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In emergencies, the transmission of false and uncertain information from

individual to individual causes group panic, which in turn leads to the spread

of negative emotions in the group. To explore the process of panic spreading in

groups, an improved panic-spreading model is constructed in this study. First,

the groups are divided into the impatient group and the level-headed group,

based on the theory of personality traits in psychology. Second, the logistic

model is used to express the growth in the number of susceptible individuals

subject to emergencies. Third, the delay effect of panic in the group can have an

influence on the spread of panic. Therefore, a time-delayed panic-spreading

model considering the epidemic model is established. The threshold value of

the model is calculated, and the conditions for the local and global stability of

the panic-free equilibrium and panic-permanent equilibrium are obtained by

analyzing the dynamic behavior of the delayed-time panic model. On this basis,

we choose the intensity of government measures as control variables and

establish an optimal control model to minimize the spread scale. The existence

and necessary conditions of the optimal solution are proved. Finally, the

correctness of the conclusion is verified by numerical simulations.
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1 Introduction

With the rapid development and progress of the global economy, the security of

emergencies has become a very hot topic in daily life. High-rise buildings and intensive

places are increasing, and these places attract a large number of people, triggering social

stability and public safety in the case of fires, earthquakes, and a series of other

emergencies. Such emergencies can generate negative emotions, such as agitation, and

panic can spread through the group [1–4], thus generating a herding behavior and leading

to group clogging [5]. Therefore, it is important to model emotions during emergencies.

Epidemic models are widely used in the construction of transmission models due to

their own characteristics, such as rumor spread [6–8], virus spread [9, 10], and emotion

spread [11, 12]. For example, Hu et al. [13] established a rumor model considering the

proportion of wise men in a crowd and studied its effect on rumor spread. Jiang et al. [14]

proposed a new rumor model to analyze the interaction mechanism between rumor
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spreading and debunking processes. Liu et al. [15] constructed a

bird-to-human spread model with logistic growth and the Allee

effect and explored the dynamic behavior of the model. Chen

[16] developed a dynamic model by analyzing the impact of

investor sentiment on the stock market and simulated the

relevant theoretical results. Zhao et al. [17] applied the SIR

model and bond percolation theory to study the multiple

route-transmitted epidemic process on multiplex networks,

and we obtained the epidemic threshold and outbreak size by

calculation. To analyze the impact of patch distribution on virus

propagation, Zhao [18] proposed a hybrid patch distribution

strategy by combining the advantages of both the traditional-

centralized patch distribution strategy and the traditional-

decentralized patch distribution strategy. Guo et al. [19]

developed a new epidemic model with local mapping

relationships in a two-layered time-varying network to study

the effect of information diffusion on the spread of epidemics.

However, in natural and social phenomena, the trends of

manymodels are related not only to the current situation but also

to past development dynamics, for example, the incubation

period of viruses and the delay of transmission signals. Thus,

the introduction of a time delay to study the effects caused by

such phenomena is widely used in computer networks [20–23]

and biological systems [24–26] in many fields. Zheng et al. [27]

proposed a two-strain delay model and calculated the threshold

and equilibrium point of the model. Wu [28] developed a

nonlinear incidence and distributed latent delay model-based

SIR and analyzed the traveling waves at the equilibrium point of

this model. With COVID-19 as the background, Khan et al. [29]

developed a model with random perturbations as well as time

delays and obtained the condition for the extinction of the virus.

Similarly, Rihan [30] proposed a SIAQR delay model and focused

on the spread of the virus in populations. Xia et al. [31] studied

the effects of a delayed recovery and nonuniform spread on

disease transmission in structured populations. Chen et al. [32]

built an improved rumor-spreading model based on considering

the delay of an interactive system. By proposing the correlated

strategies, this study could control rumor spreading. Zhang et al.

[33] found a time-delay model when public opinions

transformed and analyzed the effect of time delay on the

equilibrium point. Hu [34] modeled the spread of

reaction–diffusion rumors with time delay as well as their

variations based on complex networks and studied the

diffusion around the equilibrium point of the model and the

Turing bifurcation.

Emergencies lead to the spread of uncertain information and

panic, and the government should take effective measures, such as

releasing official information and suppressing by force. The

application of such measures can be referred to as the optimal

control problem. The aim is to use the minimum cost while

controlling emergencies. Bolzoni et al. [35] considered the

time–optimal control problem in an epidemic model, and an

analysis of the optimal strategy could reduce viral transmission.

