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The network topology of complex networks evolves dynamically with time. How to model
the internal mechanism driving the dynamic change of network structure is the key problem
in the field of complex networks. The models represented by WS, NW, BA usually assume
that the evolution of network structure is driven by nodes’ passive behaviors based on
some restrictive rules. However, in fact, network nodes are intelligent individuals, which
actively update their relations based on experience and environment. To overcome this
limitation, we attempt to construct a network model based on deep reinforcement learning,
named as NMDRL. In the new model, each node in complex networks is regarded as an
intelligent agent, which reacts with the agents around it for refreshing its relationships at
every moment. Extensive experiments show that our model not only can generate
networks owing the properties of scale-free and small-world, but also reveal how
community structures emerge and evolve. The proposed NMDRL model is helpful to
study propagation, game, and cooperation behaviors in networks.
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1 INTRODUCTION

There are many complex systems in nature and human society, and most of which can be abstractly
modeled as complex networks composed of nodes and links between nodes. The common social
network, internet network, urban transportation network and gene regulatory network are typical
complex networks. The rise of complex network theory provides a new perspective for the research of
complex system science, and is of great significance to understanding the natural phenomena and the
law of social operation.

Complex networks are dynamic systems that change continuously with time. How to construct
network evolutionmodels is the core problem of the complex network research. On the one hand, the
network model helps to reveal the internal mechanism driving the dynamic evolution of network
topology. On the other hand, as the network structure supports the physical behavior on the network,
the network model also plays an important role in the study of network behaviors. Therefore, the
network model is the basis of understanding network structure and function, their related studies
have been widely applied in social computing [1], information retrieval, intelligent transportation,
bioinformatics and other fields.

The studies of network evolution models started from 1959, the classical random network model
was developed by Erdos and Renyi [2], named as ER model. This model assumes that links between
nodes are generated with a random probability.With the development of data processing technology,
researchers found that many real complex networks are not random networks. Aiming at this
limitation, Watts et al. [3], Newman et al. [4] and Kleinberg [5] proposed small world models, which
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are able to explain some structure characteristics (i.e., short
average distance and large clustering coefficient) of real
complex networks. At the same time, the scale-free network
models were developed, which leverage the mechanism of
preferential connection, redirection or copy to interpret the
power-law property of the node degree distribution. In recent
years, following the above typical models, new mechanisms
represented by weight [6–9], local world [10, 11], nonlinear
growth [11–14], location information [15–18], popularity and
homophily [19–21], and triangle closure [22–26] are used to
construct network evolution models.

The construction idea of the existing network models are as
following: based on data analysis and experimental
observation, the corresponding increase and decrease rules
of nodes and relationships are formulated, and nodes passively
perform edge deletion and addition behaviors according to
these rules. Although the existing models can generate
networks that meet some characteristics of real networks,
they all ignore the fact that each node in the network is an
autonomous intelligent individual, and it should actively
update its social relations based on their own experience
and surrounding environment. The autonomous behavior of
each node eventually leads to the dynamic evolution of the
whole network.

Deep reinforcement learning is a subject of decision
optimization, and the dynamic evolution of network is the
results of node decisions. Based on the above facts, leveraging
deep reinforcement learning to build a networkmodel should be a
meaningful attempt. In this paper, we propose a network
modeling method based on deep reinforcement learning called
the NMDRL model. In the NMDRL model, each node in the
network is regarded as an agent, which continuously gains
experience by taking actions to change its current state and
obtaining corresponding rewards. At the same time, the agent
learns to optimize its own action selection strategy by using a
large amount of experience to make its autonomous decision
more intelligent. After a large number of experiments, it has been
shown that the NMDRLmodel evolves to generate a network that
conforms well to the power-law distribution and the small-world
characteristics of the real network. In addition, the model
reproduces the emergence, growth, fusion, split and disappear
of community in the evolutionary network.

The remainder of this article is structured in the following
manner. In section 2, we detail the process of our model building,
and a more detailed training process of the NMDRL model
algorithm is included. The results of our experiments are
presented in section 3. Finally, in section 4 we present the
conclusion and discussion.

2 MODEL

2.1 NMDRL Model Overview
Different from existing network models simulating the network
dynamic process under some rules, we propose the deep
reinforcement learning-based model without any limitation
rule, referred to as NMDRL model. As the network topology

structure data suffers from high dimensionality and low
efficiency, our NMDRL model is developed in a low-
dimensional latent space in which each node is represented as
a vector. At the same time, we also construct the transforming
mechanism between network low-dimensional vector
representation and high dimensional topology representation.

