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Exciton dynamics in π-conjugated polymers systems encompass multiple time

and length scales. Ultrafast femtosecond processes are intrachain and involve a

quantum mechanical correlation of the exciton and nuclear degrees of

freedom. In contrast, post-picosecond processes involve the incoherent

Förster transfer of excitons between polymer chains. Exciton dynamics is

also strongly determined by the spatial and temporal disorder that is

ubiquitous in conjugated polymers. Since excitons are delocalized over

hundreds of atoms, a theoretical understanding of these processes is only

realistically possible by employing suitably parametrized coarse-grained

exciton-phonon models. Moreover, to correctly account for ultrafast

processes, the exciton and phonon modes must be treated on the same

quantum mechanical basis and the Ehrenfest approximation must be

abandoned. This further implies that sophisticated numerical techniques

must be employed to solve these models. This review describes our current

theoretical understanding of exciton dynamics in conjugated polymer systems.

We begin by describing the energetic and spatial distribution of excitons in

disordered polymer systems, and define the crucial concept of a

“chromophore” in conjugated polymers. We also discuss the role of exciton-

nuclear coupling, emphasizing the distinction between “fast” and “slow” nuclear

degrees of freedom in determining “self-trapping” and “self-localization” of

exciton-polarons. Next, we discuss ultrafast intrachain exciton decoherence

caused by exciton-phonon entanglement, which leads to fluorescence

depolarization on the timescale of 10-fs. Interactions of the polymer with its

environment causes the stochastic relaxation and localization of high-energy

delocalized excitons onto chromophores. The coupling of excitons with

torsional modes also leads to various dynamical processes. On sub-ps

timescales it causes exciton-polaron formation (i.e., exciton localization

and local polymer planarization). Conversely, on post-ps timescales

stochastic torsional fluctuations cause exciton-polaron diffusion along

the polymer chain and at higher temperatures to transient exciton

delocalization via extended exciton states. We next describe a first-

principles, Förster-type model of interchain exciton transfer and

diffusion in the condensed phase, whose starting point is a realistic

description of the donor and acceptor chromophores. Finally, we

discuss condensed phase transient exciton delocalization in highly-

ordered nanofibers. We survey experimental results and explain how

they can be understood in terms of our theoretical description of

exciton dynamics coupled to information on polymer multiscale
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structures. The review also contains a brief critique of computational

methods to simulate exciton dynamics.
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1 Introduction

The theoretical study of exciton dynamics in conjugated

polymer systems is both a fascinating and complicated subject.

In part this is because characterizing excitonic states themselves is a

challenging task: conjugated polymers exhibit strong electron-

electron interactions and electron-nuclear coupling, and are

subject to spatial and temporal disorder. Another reason for its

fascinating complexity is that exciton dynamics is characterised by

multiple (and often overlapping) time scales; it is determined by

both intrinsic processes (e.g., coupling to nuclear degrees of

freedom and electrostatic interactions) and extrinsic processes

(e.g., polymer-solvent interactions); and it is both an intrachain

and interchain process. Consequently, to make progress in both

characterizing exciton states and correctly describing their

dynamics, simplified, but realistic models are needed. Moreover,

as even these simplified models describe many quantized degrees

of freedom, sophisticated numerical techniques are required to

solve them. Luckily, fundamental theoretical progress in

developing numerical techniques means that simplified one-

dimensional models of conjugated polymers are now solvable to

a high degree of accuracy.

In addition to the application of various theoretical

techniques to understand exciton dynamics, a wide range of

time-resolved spectroscopic techniques have also been deployed.

These include fluorescence depolarization [1–4], three-pulse

photon-echo [5–8] and coherent electronic two-dimensional

spectroscopy [9]. Some of the timescales extracted from these

experiments are listed in Table 1; the purpose of this review is to

describe their associated physical processes.

As well as being of intrinsic interest, the experimental and

theoretical activities to understand exciton dynamics in

conjugated polymer systems are also motivated by the importance

of this process in determining the efficiency of polymer electronic

devices. In photovoltaic devices, large exciton diffusion lengths are

necessary so that excitons can migrate efficiently to regions where

charge separation can occur. However, precisely the opposite is

required in light emitting devices, since diffusion can lead to

nonradiative quenching of the exciton.

Perhaps one of the reasons for the failure to fully exploit

polymer electronic devices has been the difficulty in establishing

the structure-function relationships which allow the development

of rational design strategies. An understanding of the principles of

exciton dynamics, relating this to multiscale polymer structures,

and interpreting the associated spectroscopic signatures are all key

ingredients to developing structure-function relationships. An

earlier review explored the connection between structure and

spectroscopy [14]. In this review we describe our current

understanding of the important dynamical processes in

conjugated polymers, beginning with photoexcitation and

intrachain relaxation on ultrafast timescales (~ 10 fs) and

concluding with sub-ns interchain exciton transfer and

diffusion. These key processes are summarized in Table 2.

The contents of this review are the following. We begin by

briefly describing some theoretical techniques for simulating

exciton dynamics and we emphasize the failures of simple

methods. As already mentioned, excitons themselves are

fascinating quasiparticles, so before describing their dynamics,

in Section 3 we start by describing their stationary states. We

stress the role of low-dimensionality, disorder and electron-

phonon coupling, and we discuss the fundamental concept of

a chromophore. Next, in Section 4, we describe the sub-ps

processes of intrachain exciton decoherence, relaxation and

localization, which—starting from an arbitrary photoexcited

TABLE 1 Some of the dynamical timescales observed in conjugated polymers whose associated physical processes are summarized in Table 2.
Reproduced from J. Phys. Chem. Lett. 12, 5344 (2021) with the permission of ACS publishing.