Grandits [36] investigated a stochastic control epidemic model and

used the HJB equation to explore optimal control strategies. Dai [37]

considered the semigroup theory and minimizing sequences to

prove existence and some estimates of the unique strong solution

and optimal pair of optimal control problems, respectively. Hang

et al. [38] proposed an optimal control avian influenza model with

delay and analyzed the results using Pontryagin’s maximum

principle. Bashier [39] developed an optimal control model by

delay differential equations based on the SIR epidemic model and

studied the sensitivity of the two strategies to time delays. Wu [40]

investigated nonlinear optimal control problems with multiple time

delays using gradient-based optimization algorithms. To address the

dynamics virus spread model, Sun et al. [41] formulated a model of

disseminated FMDwith a fixed incubation period and non-localized

infection to explore effective control measures. Kouidere et al. [42]

proposed an optimal control approach with delays in state and

control variables. Measures have been proposed in the literature on

how to control the current spread of COVID-19. Among them,

wearing masks and vaccination are effective measures. Based on the

implementation of the New York City policy, Ma et al. [43]

established a dynamic model incorporating effective mask

coverage to assess the impact of mask use during the COVID-19

epidemic. Ruhomally et al. [44] developed a cellular automaton (CA)

describing the dynamics of COVID-19 and studied the effect of

contact tracing and vaccination on the number of two reproductive

species. Economy and cost were considered in the prevention and

control of COVID-19. Asamoah et al. [45] developed a non-

autonomous nonlinear deterministic model to study the control

of COVID-19 in order to analyze the cost and economic health

outcomes of the autonomous nonlinear model proposed in the

Kingdom of Saudi Arabia. The epidemic cannot dissipate due to the

mutation of the COVID-19 virus. To predict the future evolution of

COVID-19, Massard et al. [46] constructed a model to investigate

the impact of three different SARS-CoV-2 variants on the spread of

COVID-19 in France from January toMay 2021 (before vaccination

was extended to the entire population).

Themodels of time-delay rumors and time-delay viruses and the

corresponding optimal control models were reviewed in the

aforementioned paragraphs, but the time-delayed panic-spreading

model in emergencies was not mentioned. In real life, emotions have

an impact on the behavior of individuals, especially panic. At the

same time, emotions have three characteristics: process, holistic, and

individual variability, among which individual variability is the most

significant characteristic. Individual differences in emotions are

mainly determined by the personality of an individual.

Individuals have different emotion perception abilities. Normally,

impatient individuals are emotionally infected and irrational, while

level-headed individuals are sensible. Therefore, it is necessary to take

into account the difference of different individual personalities in the

spread of panic under emergencies, which can truly simulate the

process of emotion spread in real life. Therefore, it is of great

theoretical and practical importance to explore the effect of time

delay on the spread of panic.
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The rest of this study is structured as follows: In Section 2, a time-

delayed panic-spreading model is presented. In Section 3, the local

stability and global stability of two equilibria are studied by

mathematical analysis. We develop the corresponding optimal

control model and solve necessary conditions for the existence of

optimal solutions by themaximumprinciple of Pontryagin in Section

4. The theoretical results of the numerical simulation analysis are

given in Section 5. A brief conclusion is given in Section 6.

2 Model formulation

Individuals in the group realize that the occurrence of

emergencies and the panic caused by them have a delayed effect.

The delayed model is more in line with the phenomenon after the

occurrence of emergencies. Therefore, we establish a time-delayed

panic-spreading model considering the epidemic model.

(I) In emergencies, individual differences in characteristics

(gender, age, and personality, etc.) can have an effect on

individual panic spreading. We mainly consider the effect of

individual personality on panic spreading. Therefore,

according to personality of the literature [47], the group

was divided into the impatient group and the level-headed

group. The former is reckless and adventurous and easily

influenced by the emotions of others. On the contrary, the

latter is wise and thoughtful and will calm down in the face of

difficulties. An important aspect of the level-headed group is

that panic can spread from the impatient group. However,

the impatient group infects within the group. The infection

rate of both groups adopts a bilinear infection rate:

g(I)S � βIS. (1)

(II) The number of susceptible individuals increases rapidly due

to incomplete knowledge of the occurrence of emergencies.

Since the logistic model can considerably take into account

the factors that the growth of the number is limited by the

environment (e.g., emergency), the logistic growth model is

more suitable for the actual situation. Therefore, in the

impatient group and the level-headed group, the

susceptible individuals follow the classical logistic single-

species growth model [48]:

dS

dt
� rS(1 − S

K
), (2)

where K is the carrying capacity and r is the intrinsic increase rate

constant.

(III) In emergencies, due to the time required for susceptible

individuals to come into contact with the surrounding

panicked individuals to become infected individuals, we denote

the certain time as the spread delay, which are defined by τ1 and

τ2.The rate of change of the infected impatient group depends not

only on their number at the previous moment t − τ1 but also on

theprobability that the infected impatient group survived fromthe

moment t − τ1 to the moment t. Similarly, the rate of change of

the infected level-headedgroupdependsnot only on their number

at the previousmoment t − τ2 but also on the probability that the

infected level-headed group survived from the moment t − τ2 to

the moment t.