In the NMDRL model, the dynamic evolution process of
complex network is modeled as a Markovian decision process,
and each network node is considered as an intelligent agent.
Every agent interacts with the environment and accumulates
experience through continuous exploration attempts. At the
same time, the agent also can use the accumulated experience
to update its parameters, enhance its intelligence and help
itself to make better autonomous decisions. Following deep
reinforcement learning, each agent in our model owns four
basic attributes:

• States: S represents all the states in the environment, and the
agent can make certain responses by sensing the states of the
environment. In the NMDRL model, a two-dimensional
space is decomposed into some grids with the same size, and
each grid is resumed as a state. We can change the number
of states by adjusting parameters (i.e., row number and
column number).

• Actions: A represents all the actions of the agent. In the low-
dimensional space, the agent has six actions in total: up,
down, left, right, stay and random. “stay” means the agent
does not move its position, and “random” means that the
agent randomly selects one from all states.

• Reward: R represents the reward or penalty of an agent after
taking an action. The reward is returned from the
environment use to evaluate the action performed by an
agent. When an agent moves from one state to another state,
the reward obtained by this agent is the number of all nodes
located in the new state. For example, an agent imoves from
state 1 to state 2, and there are 10 agents in the state 2. In this
situation, the reward obtained by agent i is 10.

• Policy: Q is the behavior function of an agent. It determines
how the agent chooses its next action. In this paper, the Q
function is fitted by a neural network with the parametersΘ.
There are two popular strategies for action selection through
the behavior function. 1) The action corresponding to the
biggest value of Q can be chosen, this strategy is called the
greedy policy. 2) The ϵ-greedy policy, which is a strategy
including both random and greedy policies. The formula of
the ϵ-greedy policy is as following:

a � random action, with probability ϵ
argmax

a
Q s, a( ), otherwise{ (1)

In order to ensure that the agent continues to explore the
environment and fully make use of its existing experience, our
NMDRL model adopts the ϵ-greedy policy.

2.2 NMDRL Model Training
In the NMDRL model, each node in the network is considered as
an agent. This section introduces how to train the NMDRL
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model, and makes each agent have the ability to make
autonomous decisions in the process of network evolution.
As shown in Figure 1, the NMDRL model training mainly
includes network evolution practice and agent strategy
optimization.

Specifically, Figure 1A shows the details of the network
evolution practice, where the Q-network predicts the q-value of
all the actions generated by the agent with state s, and then selects the
action a according to the ϵ-greedy policy. Agent action will lead the
network evolution. In this paper, the Q-network is implemented by a
multilayer neural network presented in Figure 2. The neural network
consists of an input layer, two hidden layers and an output layer,
where the two hidden layers contain 128 and 64 neurons, respectively.
The input of the neural network is the vector representation of the
agent’s state, and the final output is the estimation Q of the agent
action after the calculation of the two hidden layers. A quadruplet (s,
a, r, s′) can be extracted from the above network evolution practice,
and denoted as a piece of experience. The experience pool {(s1, a1, r1,
s2). . .(st, at, rt, st+1). . . } is a collection of many experience data stored,
and is used to train Q-network.

In order to optimize the agent evolution strategy, we first need
to define the loss function of the Q-network that is to minimize
the reward error between the predicted and true values.
According to the Bellman equation, the loss function of the
Q-network is defined as given in Eq. 2, which ensures that the
Q-network performs more effective learning.

LQ � rt + γmax
a

Q̂ st+1, a( ) − Q st, at( )( )2

(2)

Q̂(st+1, a) is the predicted value of the target Q-network,
which is introduced to ensure more stable training and is a
copy of the Q-network parameters Θ at fixed time intervals. Q
(st, at) is the output of the Q-network in the current state st with
behavior at. γ is a discount for future rewards.

The process of agent policy optimization part is shown in
Figure 1B, where the agent will sample the experience randomly

from the experience pool, put (s, a) into the Q-network to obtain
the predicted Q value, use the maximum value obtained from s′ in
the target Q-network as the target value. The parameters of the
Q-network are updated using the loss function given in Eq. 2. At
the same time, the target Q-network is updated once for every 10
updates to the Q-network. After continuously collecting and
learning from the network evolution experience, the network
evolution strategy of each agent is continuously updated. Finally,
all the agents work together to model the network according to
their own network evolution strategies.

Algorithm 1. Training Algorithm of the NMDRL.