Polymer State Timescales Citation

MEH-PPV Solution τ1 = 50 fs, τ2 = 1–2 ps Reference [2]

MEH-PPV Solution τ1 = 5–10 fs, τ2 = 100–200 fs Reference [10]

PDOPT Film τ = 0.5–4 ps Reference [11]

PDOPT Solution τ1 < 1 ps, τ2 = 15–23 ps Reference [11]

P3HT Film τ1 = 300 fs, τ2 = 2.5 ps, τ3 = 40 ps Reference [11]

P3HT Solution τ1 = 700 fs, τ2 = 6 ps, τ3 = 41 ps, τ4 = 530 ps Reference [12]

P3HT Solution τ1 = 60–200 fs, τ2 = 1–2 ps, τ3 = 14–20 ps Reference [13]

P3HT Solution τ1 ≲ 100 fs, τ2 ~ 1–10 ps Reference [3]
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state - results in an exciton forming a chromophore. We next

turn to describe the exciton (and energy) transfer processes

occurring on post-ps timescales. First, in Section 5, we

describe intrachain motion of excitons caused by dynamical

disorder arising from stochastic torsional fluctuations. At low

temperatures this causes quasiadiabatic exciton-polaron

diffusion, while at higher temperatures it additionally causes

transient exciton delocalization via extended exciton states.

Second, in Section 6, we describe nonadiabatic interchain

exciton transfer, both by FRET and transient delocalization.

We conclude and address outstanding questions in Section 7.

This review focusses on exciton dynamics in conjugated

polymers. For reviews and books on, excitons in conjugated

polymers in general, see refs [15–17]; the spectroscopy of

conjugated polymers, see Ref. [14]; exciton dynamics and

spectroscopy in molecular systems, see Ref. [18]; and for a

complementary review, see Ref. [19].

2 A brief critique of theoretical
techniques

A theoretical description of exciton dynamics in conjugated

polymers poses considerable challenges, as it requires a rigorous

treatment of electronic excited states and their coupling to the

nuclear degrees of freedom. Furthermore, conjugated polymers

consist of thousands of atoms and tens of thousands of electrons.

Thus, as the Hilbert space grows exponentially with the number

of degrees of freedom, approximate treatments of excitonic

dynamics are therefore inevitable. There are two broad

approaches to a theoretical treatment. One approach is to

construct ab initio Hamiltonians, with an exact as possible

representation of the degrees of freedom, and then to solve

these Hamiltonians with various degrees of accuracy. Another

approach (albeit less common in theoretical chemistry) is to

construct effective Hamiltonians with fewer degrees of freedom,

such as the Frenkel-Holstein model described in Section 4. These

effective Hamiltonians might be parameterized via a direct

mapping from ab initio Hamiltonians (e.g., see Appendix H

in Ref. [15], Appendix A in Ref. [20] and various papers by

Burghardt and co-workers [21]) or else semiempirically [22]. A

significant advantage of effective Hamiltonians over their ab

initio counterparts is that they can be solved for larger systems

over longer timescales and to a higher level of accuracy.

As the Ehrenfest method is a widely used approximation to

study charge and exciton dynamics in conjugated polymers, we

briefly explain this method and describe the important ways in

which it fails. (For a fuller treatment, see [23, 24].) The Ehrenfest

method makes two key approximations. The first approximation

is to treat the nuclei classically. This means that nuclear quantum

tunneling and zero-point energies are neglected, and that

exciton-polarons are not correctly described (see Section 3.3).

The second assumption is that the total wavefunction is a product

of the electronic and nuclear wavefunctions. Thismeans that there

is no entanglement between the electrons and nuclei, and so the

nuclei cannot cause decoherence of the electronic degrees of freedom

(see Section 4.1). A simple product wavefunction also implies that

the nuclei move in a mean potential determined by the electrons.

This means that a splitting of the nuclear wave packet when passing

through a conical intersection or an avoided crossing does not occur

(see Section 4.2), and that there is an incorrect description of energy

transfer between the electronic and nuclear degrees of freedom (see

Section 5.4). As will be discussed in the course of this review, these

failures mean that in general the Ehrenfest method is not a reliable

one to treat excitonic dynamics in conjugated polymers.

Various theoretical techniques have been proposed to rectify

the failures of the Ehrenfest method; for example, the surface-

hopping technique [25, 26], while still keeping the nuclei

classical, partially rectifies the failures at conical interactions.

More sophisticated approaches, for example the MC-TDHF and

TEBD methods, quantize the nuclear degrees of freedom and do

not assume a product wavefunction.

TABLE 2 The life and times of an exciton: Some of the key exciton dynamical processes, encompassing over four-orders of magnitude in time that
occur in conjugated polymer systems.

Process Consequences Timescale Section

Exciton-polaron self-trapping via coupling to fast C-C bond vibrations Exciton-site decoherence; ultrafast fluorescence depolarization ~ 10 fs 3.1

Energy relaxation from high-energy quasiextended exciton states
(QEESs) to low-energy local exciton ground states (LEGSs) via coupling
to the environment

Stochastic exciton density localization onto chromophores ~ 100 − 200 fs 3.2

Exciton-polaron self-localization via coupling to slow bond rotations in
the under-damped regime

Exciton density localization on a chromophore; ultrafast fluorescence
depolarization

~ 200 − 600 fs 3.3

Exciton-polaron self-localization via coupling to slow bond
rotations in the over-damped regime

Exciton density localization on a chromophore; post-ps fluorescence
depolarization

~ 1 − 10 ps 3.3

Stochastic torsional fluctuations inducing exciton “crawling”
and “skipping” motion

Intrachain exciton diffusion and energy fluctuations ~ 3 − 30 ps 4

Interchromophore Förster resonant energy transfer Interchromophore exciton diffusion; post-ps spectral diffusion and
fluorescence depolarization

~ 10 − 100 ps 5

Radiative decay ~ 500 ps
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For a given electronic potential energy surface (PES), the

multiconfigurational-time dependent Hartree-Fock (MC-TDHF)

method [27] is an (in principle) exact treatment of nuclear

wavepacket propagation, although in practice exponential scaling

of the Hilbert spacemeans that a truncation is required. In addition,

this method is only as reliable as the representation of the PES.