(IV) The recovered individuals of the impatient group and the level-

headed group experience permanent immunitywith probability.

The model can be described as

dS1
dt

� r1S1(1 − S1
K1

) − β1I1S1 − dS1,

dI1
dt

� e−dτ1β1S1(t − τ1)I1(t − τ1) − (d + δ1)I1,
dR1

dt
� δ1I1 − dR1,

dS2
dt

� r2S2(1 − S2
K2

) − β2I1S2 − dS2,

dI2
dt

� e−dτ2β2S2(t − τ2)I1(t − τ2) − (d + δ2)I2,
dR2

dt
� δ2I2 − dR2.

(3)

In this model, both the impatient group and the level-headed

group could be divided into three states: susceptible, infected, and

recovered, represented as S1, I1, and R1 and S2, I2, and R2 at time

t, respectively. d represents the death rate of the individual. β1
and β2 are the infection rates of the susceptible impatient group

and level-headed group, respectively. δ1 and δ2 are the recovery

rates of the susceptible impatient group and level-headed group,

respectively. τ1 and τ2 are the time delays of the susceptible

impatient group and level-headed group, respectively.

We assume that the initial conditions are

⎧⎪⎨⎪⎩
S1(θ) � ϑ1(θ), I1(θ) � ϑ2(θ), R1(θ) � ϑ3(θ),
S2(θ) � ϑ4(θ), I2(θ) � ϑ5(θ), R2(θ) � ϑ6(θ),
ϑi(θ)≥ 0, ϑi(0)> 0, θ ∈ [−τ, 0] , (ϑi ∈ C)[−τ, 0], R6

+) , i � 1, 2, 3, 4, 5, 6.

(4)

For Model (3), the basic reproduction number can be

computed as follows [49, 50]:

R0 � e−dτ1β1K1(r1 − d)
r1(d + δ1) .

3 Stability analysis

It is to be noted that the two recovered equations are

independent in Model (3) and have no effect on the dynamic

analysis, so Model (3) can be decoupled to obtain the following

model:
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dS1
dt

� r1S1(1 − S1
K1

) − β1I1S1 − dS1,

dI1
dt

� e−dτ1β1S1(t − τ1)I1(t − τ1) − (d + δ1)I1,
dS2
dt

� r2S2(1 − S2
K2

) − β2I1S2 − dS2,

dI2
dt

� e−dτ2β2S2(t − τ2)I1(t − τ2) − (d + δ2)I2.

(5)

We discuss the design of Model (5) as follows:

(i) For any feasible parameter, the E0 � (0, 0, 0, 0) equilibrium
point always exists.

(ii) The model has three equilibrium points, namely,

E0
1 � (K1(r1−d)

r1
, 0, K2(r2−d)

r2
, 0), E0

2 � (K1(r1−d)
r1

, 0, 0, 0), and

E0
3 � (0, 0, K2(r2−d)

r2
, 0), provided that the conditions r1 −

d> 0 and r2 − d> 0 are met.

(iii) The unique positive equilibrium point E* � (S1*, I1*, S2*, I2*),
when R0 > 1, r1 − d> 0, and r2 − d − β2I1 > 0.

Here, S1* � d+δ1
β1e

−dτ1 , I1* � r1−d
β1

(1 − 1
R0
), S2* � (d+δ2)I2*

β2e
−dτ2 I1*

, and

I2* � (r2 − d − β2I1
*) K2β2I1

*e−dτ2
r2(d+δ2) .

3.1 Stability of panic-free equilibrium

Theorem 3.1. the panic-free equilibrium E0
1 is locally

asymptotically stable if R0 < 1.

Proof. The corresponding characteristic equation of Model

(5) at E0
1 is

[λ − (r1 − d − 2r1S1
K1

)][λ − e−(d+λ)τ1β1S1 + (d + δ1)]
[λ − (r2 − d − 2r2S2

K2
)][λ + (d + δ2)] � 0.

(6)

Clearly, according to (6), we obtain the eigenvalues

λ 1 � −(d + δ2)< 0, (7)

λ 2 � r1 − d − 2r1S1
K1

� r1 − d − 2r1
K1

· K1(r1 − d)
r1

� −(r1 − d)< 0,

(8)

λ 3 � r2 − d − 2r2S2
K2

� r2 − d − 2r2
K2

· K2(r2 − d)
r2

� −(r2 − d)< 0.
(9)

Then, the other eigenvalue of (6) can be rewritten as

f1(λ 4) � e−(d+λ4)τ1β1S1 − (d + δ1) − λ 4. (10)

If τ1 � 0 and R0 < 1, then λ 4 � β1K1(r1−d)
r1

− (d + r1)< 0.