In summary, the detailed procedure of training the NMDRL
network model is described in Algorithm 1. First, the experience
pool, Q-network and target Q-network of all agents are initialized in
lines 1–6. In lines 9–15, NMDRL training is performed for all agents,
including the practice of network evolution and policy optimization.
In lines 16–18, the global information obtained from the network
evolution is updated. Finally, in line 19, the low-dimensional space
data is transformed to the high-dimensional space data.

2.3 The Network Conversion Mechanism
From Low-Dimension Representation to
High-Dimension Representation
In the NMDRL model, the interactions among nodes and move
behaviors of nodes are designed in a low-dimensional space.
Therefore, a mechanism of converting a network from low-
dimensional vector representation to high-dimensional
topology representation is necessary.

The aids of the conversion mechanism are to add/delete edges
and assign weights for these edges based on the network low-
dimensional vector representation. In this paper, we make use of
the threshold and attenuation rules to design this conversion
mechanism. We assume that if two nodes are in a same state, an
edge between them will be created. The weight of this edge will be
weakened or enhanced over time. When the value of the weight is
smaller than a threshold, this edge will be deleted. The details of
the conversion mechanism are as following:

FIGURE 1 | NMDRL training flow. (A) is the network evolution practice
part of the algorithm, (B) is the agent strategy optimization part of the
algorithm.
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• If two nodes with no edge are in a same state, we create a
new edge for these two nodes, and assign an initial weight
winitial for this edge.

• If two nodes with an edge are not in a same state any
more, the weight of the edge will be weaken. We denote
the weight of the existing edge as wlast at the last time step.
The new weight wcurrent at current time step is wlast/a,
where a is the attenuation index. If two nodes owing one
edge are not in a same state for several time steps, the edge
weight will be continuously weakened. Once the new
weight wcurrent is smaller than the threshold t, we
believe that the relationship strength between the two
nodes is too weak and this edge should no longer exist.
This edge will be deleted.

• If two nodes with an edge are in a same state again, the
weight of the edge will be strengthened. The new weight
wcurrent at current time step is wlast/a+ winitial, where the
former part is the attenuation of time to the past weight, and
the second part is the enhancement of the weight when two
nodes are in a same state.

3 RESULTS

In this section, we conduct comprehensive experiments to
validate the effectiveness of the NMDRL model from the
following aspects: node degree distribution, network
clustering coefficient, network average distance, community

FIGURE 2 | Structure of the NMDRL multilayer neural network.

FIGURE 3 | (A,B) are the degree distributions of the networks generated by NMDRL model.
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FIGURE 4 | (A) is variation of network clustering coefficient with time step, (B) is variation of network average distance with time step.

FIGURE 5 | Demonstration of network evolution process in the low dimensional vector space with parameters γ � 0.2, ϵ � 0.2, network size � 500, (A) t � 1, (B) t �
3, (C) t � 5, (D) t � 10, (E) t � 20, (F) t � 50, (G) t � 100, (H) t � 150, (I) t � 200.
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formation and evolution. In the experiments, we set row
number and column number of two-dimensional space to
be 10, so there are 100 states in total.

3.1 Degree Distribution
In a network, the degree of a node is the number of connections
this node owns. The degree distribution P(k) of a network is
defined to be the fraction of nodes in the network with degree k
[27], which is an important index in studying complex networks.
Here, we try to analyze the degree distributions of the networks
generated by the NMDRL model.

Figure 3A shows the degree distributions of the networks
generated by the NMDRL model, where orange, blue and
green curves represent three networks containing 300, 500
and 700 nodes respectively. Other parameters γ and ϵ are set
to be 0.8 and 0.6 respectively. It can be seen from Figure 3A
that there are a small number of nodes with high degree and a
large number of nodes with a low degree in the generated

networks. This means that the degree distribution of the
networks created by the NMDRL model follows the power-
law distribution property. The exponent of the power-law
distribution is between (2, 3), and the generated networks are
scale-free networks.

Although power-law distribution is the most common
degree distribution, not all real networks own this kind of
degree distribution. Researchers find that some real networks
obey the subnormal distribution which is between the normal
distribution and the power-law distribution [28]. Here, we
adjust the parameter ϵ from 0.6 to 0.7, and other parameters
remain unchanged. Figure 3B presents the degree
distributions of the generated networks with three sizes. We
can see that the degree distributions of these networks follow
the subnormal distribution form. All of the above results
indicate that our NMDRL model is able to generate
networks with power-law or subnormal distribution that
exist in real networks.