In the time-evolving block decimation (TEBD) method [28,

29] a quantum state, |Ψ〉, is represented by a matrix product state

(MPS) [30]. Its time evolution is determined via

|Ψ t + δt( )〉 � exp −iĤδt/Z( )|Ψ t( )〉, (1)

where Ĥ is the system Hamiltonian and the action of the

evolution operator is performed via a Trotter decomposition.

Since the action of the evolution operator expands the Hilbert

space, |Ψ〉 is subsequently compressed via a singular value

decomposition (SVD).1 Importantly, this approach is

‘numerically exact’ as long as the truncation parameter

exceeds 2S, where S is the entanglement entropy, defined by

S = −∑αωα ln2ωα and {ω} are the singular values obtained at the

SVD. The TEBD method permits the electronic and nuclear

degrees of freedom to be treated as quantum variables on an

equal footing. It thus rectifies all of the failures of the Ehrenfest

method described above and, unlike the MC-TDHF method, it is

not limited by the representation of the PES. It can, however, only

be applied to quantum systems described by one-dimensional

lattice Hamiltonians [31]. Luckily, as described in Section 4, such

model Hamiltonians are readily constructed to describe exciton

dynamics in conjugated polymers.

3 Excitons in conjugated polymers

Before discussing the dynamics of excitons, we begin by

describing exciton stationary states in static conjugated polymers.

3.1 Two-particle model

An exciton is a Coulombically bound electron-hole pair

formed by the linear combination of electron-hole excitations

across a band gap (for further details see [15, 17, 32]). In a one-

dimensional conjugated polymer an exciton is described by the

two-particle wavefunction, Φmj (r, R) = ψm(r)Ψj(R).

Ψj(R) is the center-of-mass wavefunction, which will be

discussed shortly. Before doing that, we first discuss the

relative wavefunction, ψm(r), which describes a particle

bound to a screened Coulomb potential, where r is the

electron-hole separation and m is the principal quantum

number. The electron and hole of an exciton in a one-

dimensional semiconducting polymer are more strongly

bound than in a three-dimensional inorganic

semiconductor for two key reasons [15, 17]. First, because

of the low dielectric constant and relatively large electronic

effective mass in π-conjugated systems the effective Rydberg

is typically 50 times larger than for inorganic systems.

Second, dimensionality plays a role: in particular, the one-

dimensional Schrödinger equation for the relative particle [33, 34]

predicts a strongly bound state split-off from the Rydberg series.

This state is the m = 1 Frenkel (“1Bu”) exciton, with a binding

energy of ~ 1 eV and an electron-hole wavefunction confined to a

singlemonomer. The first exciton in the Rydberg series is them = 2

charge-transfer (“2Ag”) exciton.

With the exception of donor-acceptor copolymers,

conjugated polymers are generally non-polar, which means

that each p-orbital has an average occupancy of one electron.

This implies an approximate electron-hole symmetry.

Electron-hole symmetry has a number of consequences for

the character and properties of excitons. First, it means that

the relative wavefunction exhibits electron-hole parity,

i.e., ψm(r) = +ψm(−r) when m is odd and ψm(r) = −ψm(−r)

when m is even. Second, the transition density, 〈EX|N̂i|GS〉,
vanishes for odd-parity (i.e., even m) excitons. This means

that such excitons are not optically active, and importantly

for dynamical processes, their Förster exciton transfer rate

(defined in Section 6.1) vanishes.

Since Frenkel excitons are the primary photoexcited states of

conjugated polymers, their dynamics is the subject of this review.

Their delocalization along the polymer chain of N monomers is

described by the Frenkel exciton Hamiltonian,

ĤF � ∑N
n�1

ϵnN̂n + ∑N−1

n�1
JnT̂n,n+1, (2)

where n = (R/d) labels a monomer and d is the

intermonomer separation. The energy to excite a Frenkel

exciton on monomer n is ϵn, where N̂n � |n〉〈n| is the Frenkel

exciton number operator.

In principle, excitons delocalize along the chain via two

mechanisms [17, 35]. First, for even-parity (odd m) singlet

excitons there is a Coulomb-induced (or through space)

mechanism. This is the familiar mechanism of Förster resonant

energy transfer. The exciton transfer integral for this process is

JDA � ∑
i∈D
j∈A

Vij D〈GS|N̂i|EX〉D[ ] A〈EX|N̂j|GS〉A[ ]. (3)

The sum is over sites i in the donor monomer and j in the

acceptor monomer, and Vij is the Coulomb interaction between

these sites. In the point-dipole approximation Eq. 3 becomes

JDA � κmnμ20
4πεrε0R3

mn

, (4)
1 A related method is time-dependent density matrix renormalization

group (TD-DMRG). This has been successfully applied to simulate
singlet fission in carotenoids [36].
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where μ0 is the transition dipole moment of a single monomer

and Rmn is the distance between the monomers m and n. κmn is

the orientational factor,

κmn � r̂m · r̂n − 3 R̂mn · r̂m( ) R̂mn · r̂n( ), (5)

where r̂m is a unit vector parallel to the dipole on monomer m

and R̂mn is a unit vector parallel to the vector joining monomers

m and n. For colinear monomers, the nearest neighbor through

space transfer integral is

JDA � − 2μ20
4πεrε0d3

. (6)

Second, for all excitons there is a superexchange (or through

bond) mechanism, caused by a virtual fluctuation from a Frenkel

exciton on a single monomer to a charge-transfer exciton

spanning two monomers back to a Frenkel exciton on a

neighboring monomer. The energy scale for this process,

obtained from second order perturbation theory [15], is

JSE θ( )∝ − ~t θ( )2
ΔE , (7)

where ~t θ( ) (defined in Eq. 12) is proportional to the overlap of p-

orbitals neighboring a bridging bond, i.e., ~t θ( ) ∝ cos θ and θ is

the torsional (or dihedral) angle between neighboring

monomers. ΔE is the difference in energy between a charge-

transfer and Frenkel exciton.