Hence, E0
1 is locally asymptotically stable.

If τ1 > 0, assume that λ 4 � iv(v> 0) and substitute iv into

(10). Separating real and imaginary parts by the Euler formula,

we can obtain

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
β1K1(r1 − d)e−dτ1

r1
· cos(vτ1) � d + δ1,

−β1K1(r1 − d)e−dτ1
r1

· i sin(vτ1) � iv.

(11)

We square and add the two equations of (11), yielding

v2 � [β 1K1(r1 − d)e−dτ1
r1

]2

− (d + δ1)2. (12)

Since R0 < 1, we can obtain [β 1K1(r1−d)e−dτ1
r1

]2 < (d + δ1)2.
Thus, v2 < 0, which is a contradiction, so the roots have a

negative real part.

Therefore, if R0 < 1, the panic-free equilibrium E0
1 is locally

asymptotically stable for all τ1 > 0.

The eigenvalues of equilibrium point E0
2 are λ1 � −(r1 − d),

λ2 � r2 − d> 0, λ3 � d + δ2 > 0, and

λ4 � K1(r1−d)e−(d+λ)τ1 β1
r1

− (d + δ1), so E0
2 is not locally

asymptotically stable. Similarly, E0
3 is not locally

asymptotically stable.

In summary, the panic-free equilibrium E0
1 is locally

asymptotically stable for R0 < 1.

Theorem 3.2. the panic-free equilibrium E0
1 is globally

asymptotically stable if R0 < 1.

Proof. We study the impatient group submodel as follows:

dS1
dt

� r1S1(1 − S1
K1

) − β1I1S1 − dS1,

dI1
dt

� e−dτ1β1S1(t − τ1)I1(t − τ1) − (d + δ1)I1.
(13)

The panic-free equilibrium of Submodel (13) is E0
11 �

(S01, I01) � (K1(r1−d)
r1

, 0).
Therefore, we choose the Lyapunov function as shown in the

following equation:

V1 � (S1 − S01 − S01 ln
S1
S01

) + I1 + ∫t

t−τ1
e−dτ1β1S1(s)I1(s)ds.

(14)
Then,

dV1

dt
� S1 − S01

S1
[r1S1(1 − S1

K1
) − β1I1S1 − dS1]

+ [e−dτ1β1S1(t − τ1)I1(t − τ1) − (d + δ1)I1]
+ [e−dτ1β1S01I1 − e−dτ1β1S1(t − τ1)I1(t − τ1)]

� − r1
K1

(S1 − S01)2 − β1I1(S1 − S01) − (d + δ1)I1 + e−dτ1β1S
0
1I1

(15)
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� − r1
K1

(S1 − S01)2 − β1I1(S1 − S01) + (d + δ1)I1[β1S01e−dτ1(d + δ1) − 1]
� − r1

K1
(S1 − S01)2 − β1I1(S1 − S01) + (d + δ1)I1[R0 − 1]< 0.

Since R0 < 1, dV1
dt < 0. Combined with the LaSalle invariance

principle, for Submodel (13), the panic-free equilibrium E0
11 is

globally asymptotically stable.

Thus, we consider the level-headed group submodel at the

none-infected state.

dS2
dt

� r2S2(1 − S2
K2

) − dS2,

dI2
dt

� −(d + δ2)I2.
(16)

By calculation, we can obtain

S2 � K2(r2 − d)
r2

+ Ce−
r2
K2

t,

I2 � Ce−(d+δ2)t.

(17)

Since C is a positive constant, when t → ∞,

S2 → K2(r2−d)
r2

, I2 → 0. Hence, we summarize this result in the

following theorem.

If R0 < 1, the panic-free equilibrium E0
1 is globally

asymptotically stable.

3.2 Stability of panic-permanent
equilibrium

Theorem 3.3. the panic-permanent equilibrium E* is locally

asymptotically stable if R0 > 1.

Proof. The Jacobian matrix of Model (5) at the panic-

permanent equilibrium E* is

J(Ep) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1 − 2r1S
p
1

K1
− β1I

p
1 − d −β1Sp1 0 0

β1I
p
1e

−(d+λ)τ1 β1S
p
1e

−(d+λ)τ1 − (d + δ1) 0 0

0 −β2Sp2 r2 − 2r2S
p
2

K2
− β2I

p
1 − d 0

0 β2S
p
2e

−(d+λ)τ2 β2I
p
1e

−(d+λ)τ2 −(d + δ2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(18)

The characteristic equation of the Jacobian matrix

(18) is

{[λ − (r1 − d − β1I1
* − 2r1S

p
1

K1
)][λ − e−(d+λ)τ1β1S1

* + (d + δ1)] + β1I1
*e−(d+λ)τ1 · β1S1*}

[λ − (r2 − d − β2I1
* − 2r2S2

*

K2
)][λ + (d + δ2)] � 0.