FIGURE 6 | Demonstration of network evolution process in the high dimensional vector space with parameters γ � 0.2, ϵ � 0.2, network size � 500, (A) t � 1, (B) t �
3, (C) t � 5, (D) t � 10, (E) t � 20, (F) t � 50, (G) t � 100, (H) t � 150, (I) t � 200.
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FIGURE 7 | Evolutionary behaviors of communities. (A,B) presents community growth behavior, (C,D) presents community fusion behavior, (E,F) presents
community split behavior, and (G,H) presents community disappear behavior.
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3.2 Clustering Coefficient and Average Path
Length
Clustering coefficient and average path length are also two classic
metrics of complex networks. For a network, if its clustering
coefficient is large and average path length is small, this network
can be called a small-world network. Here, we try to explore
whether the networks generated by the NMDRL model own the
small-world property.

Figure 4A plots the change of clustering coefficient over 200-
time steps for three network sizes. x-axis represents the time step,
and y-axis represents the network clustering coefficient.
Orange, blue and green curves are corresponding to three
networks owing 300, 500 and 700 nodes respectively. It can be
seen from Figure 4A that the value of the clustering coefficient is
small in the early stage of network evolution. This is because that
each grid in the two-dimensional space owns the same number
of nodes at the initial time, therefore the initial network is a
regular network in fact whose clustering coefficient is small. The
clustering coefficient of the dynamic network increases from
time 1 to 70, and changes a little from 71 to 200. This means that

the dynamic network reaches the stable state with a high
clustering coefficient.

Figure 4B plots the change of average path length over time for
different network sizes. At the initial time step, the average path
length of the network is relatively large. This value decreases from
time 1 to 70, and changes a little from 71 to 200. The phenomenon
observed from Figure 4A and Figure 4B indicates that our
proposed model is able to drive a regular network to evolve
into a network with a big clustering coefficient and small
average path length (i.e., small-world network).

3.3 Community Emergence and Evolution
In this subsection, we try to analyze the community [29, 30]
formation and evolution capability of the NMDRL model.
Since our model is constructed in a low-dimensional space,
and a network conversion mechanism from low-dimensional
representation to high-dimensional representation is
developed at the same time. This design makes us analyze
and verify the model effect from both low and high
dimensional levels.

FIGURE 8 | Impact of ϵ on the network community evolution process.(A–I) are the representations of ϵ in (0.1–0.9) in the low dimensional vector space,
respectively, and (J) is the variation curve of network modularity with increasing ϵ.
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Specifically, Figure 5 and Figure 6 show the network dynamic
evolution process from time 1 to 200 in low-dimensional and
high-dimensional spaces respectively. Both of these two figures
clearly present the formation process of community structures in
the network, and the communities in high and low dimensional
spaces match each other very well. These observed results
illustrate the effectiveness of our NMDRL model in terms of
explaining the mechanism of community emergence on the one
hand, and also support the rationality of our transformation
mechanism on the other hand.

Besides community formation, we also find that our NMDRL
model is able to reproduce several common evolutionary
behaviors. 1) Growth. The size of the circular region in
Figure 7A and Figure 7B shows a significant growth over
time. 2) Fusion. Some smaller communities in Figure 7C
move to the larger communities. They fuse together after
some time steps and form some larger communities in
Figure 7D. 3) Split. An extremely large community in
Figure 7E splits into multiple smaller communities in
Figure 7F. 4) Disappear. The community in the circular
region in Figure 7G disappears in Figure 7H.

In the NMDRL model, parameter ϵ is used to balance the
ability of agent to explore and exploit. Here, we attempt to analyze
the impact of ϵ on community emergence. Figure 8J presents the
change of network modularity under different ϵ values. When ϵ is
in the range of 0.1–0.5, network modularity is smoothly
maintained at a high level. Start with ϵ � 0.5, network
modularity sharply decreases and enters into a very low level.
It is also observed that when ϵ > 0.7, the network will no longer
have associations when the data in the low dimensional vector
space shown in Figures 8A–I. This indicates that the ϵ is a key
parameter of determining whether the community appears.

4 CONCLUSION AND DISCUSSION

In view of the limitation of nodes passively updating relationships
in the existing models, we try to leverage deep reinforcement
learning to develop a network evolution model. In the model,

each node considered as an agent interacts with its neighbors and
makes strategic choices based on its utility at every moment. A
large number of simulation results validate that the generated
networks by our model have three most important structure
characters of real networks: scale-free, small-world and
community.

Some challenges remain. How to learnmodel parameters based on
real networks and apply the learned model in some typical tasks (i.e.
link prediction) is one of our future directions. To be more relevant,
the impact of multiple agents with different intelligence on the
evolving network will also be another direction of our future research.
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