The total exciton transfer integral is thus

Jn � JDA + J0SE cos
2θn. (8)

The bond-order operator,

T̂n,n+1 � |n〉〈n + 1| + |n + 1〉〈n|( ), (9)

represents the hopping of the Frenkel exciton between

monomers n and n + 1. Evidently, JSE vanishes when θ = 0,

but JDA will not. Therefore, even if JSE vanishes because of

negligible p-orbital overlap between neighboring monomers,

singlet even-parity excitons can still retain phase coherence

over the “conjugation break” [37]. This observation has

important implications for the definition of chromophores, as

discussed in Section 3.2.

Eq. 2 represents a “coarse-graining” of the exciton degrees of

freedom. The key assumption is that we can replace the atomist

detail of each monomer (or moiety) and replace it by a “coarse-

grained” site, as illustrated in Figure 1. All that remains is to

describe how the Frenkel exciton delocalises along the chain,

which is controlled by the two sets of parameters, {ϵ} and {J}.

Since J is negative, a conjugated polymer is equivalent to a

molecular J-aggregate.

The eigenfunctions of ĤF are the center-of-mass

wavefunctions, Ψj(n), where j is the associated quantum

number. For a linear, uniform polymer (i.e., ϵn ≡ ϵ0 and Jn ≡ J0)

Ψj n( ) � 2
N + 1

( )1/2 ∑N
n�1

sin
πjn

N + 1
( ), (10)

forming a band of states with energy

Ej � ϵ0 + 2J0 cos
πj

N + 1
( ). (11)

The family of excitons with different j values corresponds to the

Frenkel exciton band with different center-of-mass momenta. In

emissive polymers the j = 1 Frenkel exciton is generally labeled

the 11Bu state.

3.2 Role of static disorder: Local exciton
ground states and quasiextended exciton
states

Polymers are rarely free from some kind of disorder and thus

the form of Eq. 10 is not valid for the center-of-mass

wavefunction in realistic systems. Polymers in solution are

necessarily conformationally disordered as a consequence of

thermal fluctuations (as described in Section 5). Polymers in

the condensed phase usually exhibit glassy, disordered

conformations as consequence of being quenched from

solution. Conformational disorder implies that the dihedral

angles, {θ} are disordered, which by virtue of Eq. 8 implies

that the exciton transfer integrals are also disordered.

As well as conformational disorder, polymers are also subject

to chemical and environmental disorder (arising, for example,

from density fluctuations). This type of disorder affects the

energy to excite a Frenkel exciton on a monomer (or coarse-

grained site). As first realized by Anderson [38], disorder

localizes a quantum particle (in our case, the exciton center-

of-mass particle), and determines their energetic and spatial

FIGURE 1
The mapping of a polymer chain conformation to a coarse-
grained linear site model. Each site corresponds to a moiety along
the polymer chain, with the connection between sites
characterised by the torsional (or dihedral) angle, θ.

Frontiers in Physics frontiersin.org05

Barford 10.3389/fphy.2022.1004042

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1004042


distributions. The origin of this localization is the wave-like

nature of a quantum particle and the constructive and

destructive interference it experiences as it scatters off a

random potential. Malyshev and Malyshev [39, 40] further

observed that in one-dimensional systems there are a class of

states in the low energy tail of the density of states that are

superlocalized, named local exciton ground states (LEGSs

[39–41]). LEGSs are essentially nodeless, non-overlapping

wavefunctions that together spatially span the entire chain.

They are local ground states, because for the individual parts

of the chain that they span there are no lower energy states. A

consequence of the essentially nodeless quality of LEGSs is that

the square of their transition dipole moment scales as their size

[41]. Thus, LEGSs define chromophores (or spectroscopic

segments), namely the irreducible parts of a polymer chain

that absorb and emit light. Figure 2A illustrates the three

LEGSs for a particular conformation of PPV with 50 monomers.

Some researchers claim that “conjugation-breaks” (or more

correctly, minimum thresholds in the pz-orbital overlap) define

the boundaries of chromophores [42]. In contrast, we suggest

that it is the disorder that determines the average chromophore

size, but “conjugation-breaks” can “pin” the chromophore

boundaries. Thus, if the average distance between conjugation

breaks is smaller than the chromophore size, chromophores will

span conjugation breaks but they may also be separated by them.

Conversely, if average distance between conjugation breaks is

larger than the chromophore size the chromophore boundaries

are largely unaffected by the breaks. The former scenario occurs

in polymers with shallow torsional potentials, e.g.,

polythiophene [37].

Higher lying states are also localized, but are nodeful and

generally spatially overlap a number of low-lying LEGSs. These

states are named quasiextended exciton states (QEESs) and an

example is illustrated in Figure 2B.

When the disorder is Gaussian distributed with a standard

deviation σ, single parameter scaling theory [43] provides some

exact results about the spatial and energetic distribution of the

exciton center-of-mass states:

1) The localization length Lloc ~ (|J0|/σ)2/3 at the band edge and
as Lloc ~ (|J0|/σ)4/3 at the band center.