(19)

We can obtain the eigenvalues by calculating the following

equation:

λ1 � −(d + δ2)< 0.

λ2 � r2 − d − β2I
p
1 −

2r2S
p
2

K2
� r2(1 − 2r2S

p
2

K2
) − d − β2I1

*

� d + β2I
p
1 −

r2S
p
2

K2
− d − β2I

p
1 � −r2S

p
2

K2
< 0.

The other two eigenvalues of (19) are rewritten by the

following equation:

[λ − (r1 − d − β1I1
* − 2r1S1*

K1
)][λ − e−(d+λ)τ1β1S1

* + (d + δ1)]
+ β1I1

*e−(d+λ)τ1 · β1S1*
� 0.

(20)
Eq. 20 is equivalent to

λ2 +Mλ +N � 0, (21)
where

M � (β1I1* + d + 2r1S1*

K1
− r1) + e−(d+λ)τ1β1S1

* − (d + δ1), (22)

N � (r1 − d − β1I1
* − 2r1S1*

K1
) · [(d + δ1) − e−(d+λ)τ1β1S1

*]
+ β21S1

*I1
*e−(d+λ)τ1 . (23)

If R0 > 1, we easily obtain d + δ1 < e−(d+λ)τ1β1S1. Since

S1* > 0, I1* > 0, and e−(d+λ)τ1 > 0, M> 0 and N> 0. According to

Vieta’s theorem, Eq. 21 has negative roots.

In summary, the panic-permanent equilibrium E* is locally

asymptotically stable if R0 > 1.

Theorem 3.4. the panic-permanent equilibrium E* is globally

asymptotically stable if R0 > 1.

Proof. We consider the impatient group submodel in the

following form:

dS1
dt

� r1S1(1 − S1
K1

) − β1I1S1 − dS1,

dI1
dt

� e−dτ1β1S1(t − τ1)I1(t − τ1) − (d + δ1)I1,
(24)

We structure the Lyapunov function as

V2 � V3 + edτ1

β1S1
*
V4 + V5, (25)

V3 � S1
S1*

+ 1 − ln
S1
S1*
, V4 � I1

I1*
+ 1 − ln

I1
I1*
, (26)

V5 � ∫τ1

0
(I1(t − s)

I1*
+ 1 − ln

S1(t − s)I1(t − s)
S1*I1*

)ds. (27)
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Since r1 � r1S1*

K1
+ β1I1

* + d,

dV3

dt
� 1
S1*

(1 − S1
S1*

)[r1S1(1 − S1
K1

) − β1I1S1 − dS1]
� (S1 − S1

*)[r1 − r1S1
K1

− β1I1 − d] (28)

� (S1 − S1
*)[r1S1*

K1
+ β1I1

* + d − r1S1
K1

− β1I1 − d]
� − r1

K1
(S1 − S1

*)2 − β1(S1 − S1
*)(I1 − I1

*),
when S1, S1* and I1, I1* have the same sign, (S1 − S1*)(I1 − I1*)> 0,

and dV3
dt < 0.

dV4

dt
� 1
I1*

(1 − I1
I1*

)[e−dτ1β1S1(t − τ1)I1(t − τ1) − (d + δ1)I1]
� β1S1

*I1*e−dτ1

I1*
[S1(t − τ1)I1(t − τ1)

S1*I1*
− I1
I1*

− S1(t − τ1)I1(t − τ1)I1*
S1*I1*I1

+ 1].
(29)dV5

dt
� ∫τ1

0
− d

ds
(I1(t − s)

I1*
+ 1 − ln

S1(t − s)I1(t − s)
S1*I1*

)ds
� ∫τ1

0
− d

ds
(I1(t − s)

I1*
+ 1 − ln

S1(t − s)I1(t − s)
S1*I1*

)ds
� I1
I1*
− I1(t − τ1)

I1*
+ ln

S1(t − τ1)I1(t − τ1)
S1*I1*

− ln
S1I1
S1*I1*

. (30)

FIGURE 1
Stability of panic-free equilibrium when R0 < 1.

