

k ∈ [1, K];
N ∈ [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25]

,

(17)

We can denote the instrument matrix as

Vec(I) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
GT

1 ⊗ A1

GT
2 ⊗ A2

/
GT

k ⊗ Ak

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ · Vec(MS) � T · Vec(MS) , (18)

where the Vec(I) is the K-element vector of intensity measured by
the detector 2, and T is the K × 16 instrument matrix of the
Mueller matrix ellipsometer.

When the measurements are disturbed by Gaussian additive
noise, the estimation variance of each element of the measured
Mueller matrix Vec (MS) can be denoted as [14].

σ2
i (Ck

1, P, δ1, C
k
2, A, δ2, N) � σ2

Gaussian[(TTT)−1]
ii
,∀i ∈ [1, 16] ,

(19)

where the variance is the function of (C1
k, P, δ1, C2

k, A, δ2, N) and
σ2Gaussian, and we can observe the relationship between the
variance and the variates from the equation.

When the measurements are disturbed by Poisson shot noise,
the estimation variance of each element of the measured Mueller
matrix Vec (MS) can be denoted as [14].

σ2i (Ck
1, P, δ1, C

k
2, A, δ2, N, Vec(MS))

� [(TTT)−1(TTΓIT)(TTT)−1]
ii
,∀i ∈ [1, 16], (20)

where

ΓI �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(GT

1 ⊗ A1) · Vec(MS)
0
/
0

0(GT
2 ⊗ A2) · Vec(MS)

/
0

/
/
/
/

0
0
/(GT

K ⊗ AK) · Vec(MS)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(21)

where the variance is the function of (C1
k, P, δ1, C2

k, A, δ2, Vec
(MS)), and we can observe the relationship between the variance
and the variates from the equation. Contrary to the case of
Gaussian additive noise, we found that the estimation variance
of Poisson shot noise is dependent on the Mueller matrix of the
sample.

Besides, when the measurements are disturbed by the random
bias of the trigger signal, the relationship between the sample
matrices is obtained by the experimental measurement, and the
actual Mueller matrix can be expressed as:

MS � M0 + ΔM � M0 + μM + εM , (22)

where the MS is the experimentally measured sample Mueller
matrix, M0 is the true value of the sample Mueller matrix, ΔM is
the overall measurement error of the sample Mueller matrix, μM
is the Mueller matrix systematic error, and εM is the Mueller
matrix random error.

The random bias of the trigger signal will cause the offset of the
initial azimuth of the wave plate within an approximate angle.
Then, we can think of the random error as a random combination
of many system errors which is the deviation of the azimuth. The
Mueller matrix systematic error can be denoted as

μM � Q(p*)(ΔD + rD)M0 ≈ Q(p*)ΔDM0 � Q(p*)JDp|p�p*ΔpM0 ,

(23)

where theQ (p*) is the calibrated systemmatrix, ΔD is the system
matrix error caused by system parameter deviation, rD is the
system matrix error caused by the optical component
characterization model, M0 is the true value of the sample
Mueller matrix, JDp|p=p* is the Jacobian matrix of the system
matrix D to the partial differential coefficient of the system
parameter p at p=p*, and Δp is the system parameter
deviation. We will quantitatively analyze the variance (Var
[M0+μM]) caused by the errors on the measurement results by
simulations.

4.2 Optimization Method
In view of the aforementioned three kinds of random errors,
optimization methods can be proposed to improve the
repeatability accuracy of the instrument according to the
error propagation equation. For the Gaussian additive noise
and Poisson shot noise, the instrument matrix can be
optimized to improve measurement results. For the bias of
the trigger signal error, a method based on timing signal peak
matching is proposed to reduce the offset of the wave plate’s
azimuth.
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4.2.1 Gaussian Additive Noise
From Eq. 15, we know that the estimation variance varies with
(C1

k, P, δ1, C2
k, A, δ2, N) and σ2Gaussian. Then, the impact of the

different dependent variables can be observed. First, P and A are
assumed to be 0°, and the relationship between the estimation
variance and (δ1, δ2) is shown in Figure 7A. It can be observed
that the total estimation variance reaches the minimum when the
δ1 � δ2 � 130.1°. Second, δ1 and δ2 are assumed to be 130.1°, and
the relationship between the estimation variance and (P, A) is
shown in Figure 7B. It can be observed that the total estimation
variance is minimized when P is around 45.5°/−45.5° and A is
around −45.5°/45.5°. The dark blue area in Figure 7B represents
the values of P and A, which minimize the total variance
estimation.