2) As a consequence of exchange narrowing [44, 45], the width

of the density of states occupied by LEGSs scales as

σ/




Lloc

√
~ σ4/3. Similarly, the optical absorption is

inhomogeneously narrowed with a line width ~ σ4/3.

3) The fraction of LEGSs scales as 1/Lloc ~ σ2/3.

These points are illustrated in Figure 3, which shows the

Frenkel exciton density of states and optical absorption for a

particular value of disorder. Although LEGSs are a small fraction

of the total number of states, they dominate the optical

absorption.

This section has described LEGSs (or chromophores) as static

objects defined by static disorder. However, as discussed in

Section 5, dynamically torsional fluctuations also render the

conformational disorder dynamic causing the LEGSs to evolve

adiabatically. As a consequence, the chromophores “crawl” along

the polymer chain.

3.3 Role of electron-nuclear coupling:
Exciton-polarons

As well as disorder, another important process in

determining exciton dynamics and spectroscopy is the

coupling of an exciton to nuclear degrees of freedom; in a

conjugated polymer these are fast C-C bond vibrations and

FIGURE 2
(A) The density of three local exciton ground states (LEGSs,
dotted curves) and the three vibrationally relaxed states (VRSs,
solid curves) for one particular static conformation of a PPV
polymer chain made up of 50 monomers. The exciton
center-of-mass quantum number, j, for each state is also shown.
(B) The exciton density of a quasiextended exciton state (QEES),
with quantum number j = 7. Reproduced from J. Chem. Phys. 148,
034901 (2018) with the permission of AIP publishing.
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slow monomer rotations. In this section we briefly review the

origin of this coupling and then discuss exciton-polarons.

3.3.1 Origin of electron-nuclear coupling
When a nucleus moves, either by a linear displacement or

by a rotation about a fixed point, there is a change in the

electronic overlap between neighboring atomic orbitals.

Assuming that neighboring p-orbitals lie in the same plane

normal to the bond with a relative twist angle of θ, the

resonance integral between a pair of orbitals separated by r

is [46].

~t r, θ( ) � t r( )cos θ � β exp −αr( )cos θ, (12)
where t(r) = β exp (−αr) < 0. The kinetic energy contribution to

the Hamiltonian is

Ĥke � t r( )cos θ × T̂, (13)

where the bond-order operator, T̂, is defined in Eq. 9. Treating r

and θ as dynamical variables, suppose that the σ-electrons of a

conjugated molecule and steric hinderances provide

equilibrium values of r = r0 and θ = θ0, with corresponding

elastic potentials of

Vvib � 1
2
Kσ

vib r − r0( )2 (14)
and

Vrot � 1
2
Kσ

rot θ − θ0( )2. (15)

The coupling of the π-electrons to the nuclei changes these

equilibrium values and the elastic constants.

To see this, we use the Hellmann-Feynman theorem to

determine the force on the bond. The linear displacement force is

f � −zE
zr

� −〈zĤke

zr
〉

� αt r( )cos θ〈T̂〉 −Kσ
vib r − r0( ).

(16)

Thus, to first order in the change of bond length, δr = (r − r0),

the equilibrium distortion is

δr � αt r0( )cos θ〈T̂〉/Kσ
vib, (17)

which is negative because it is favorable to shorten the bond to

increase the electronic overlap.

Similarly, the torque around the bond is

Γ � −zE
zθ

� −〈zĤke

zθ
〉

� t r( )sin θ〈T̂〉 − Kσ
rot θ − θ0( )

(18)

and the equilibrium change of bond angle, δθ = (θ − θ0), is

δθ � t r( )sin θ0〈T̂〉/Kσ
rot, (19)

which is also negative, again because it is favorable to increase the

electronic overlap. Thus, the π-electron couplings act to planarize

the chain. The electron-nuclear coupling also changes the elastic

constants. Assuming a harmonic potential, the new rotational

spring constant is

Kπ
rot �

z2E

zθ2

� −t r0( )cos θ0〈T̂〉 +Kσ
rot

(20)

and thus Kπ
rot >Kσ

rot (because t (r0) < 0).

FIGURE 3
(A) The energy density of states and (B) the optical absorption (neglecting the vibronic progression) of the manifold of Frenkel excitons (where
|σJ/J0| = 0.1). The width of the LEGSs density of states ~|J0‖σJ/J0|4/3. Similarly, the width of the optical absorption from both the LEGSs and all states
~|J0‖σJ/J0|4/3. The band edge for an ordered chain is at 2|J0| (indicated by the dashed lines), so LEGSs generally lie in the Lifshitz (or Urbach) tail
of the density of states, i.e., E < 2|J0|.
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Interestingly, as shown in Figure 4, because

〈T̂〉EX > 〈T̂〉GS for the bridging bond in phenyl-based

systems, the torsional angle is smaller and the potential is

stiffer in the excited state (as a result of the benzenoid to

quinoid distortion) [47].

3.3.2 Exciton-polarons
An exciton that couples to a set of harmonic oscillators, e.g.,

bond vibrations or torsional oscillations, becomes “self-trapped”.

Self-trapping means that the coupling between the exciton and

oscillators causes a local displacement of the oscillator that is

proportional to the local exciton density [48–51] (as illustrated in

the next section). Alternatively, it is said that the exciton is

dressed by a cloud of oscillators. Such a quasiparticle is named an

exciton-polaron. As there is no barrier to self-trapping in one-

dimensional systems [52], there is always an associated relaxation

energy.

If the exciton and oscillators are all treated quantum

mechanically, then in a translationally invariant system the

exciton-polaron forms a Bloch state and is not localized.

However, if the oscillators are treated classically, the non-

linear feedback induced by the exciton-oscillator coupling self-

localizes the exciton-polaron and “spontaneously” breaks the

translational symmetry. This is a self-localized (or auto-localized)

“Landau polaron” [53, 54]. Notice that self-trapping is a

necessary but not sufficient condition for self-localization.