FIGURE 2
Stability of panic-permanent equilibrium when R0 > 1.
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Thus, we can obtain

dV2

dt
� − r1

K1
(S1 − S1

*)2 − β1(S1 − S1
*)(I1 − I1

*)
−[S1(t − τ1)I1(t − τ1)

S1
*I1

* − 1 − ln
S1(t − τ1)I1(t − τ1)

S1
*I1

* ]
−S1(t − τ1)I1(t − τ1)

S1
*I1

− I1(t − τ1)
I1
* − ln

S1I1
S1
*I1

* .

(31)
Since f(x) � x − 1 − lnx (x> 0), dV2

dt < 0.

To prove that Model (5) is globally asymptotically stable, we

consider the level-headed submodel.

dS2
dt

� r2S2(1 − S2
K2

) − β2I1
*S2 − dS2,

dI2
dt

� e−dτ2β2I1
*S2(t − τ2) − (d + δ2)I2.

(32)

The solution to the first equation is S2 � K2(r2−β2I1*−d)
r2

+ Ce−
r2
K2

t.

Here, C is constant. Thus, t → ∞ and S2 → K2(r2−β2I1*−d)
r2

.

Considering the Lyapunov function,

V6 � I2 + ∫τ2

0
e−dτ2β2S2(t − s)I1*ds

� −(d + δ2)I2 − e−dτ2β2S2I1
* < 0. (33)

According to the LaSalle invariance principle, we further

conclude that the panic-permanent equilibrium E* is globally

asymptotically stable for R0 > 1.

4 Optimal control problem

4.1 Optimal control model

In this section, we denote the intensity of the

government measures of the impatient group and the

level-headed group, u1(t) and μ2(t), as control

variables to restrain the spread of panic during

emergencies. Hence, we can obtain the optimal control

model as follows:

FIGURE 3
Trends of S1 and S2 with different time delays when R0 < 1.
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dS1
dt

� r1S1(1 − S1
K1

) − β1I1S1 − (d + u1(t))S1,

dI1
dt

� e−dτ1β1S1(t − τ1)I1(t − τ1) − (d + δ1 + u1(t))I1,
dS2
dt

� r2S2(1 − S2
K2

) − β2I1S2 − (d + μ2(t))S2,
dI2
dt

� e−dτ2β2S2(t − τ2)I1(t − τ2) − (d + δ2 + μ2(t))I2,

(34)

with the initial conditions as follows:

⎧⎨⎩ S1(θ) � ϑ1(θ), I1(θ) � ϑ2(θ), S2(θ) � ϑ3(θ), I2(θ) � ϑ4(θ),
ϑi(θ)≥ 0, ϑi(0)> 0, θ ∈ [ − τ, 0], (ϑi ∈ C([ − τ, 0], R4

+), i � 1, 2, 3, 4.

(35)

We define the control set as

U � {(u2(t), u2(t))}|ui(t)meansurable, u(t) ∈ [0, 1], t ∈ [0, T]}.
(36)

The goal of the control problem in this section is to take

the intensity of the government measures that minimizes the

number of infected individuals in the impatient group and the

level-headed group and spread scale. Thus, for the control

variables ui(t), (i � 1, 2), the objective function can be

defined by

J(u1(t), u2(t)) � 1
2
∫T

0
[u1(t)2 + u2(t)2]dt. (37)

4.2 Existence of the optimal control model

Theorem 3.5. an optimal control pair u*(t) � (u1*, u2*) ∈ U

exists so that

J(u1
*, u2

*) � min
(u1 ,u2)∈U

J(u1, u2).

FIGURE 4
Trends of I1 and I2 with different time delays when R0 < 1.
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Proof. To prove the existence of an optimal solution for the

model, we need to satisfy the following conditions:

(I) The state and control variables are non-negative.

(II) U is closed and bounded.

(III) The right-hand side of the state equation is continuous and

bounded.

(IV) Since the control variables are quadratic functions, the

objective function is convex.

(V) There exist constants ω1 > 0,ω2 > 0, κ> 1 such that

1
2
(u2

1 + u2
2)≥ω1( ����������

|u1|2 + |u2|2κ

√ ) − ω2.

We use the results in [51]. We consider that the state

and control variables are non-negative. Also, the control

set U, by definition, is closed and bounded. Since u1(t)
and μ2(t) are linear, condition (III) is satisfied.

Furthermore, the integrand (37) is convex due to the

biquadratic and quadratic nature of control variables

u1(t) and μ2(t). Next, there exist constants

ω1 > 0,ω2 > 0, κ> 1, and we have

1
2
(u2

1 + u2
2)≥ω1( ����������

|u1|2 + |u2|2κ

√ ) − ω2.

We conclude that there exists optimal control.