As shown in Figure 8A, the estimated variances are
independent to the rotating frequency ratio of MME when the
Gaussian additive noise is dominant. Then, we cannot reduce the

variances by changing the rotation ratio of the motors. The
estimated variance is also inversely proportional to the
number of sampling K. As shown in Figure 8B, in the actual
instrument configuration, we can find the function of variance
and the number of flux measurements is variance � (426.8/
K)·σ2Gaussian . With the number of K increasing, the variance
reduces rapidly until K is 5,000.

4.2.2 Poisson Shot Noise
From Eq. 16, we know that the estimated variance varies with the
parameters (C1

k, P, δ1, C2
k, A, δ2, N) and the Mueller Matrix of

samples Vec (MS). When the Poisson shot noise is dominant, the
estimated variance is strongly correlated with the sample. Here,
we use the standard silica films with different thicknesses as
simulation samples to study the impact of instrument matrix
parameters. As shown in Figure 9A, the 16 Mueller matrix
elements vary with the thicknesses of the samples, and we can

FIGURE 7 | Calculated total estimation variances for Gaussian noise when (A) retardance δ1 ≠ δ2 (δ1, δ2)∈[-180°,180°], P � A � 0° and (B) retardance δ1 � δ2 �
130.1°, P≠A (P, A)∈[-180°,180°].

FIGURE 8 | Theoretical analysis for Gaussian noise (A) estimation variances of Mueller matrix elements when the ratio of motors’ rotation speed is 5ω:Nω and (B)
total estimation variances dependency on the number of sampling points.
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observe that the different Mueller matrix elements have different
tendencies when the retardances of wave plates change. As shown
in Figure 9B, we can observe that the total variance becomes
larger as the thickness increases when the retarders are 90° (a
quarter-wave plate). However, the thickness parameter of
different standard silica samples is out of action when δ1 � δ2
� 130.1°, and the minimum of total variance can be obtained.

4.2.3 The Bias of the Trigger Signal and
Peak-Matching Algorithm
The random bias of the trigger signal will cause the random offset
of the retarder’s azimuth. In order to eliminate the effect of the
timing repeatability error, a peak-matching algorithm is proposed
to relieve the strict requirements of initial angle compensatory
and synchronicity of triggers in the instrument. When several
periods of the intensity are collected, the signals are processed by

a low-pass filter first to remove the high-frequency noise. Then,
the peaks of the sampled periods will be picked out to record their
sequence number. To avoid the data distortion, the peak should
be included in one optical cycle. The reset of points for further
process could be determined by taking the points before and after
the peak sequence number continuously. Specifically, if we
sampled M points in one optical cycle, we need to select M
data including the peak. Without losing generality, suppose the
peak sequence number is j, we can define an optical cycle is from
the sampling points with sequence number of (j-i,M + j-i), where
i could be an arbitrary number. By applying the same process on
the data collected in each cycle, the peak in each cycle will be
guaranteed with the same sequence, so that the distortion of the
data could be eliminated.

Figure 10 shows a signal waveform after applying peak-
matching algorithm. Comparing with the previous

FIGURE 9 | Theoretical analysis for Poisson shot noise (A) Mueller matrix elements estimation variances dependency on retardance for samples with different
thicknesses and (B) total estimation variances dependency on retardance for samples with different thicknesses.

FIGURE 10 | Signal waveform after using peak-matching algorithm.
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measurement result shown in Figure 6, the reduction of the
timing repeatability error (staggers of the periods) can be clearly
observed. As reported in Figure 10, the offset is reduced from
0.002 to 0.0005 s. After multiplying the motor speed by the offset
time, we can calculate that the corresponding random initial
azimuth bias ranges of the two wave plates are reduced from
±1.44° and ±7.2° to ±0.36° and ±1.8°, respectively.

5 NUMERICAL SIMULATION

First, the Gaussian additive noise attribution measured by the
experiment in the previous work is added to the system. The
influence on the standard deviations of Mueller matrix elements

and thickness can be observed. As shown in Figure 11, the
standard deviations of Mueller matrix elements and the
thickness are obviously reduced when the instrument matrix is
optimized, and the level of standard deviation fluctuation is about
10-5. The impact of Gaussian additive noise on theMueller matrix
elements is independent to the sample, and this phenomenon
conforms to the theoretical expectation. However, the standard
deviation of the calculated thickness increases slightly with the
increase of the sample thickness.