Self-localization always occurs in the limit of vanishing

oscillator frequency (i.e., the adiabatic or classical limit) and

vanishing disorder [55].

Whether or not an exciton-polaron is self-localized in

practice, however, depends on the strength of the disorder

and the vibrational frequency of the oscillators.

Qualitatively, an exciton coupling to fast oscillators (e.g.,

C-C bond vibrations) forms an exciton-polaron with an

effective mass only slightly larger than a bare exciton [55].

For realistic values of disorder, such an exciton-polaron is

not self-localized. This is illustrated in Figure 2A, which

shows the three lowest solutions of the Frenkel-Holstein

model (described in Section 4.1), known as vibrationally

relaxed states (VRSs). As we see, the density of the VRSs

mirrors that of the Anderson-localized LEGSs. Conversely,

an exciton coupling to slow oscillators (e.g., bridging-bond

rotations) forms an exciton-polaron with a large effective

mass. Such an exction-polaron is self-localized (as described

in Section 4.3. and shown in Figure 9).

4 Intrachain decoherence, relaxation
and localization

Having qualitatively described the stationary states of

excitons in conjugated polymers, we now turn to a discussion

of exciton dynamics.

4.1 Role of fast C-C bond vibrations

After photoexcitation or charge combination after injection,

the fastest process is the coupling of the exciton to C-C bond

stretches. We now describe the resulting exciton-polaron

formation and the loss of exciton-site coherence.

As we saw in Section 3.3, bond distortions couple to

electrons. Using Eq. 13, it can be shown [22] that the

coupling of local normal modes (e.g., vinyl-unit bond

stretches or phenyl-ring symmetric breathing modes) to a

Frenkel exciton is conveniently described by the Frenkel-

Holstein model [22, 50],

ĤFH � ĤF − AZωvib ∑
N

n�1
~QnN̂n + Zωvib

2
∑N
n�1

~Q
2

n + ~P
2

n( ). (21)

ĤF is the Frenkel Hamiltonian, defined in Eq. 2, while ~Q �
(Kvib/Zωvib)1/2Q and ~P � (ωvib/ZKvib)1/2P are the dimensionless

displacement and momentum of the normal mode. The second

term on the right-hand-side of Eq. 21 indicates that the normal

mode couples linearly to the local exciton density.2 A is the

dimensionless exciton-phonon coupling constant, which

introduces the important polaronic parameter, namely the

local Huang-Rhys factor

S � A2

2
. (22)

The final term is the sum of the elastic and kinetic energies of the

harmonic oscillator, where ωvib and Kvib are the angular

frequency and force constant of the oscillator, respectively.

The Frenkel-Holstein model is another example of a coarse-

FIGURE 4
The π-bond order expectation values, 〈T̂〉, for (A) the ground
state and (B) the excited state, showing the benzenoid-quinoid
transition. As Eq. 19 and Eq. 20 indicate, the larger bond order of
the bridging bond in the excited state implies a smaller
dihedral angle and a stiffer torsional potential than the ground
state.

2 There is also a weaker and less significant coupling of the normal mode
to the exciton bond-order operator [22, 56].
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grained Hamiltonian which, in addition to coarse-graining the

exciton motion, assumes that the atomistic motion of the carbon

nuclei can be replaced by appropriate local normal modes.

Exciton-nuclear dynamics is often modeled via the Ehrenfest

approximation, which treats the nuclear coordinates as classical

variables moving in a mean field determined by the exciton.

However, as described in Section 2, the Ehrenfest

approximation fails to correctly describe ultra-fast

dynamical processes. A correct description of the coupled

exciton-nuclear dynamics therefore requires a full quantum

mechanical treatment of the system. This is achieved by

introducing the harmonic oscillator raising and lowering

operators, b̂
†

n and b̂n, for the normal modes

i.e., ~Qn → ~̂Qn � (b̂†n + b̂n)/


2

√
and ~Pn → ~̂Pn � i(b̂†n − b̂n)



2

√
.

The time evolution of the quantum system can then

conveniently be simulated via the TEBD method, as briefly

described in Section 2.

Since the photoexcited system has a different electronic

bond order than the ground state, an instantaneous force is

established on the nuclei. As described in Section 3.3, this

force creates an exciton-polaron, whose spatial size is

quantified by the exciton-phonon correlation function [57].

Cex−ph
n t( )∝ ∑

m

〈N̂m
~̂Qm+n〉. (23)

Cex−ph
n correlates the local phonon displacement, Q, with the

instantaneous exciton density, N, n monomers away. Cex−ph
n (t),

illustrated in Figure 5, shows that the exciton-polaron is

established within 10 fs (i.e., within half the period of a C-C bond

vibration) of photoexcitation. The temporal oscillations, determined

by the C-C bond vibrations, are damped as energy is dissipated into

the vibrational degrees of freedom, which acts as a heat bath for the

exciton. The exciton-phonon spatial correlations decay exponentially,

extending over ca. 10 monomers. This short range correlation occurs

because the C-C bonds can respond relatively quickly to the exciton’s

motion.3

The ultrafast establishment of quantum mechanically correlated

exciton-phonon motion causes an ultrafast decay of off-diagonal-

long-range-order (ODLRO) in the exciton site-basis density matrix.

This is quantified via [58, 59].

Ccoh
n t( ) � ∑

m

ρm,m+n
∣∣∣∣ ∣∣∣∣, (24)

where ρm,m′ is the exciton reduced density matrix obtained by

tracing over the vibrational degrees of freedom. Ccoh
n (t) is

displayed in Figure 6 [60], showing that ODLRO is lost

within 10 fs. The loss of ODLRO is further quantified by the

coherence number, defined by

Ncoh � ∑
n

Ccoh
n , (25)

and shown in the inset of Figure 6. Again, Ncoh decays to ca.