Theorem 3.6. there exists an adjoint variable λi(t), i � 1, 2, 3, 4

that satisfies the following equations:

dλ1
dt

� −{λ1(t)[r1 − 2r1S1
*

K1
− β1I1

* − (u1(t) + d)]
+χ[0,T−τ1](t)[λ2(t + τ1)β1e−dτ1I1*(t − τ1)]},

dλ2
dt

� λ1(t)β1S1* + λ2(t)(d + δ1 + u1(t)) + λ3(t)β2S2*

− {
χ[0,T−τ1](t)[λ2(t + τ1)β1e−dτ1S1*(t − τ1)]

+χ[0,T−τ2](t)[λ4(t + τ2)β2e−dτ2S2*(t − τ2)]}, (38)
dλ3
dt

� −{λ3(t)[r2 − 2r2S2*

K2

− d + u2 t −β2I1*)]+χ[0,T−τ2 ](t)[λ4(t + τ2)β2e−dτ2 I1*(t − τ2)]},))((
dλ4
dt

� λ4(t)(d + δ2 + u2),

FIGURE 5
Trends of S1 and S2 with different time delays when R0 > 1.
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with boundary conditions: λi(T) � 0 (i � 1, 2, 3, 4).
Furthermore, the optimal control variables are given as

follows:

u1
* � max{min(λ1(t)S1* + λ2(t)I1*,∞), 0},

u2
* � max{min(λ3(t)S2* + λ4(t)I2*,∞), 0}.

Proof. We define the Hamiltonian as

H � 1
2
(u2

1 + u2
2) + λ 1[r1S1(1 − S1

K1
) − β1I1S1 − (d + u1)S1]

+λ 2[e−dτ1β1S1(t − τ1)I1(t − τ1) − (d + δ1 + u1)I1]
+λ 3[r2S2(1 − S2

K2
) − β2I1S2 − (d + μ2)S2]

+λ 4[e−dτ2β2S2(t − τ2)I1(t − τ2) − (d + δ2 + μ2)I2].
(39)

By differentiating the S1*, I1*, S2*, I2* states in the Hamiltonian

(39), we obtain the following adjoint equations:

dλ1
dt

� −[zH
zS1

(t)+χ[0,T−τ1](t)
zH

zS1(t − τ1) (t)],
dλ2
dt

� −[zH
zI1

(t)+χ[0,T−τ1](t)
zH

zI1
(t)+χ[0,T−τ2](t)

zH

zI1(t − τ2) (t)],
(40)

dλ3
dt

� −[zH
zS2

(t)+χ[0,T−τ2](t)
zH

zS2(t − τ2) (t)],
dλ4
dt

� −zH
zI2

(t).

According to the optimality condition,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zH

zu1
� 0 , if u1 � u1

* ,

zH

zu2
� 0 , if u2 � u2

* .

Thus, we can obtain

u1
*�λ1(t)S1*+ λ2(t)I1*,u2*�λ3(t)S2*+λ4(t)I2*.
With the control set,

FIGURE 6
Trends of I1 and I2 with different time delays when R0 > 1.

Frontiers in Physics frontiersin.org10

Lv et al. 10.3389/fphy.2022.1002512

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1002512


u1
* � { 0, if λ1(t)S1* + λ2(t)I1* ≤ 0,

λ1(t)S1* + λ2(t)I1* , if λ1(t)S1* + λ2(t)I1* > 0,

u2
* � { 0, if λ3(t)S2* + λ4(t)I2* ≤ 0,

λ3(t)S2* + λ4(t)I2* , if λ3(t)S2* + λ4(t)I2* > 0.,

The optimal control system at

(S1*, I1*, S2*, I2*, u1*, u2*, λ1, λ2, λ3, λ4) is
dS1
dt

� r1S1
*(1 − S1

*

K1
) − β1I1

*S1
* − (d + u1

*(t))S1*,
dI1
dt

� e−dτ1β1S1
*(t − τ1)I1*(t − τ1) − (d + δ1 + u1

*(t))I1*,
dS2
dt

� r2S2
*(1 − S2

*

K2
) − β2I1

*S2
* − (d + u2

*(t))S2*,
dI2
dt

� e−dτ2β2S2
*(t − τ2)I1*(t − τ2) − (d + δ2 + u2

*(t))I2*.

(41)

With the corresponding adjoint system,

dλ1
dt

� −{λ1(t)[r1 − 2r1S1
*

K1
− β1I1

* − (u1(t) + d)]+χ[0,T−τ1](t)

[λ2(t + τ1)β1e−dτ1I1*(t − τ1)]},
dλ2
dt

� λ1(t)β1S1* + λ2(t)(d + δ1 + u1(t)) + λ3(t)β2S2* − {
χ[0,T−τ1](t)[λ2(t + τ1)β1e−dτ1S1*(t − τ1)]+χ[0,T−τ2](t)[λ4(t + τ2)β2e−dτ2S2*(t − τ2)]},

(42)
dλ3
dt

� −{λ3(t)[r2 − 2r2S2*

K2

− d + u2 t −β2I1*)]+χ[0,T−τ2 ](t)[λ4(t + τ2)β2e−dτ2 I1*(t − τ2)]},))((
dλ4
dt

� λ4(t)(d + δ2 + u2).