Second, the Poisson shot noise attribution measured by the
experiment is added to the numerical system. The
improvements of the repeatability in the Mueller matrix and
the thickness measurements are shown in Figure 12. When the
instrument matrix is optimized, the level of standard deviation

FIGURE 11 | Simulation results for Gaussian noise (A) estimated standard deviation of Mueller matrix elements for the samples with different thicknesses and (B)
thickness-dependent standard deviation of the measured thickness.

FIGURE 12 | Simulation results for Poisson shot noise (A) estimated standard deviation of Mueller matrix elements for the samples with different thicknesses and
(B) thickness-dependent standard deviation of the measured thickness.
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fluctuation of the optimized simulation result is below 0.5 × 10-
4. The standard deviation of the calculated thickness results
increases slightly first and then falls with the increase of sample
thickness.

Last, we set the sampling frequency as 20 Khz, then the
rotation speed of the PSG motor and PSA motor are 1,440°/s
and 7,200°/s, respectively. Moreover, the timing repeatability
errors of the PSG motor and the PSA motor are randomly
varying within the range of ±1.44° and ±7.2°, respectively. The
standard deviation of the thickness fluctuates within the level of
about 10-3. The statistical results are shown red in Figure 13.
Compared to the red dot which stands for the standard deviations
before optimization, the blue dots shown in Figure 13 show the
clear error compression on the Mueller matrix and the thickness
measurements when the proposed peak-matching algorithm was

introduced. We can also observe that the error increases as the
film thickness increases.

As can be seen from Figure 13B, after optimizing the
instrument matrix and taking the method of peak-matching
algorithm, the repeatability accuracy can be increased by an
order of magnitude.

6 EXPERIMENT RESULT AND DISCUSSION

To verify the validity of the proposed method, thin film
measurement experiments on standard silicon dioxide film
samples have been carried out. At first, a tag is attached to the
center of the sample surface, whose edge is parallel to the locating
edge of the sample. Themeasurements are carried out 30 times on

FIGURE 13 | Simulation results for the random bias of the trigger signal (A) estimated standard deviation of Mueller matrix elements for the samples with different
thicknesses and (B) thickness-dependent standard deviation of the measured thickness.

FIGURE 14 | Diagram of the point positioning (A) silicon wafer and (B) in situ measurement.
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the point next to the left edge of the tag. During the measurement,
the sample is held by a vac-sorb pump installed on the sample
stage to ensure no movement is introduced during the test. After
changing the system configuration, the tag and the locating edge
will be used to limit the spatial variance of the testing area. Then,
the measurement will be carried out another 30 times. The
standard deviation of the thicknesses will be calculated, and
the result of the two tests will be compared to evaluate the
effectiveness of the proposed method.

Three different thickness silicon dioxide films are prepared first,
whose nominal thicknesses are about 2, 15, 55 nm (Standard
Silicon Dioxide, Eoptics, China). Each standard silicon dioxide
film is measured 30 times with our self-developed SWE. The
Mueller matrix elements as well as the standard deviation of 30
measurements for each element can be obtained. The standard
deviations of 16 measuredMueller matrix elements can be reduced
to 1 × 10-4 when the proposed methods are applied. Besides, the
thicknesses of each film are calculated with the algorithm
represented by Eq. 8. It can be observed from Table 1 that the
standard deviation of the thickness has been drastically reduced.
For example, the measurement standard deviations for the
measuring point of Sample 1, Sample 2, and Sample 3 have
been reduced by 78.785, 55.779, and 79.781%, respectively.

7 CONCLUSION

In this work, an instrument matrix optimization method and a
peak-matching algorithm have been proposed to improve the
repeatability accuracy for ellipsometry. The analysis on the
correlation between the random errors and the system
configurations is carried out to search the optimal instrument
matrix for film measurements. The estimation variances on
individual Mueller matrix elements are derived analytically for
Gaussian noise, Poisson noise, and the bias of the trigger signal.
Numerical simulations show that the proposed method is robust
and can dramatically improve the measurement repeatability

accuracy. The experimental results show that the proposed
method can significantly compress the standard deviation of
the measured Mueller matrix elements and thickness. The
results show that the proposed method can reduce the
standard deviations of measurement results by more than 50%
on silicon dioxide films of different thickness measurements. The
proposed methods pave a potential way to reduce the
requirements on motor performance, acquisition card
resolution, and trigger accuracy, which are critical to cost
reduction.
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