10 monomers in ca. 10 fs, reflecting the localization of exciton

coherence resulting from the short range exciton-phonon

correlations. As discussed later, the loss of ODLRO leads to

ultrafast fluorescence depolarization [31].

FIGURE 5
The time-dependence of the exciton-phonon correlation
function, Eq. 23, after photoexcitation at time t = 0. It fits the form
Cex−ph

n � C0 exp(−n/ξ) as t → ∞, where ξ ~ 10. n is a monomer
index. The vibrational period is 20 fs. FIGURE 6

The time dependence of the exciton coherence correlation
function, Ccoh

n , Eq. 24. The time dependence of the associated
coherence number,Ncoh (Eq. 25), is shown in the inset.Ncoh decays
within 10 fs, i.e., within half a vibrational period. Reproduced
from J. Chem. Phys. 148, 034901 (2018) with the permission of AIP
publishing.

3 In contrast, in the classical limit (ω → 0) the nuclei respond
infinitesimally slowly to the exciton, so that the correlation length
and the exciton-polaron mass diverge causing exciton-polaron self-
localization.
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We emphasise that the prediction of an electron-polaron with

short range correlations is a consequence of treating the phonons

quantummechanically, while the decay of exciton-site coherences is a

consequence of the exciton and phonons being quantum

mechanically entangled. Neither of these predictions are possible

within the Ehrenfest approximation.

4.2 Role of system-environment
interactions

For an exciton to dissipate energy it must first couple to fast

internal degrees of freedom (as described in the last section) and

then these degrees of freedommust couple to the environment to

expell heat. For a low-energy exciton (i.e., a LEGS) this process

will cause adiabatic relaxation on a single potential energy

surface, forming a VRS [61–64]. As shown in Figure 3A,

however, for a kinetically hot exciton (i.e., a QEES) this

relaxation is through a dense manifold of states and is

necessarily a nonadiabatic interconversion between different

potential energy surfaces. As already stated in Section 2, the

Ehrenfest approximation fails to correctly describe this

process .4

Dissipation of energy from an open quantum system arising

from system-environment coupling is commonly described by a

Lindblad master equation [65],

zρ̂

zt
� − i

Z
Ĥ, ρ̂[ ] − γ

2
∑
n

L̂
†

nL̂nρ̂ + ρ̂L̂
†

nL̂n − 2L̂nρ̂L̂
†

n( ), (26)

where L̂
†

n and L̂n are the Linblad operators, and ρ̂ is the system

density operator. In practice, a direct solution of the Lindblad

master equation is usually prohibitively expensive, as the size

of Liouville space scales as the square of the size of the

associated Hilbert space. Instead, Hilbert space scaling can

be maintained by performing ensemble averages over

quantum trajectories (evaluated via the TEBD method),

where the action of the Linblad dissipator is modeled by

quantum jumps [66].

In this section we assume that the C-C bond vibrations

couple directly with the environment [31, 67], in which case

the Linblad operators are the associated raising and lowering

operators (i.e., L̂n ≡ b̂n, introduced in the last section). In

addition,

Ĥ � ĤFH + γZ

4
∑
n

~̂Qn
~̂Pn + ~̂Pn

~̂Qn( ), (27)

where the last term in Eq. 27 is added to ensure that the phonon

oscillation satisfies [68] ω → (ω2 − γ2/4)1/2. (In Section 5 we

discuss coupling of the torsional modes with the

environment [69].)

The ultrafast localization of exciton ODLRO (or exciton-

site decoherence) described in Section 4.1 occurs via the

coupling of the exciton to internal degrees of freedom,

namely the C-C bond vibrations. We showed in Section 3.3

(see Figure 2A) that this coupling does not cause exciton

density localization. However, dissipation of energy to the

environment causes an exciton in a QEES to relax onto a LEGS

(i.e., onto a chromophore) and thus the exciton density

becomes localized.

The spatial extent of the exciton density, averaged over an

ensemble of quantum trajectories, is quantified by the correlation

function [70], approximated by

Cloc
n � ∑

m

Ψ m( )Ψp m + n( )∣∣∣ ∣∣∣. (28)

Figure 7 shows the time dependence of Cloc
n with an external

dissipation time T = γ−1 = 100 fs. The time scale for localization is

seen from the time dependence of the exciton localization

length [71],

Nloc � ∑
n

n| |Cloc
n /∑

n

Cloc
n , (29)

FIGURE 7
The time dependence of the exciton localization correlation
function, Cloc

n (Eq. 28), for an initial high-energy QEES. The main
figure corresponds to the time evolution with the dissipation time
T = γ−1 = 100 fs. The time dependence of the exciton density
localization number, Nloc (Eq. 29), is given in the lower inset. The
upper inset corresponds to the time evolution without external
dissipation showing that in this case exciton denisty localization
does not occur. Reproduced from J. Chem. Phys. 148, 034901
(2018) with the permission of AIP publishing.

4 In fact, the Ehrenfest approximation is the cause of the unphysical
bifurcation of the exciton density onto separate chromophores found
in Ehrenfest simulations of the relaxation dynamics of high energy
photoexcited states [72].
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which corresponds to the average distance between monomers

for which the exciton wavefunction overlap remains non-zero,

and is given in the lower inset of Figure 7. Evidently, the coupling

to the environment - and specifically, the damping rate - control

the timescale for energy relaxation and exciton density

localization onto chromophores. In contrast, the upper inset

to Figure 7 shows an absence of localization without external

dissipation, indicating that exciton density localization is an

extrinsic process.