FIGURE 7
Comparison of trends of I1 and I2 with and without control.
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5 Numerical simulation

5.1 Analysis of equilibrium

We set the values of the parameters as follows: r1 � 0.3,

K1 � 1, β1 � 0.6, d � 0.1, δ1 � 0.35, r2 � 0.2, K2 � 1, β2 � 0.4,

δ2 � 0.45, τ1 � 0.2, and τ2 � 1. The initial value is

(S1(0), I1(0), S1(0), I1(0)) � (1, 1, 1, 1). By calculation, we can

obtain the panic-free equilibrium E0 � (0.67, 0, 0.5, 0), as shown
in Figure 1.

The values of the parameters are as follows: r1 � 0.4, K1 � 1,

β1 � 0.5, d � 0.1, δ1 � 0.15, r2 � 0.3, K2 � 1, β2 � 0.4, δ2 � 0.25,

τ1 � 0.2, and τ2 � 1. As shown in Figure 2 we obtain the panic-

permanent equilibrium E0 � (0.53, 0.18, 0.42, 0.08).

5.2 Analysis of the numerical simulation

In this section, we simulate the influence of different time delays

on susceptible and infected individuals in the impatient group and

the level-headed group. The time delay τ1 takes different values

(τ1 � 0.2, 0.8, 1), and τ2 � 1 is fixed.

The cases where R0 < 1 are shown in Figures 3, 4. With the

increase in time delay, the trend of susceptible individuals in both

groups decreases first and then increases, with the minimum

value decreasing. The peak of the infected individuals in the

impatient group increases gradually, while the infected

individuals in the level-headed group keep decreasing,

indicating that different time delays have no effect on the

infected individuals in the level-headed group. From Figure 4,

the infected individuals in both groups tend toward zero when

the panic in the group is extinct.

The cases where R0 > 1 are shown in Figures 5, 6. The trend of

susceptible individuals in both groups decreased sharply, while the

trend of infected individuals increased abruptly in a short period of

time. In the case with external environmental changes, the trend of

susceptible individuals in both groups decreased sharply, while the

trend of infected individuals increased abruptly in a short period of

time. As time changes and the groups adapt to the environment, the

infected individuals decrease, but they are always present. Eventually,

the group reaches a steady state. From Figures 3–6, as the time delay

increases, the peak of infected individuals increases. Therefore, the

smaller the time delay is, the better the panic spreads. At the same

time, the time delay has no effect on the stability of the panic-free

equilibrium and the panic-permanent equilibrium. Thus, to effectively

control panic spreading, the government must takemeasures that can

increase the time delay and slow the spread of panic.

We consider that the intensity of the government measures

can achieve the purpose of controlling the panic. The spread of

panic is mainly dependent on the infected individuals. Therefore,

Figure 7 indicates the comparison of trends of infected

individuals in the two groups with and without control. On

the one hand, a dramatic decrease in the trend of infected

individuals with measures was derived. On the other hand,

the time needed for the system to reach a steady state was

reduced with measures. It can be seen that the control

measures play an important role in the spread of panic and

can effectively control the spread of panic.

6 Conclusion

In this study, the groups are divided into the impatient group

and the level-headed group based on the psychological theory.

Second, the susceptible individuals of the two groups are

described by a single-species growth model. Third, a time-

delayed panic-spreading model is established considering the

influence of time delays for panic on the emotion transmission

mechanism. The basic reproduction number of this model is

calculated, and the conditions for the local and global asymptotic

stability of the panic-free equilibrium and panic-permanent

equilibrium are analyzed. To restrain the spread of emotions

in emergencies, the government needs to take relevant measures,

and the intensity of the measures taken is used to structure the

optimal control model and minimize the control spread scale for

emergencies. Finally, the related conclusions are illustrated by

numerical simulations.

The aim of this study is to develop a model for simulating the

spread process of panic. The results of the study are consistent with

the trend of emotions in real situations. In the future, we will

compare the results with those in other literature. Meanwhile, we

simulate panic spreading in groups from a macroscopic perspective.

Emotion spreading is a complex system from a microscopic

perspective, considering the relationship between individuals and

the external environment, and the rules of emotion spreading and

interaction between individuals are also to be studied. Therefore, it is

worth exploring emotion spreading in groups.
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