Figure 7 is obtained by averaging over an ensemble of

trajectories. To understand the physical process of localization

onto a chromophore, Figure 8 illustrates the exciton density of a

single quantum trajectory for a photoexcited QEES (shown in

Figure 2B). At a time ca. 20 fs a ‘quantum jump’ caused by the

stochastic application of a Lindblad jump operator causes the

exciton to localize onto the j = 2 LEGS, shown in Figure 2A,

i.e., the high-energy extended state has randomly localized onto a

chromophore because of a ‘measurement’ by the environment.

4.3 Role of slow bond rotations

By dissipating energy into the environment on sub-ps

timescales, hot excitons relax into localized LEGSs, i.e., onto

chromophores. The final intrachain relaxation and localization

process now takes place, namely exciton-polaron formation via

coupling to the torsional degrees of freedom. For this relaxation

to occur bond rotations must be allowed, which means that this

process is highly dependent on the precise chemical structure of

the polymer and its environment.

Assuming that bond rotations are not sterically hindered, their

coupling to the excitons is conveniently modeled (via Eq. 7 and 12

by supplementing the Frenkel-Holstein model (i.e., Eq. 21) by [73]

Ĥrot � − ∑N−1

n�1
B θ0n( ) × ϕn+1 − ϕn( )T̂n,n+1 + 1

2
∑N
n�1

Krotϕ
2
n + L2

n/I( ).
(30)

Here, ϕ is the angular displacement of a monomer from its

groundstate equilibrium value and L is the associated angular

momentum of a monomer around its bridging bonds.

The first term on the right-hand-side of Eq. 30 indicates that

the change in the dihedral angle, Δθn = (ϕn+1 − ϕn), couples

linearly to the bond-order operator, T̂n,n+1, where

B θ0n( ) � JSE sin 2θ
0
n (31)

is the exciton-roton coupling constant and θ0n is the groundstate

dihedral angle for the nth bridging bond. The final term is the

sum of the elastic and kinetic energies of the harmonic oscillator.

The natural angular frequency of oscillation is

ωrot � (Krot/I)1/2, where Krot is the elastic constant of the

rotational oscillator and I is the moment of inertia, respectively.

As discussed in Section 3.3,Krot is larger for the bridging bond in the

excited state than the groundstate, because of the increase in bond

order. Also notice that both themoment of inertia (and thus ωrot) of

a rotating monomer and its viscous damping from a solvent are

strongly dependent on the side groups attached to it. As discussed in

the next section, this observation has important implications for

whether the motion is under or over damped and on its

characterstic timescales.

Unlike C-C bond vibrations, being over 10 times slower

torsional oscillations can be treated classically [73]. Furthermore,

since we are now concerned with adiabatic relaxation on a single

potential energy surface, we may use the Ehrenfest

approximation. Thus, using Eq. 30, the torque on each ring is

Γn � −z〈Ĥrot〉
zϕn� −Krotϕn + λn

(32)

where we define

λn � B θ0n−1( )〈T̂n−1,n〉 − B θ0n( )〈T̂n,n+1〉. (33)

Setting Γn = 0 gives the equilibrium angular displacements in the

excited state as ϕeqn � λn/Krot ϕn is subject to the Ehrenfest

equations of motion,

I
dϕn

dt
� Ln, (34)

and

dLn

dt
� Γn − γLn, (35)

FIGURE 8
The time dependence of the exciton density for a single
trajectory of the quantum jump trajectory method. The
discontinuity in the density at ca. 20 fs is a ‘quantum jump’ caused
by the stochastic application of a Lindblad jumpoperator. The
dynamics were performed for an initial high energy QEES given in
Figure 2B, showing localization onto the LEGSs (i.e., a
chromophore) labeled j = 2 in Figure 2A. Reproduced from
J. Chem. Phys. 148, 034901 (2018) with the permission of AIP
publishing.
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where the final term represents the damping of the rotational

motion by the solvent.

4.3.1 A single torsional oscillator
Before considering a chain of torsional oscillators, it is

instructive to review the dynamics of a single, damped

oscillator subject to both restoring and displacement forces.

The equation of motion for the angular displacement is

d2ϕ t( )
dt2

� −ω2
rot ϕ t( ) − ϕeq( ) − γ

dϕ t( )
dt,

(36)

where ϕeq = λ/Krot is proportional to the displacement force.

In the underdamped regime [74], defined by γ < 2ωrot,

ϕ t( ) � ϕeq 1 − cos ωt( )exp −γt/2( )( ), (37)

where ω � (ω2
rot − γ2/4)1/2. In this regime, the torsional angle

undergoes damped oscillations with a period T = 2π/ω and a

decay time τ = 2/γ.

Conversely, in the overdamped regime [74], defined by γ >
2ωrot,

ϕ t( ) � ϕeq 1 − 1
4β

γ1 exp −γ2t/2( ) − γ2 exp −γ1t/2( )( )( ), (38)

where γ1 = γ + 2β, γ2 = γ − 2β and β � (γ2/4 − ω2
rot)1/2. Now, the

torsional angle undergoes damped biexponential decay with the

decay times τ1 = 2/γ1 and τ2 = 2/γ2. In the limit of strong

damping, i.e., γ ≫ 2ωrot, there is a fast relaxation time τ1 = 1/γ =

τ/2 and a slow relaxation time τ2 � γ/ω2
rot ≫ τ. In this limit, as the

slow relaxation dominates at long times, the torsional angle

approaches equilibrium with an effective mono-exponential decay.

For a polymer without alkyl side groups, e.g., PPP and PPV, ωrot

~ γ ~ 1013 s−1 and are thus in the underdamped regime with sub-ps

relaxation. However, polymers with side groups, e.g., P3HT, MEH-

PPV and PFO, have a rotational frequency up to ten times smaller

and a larger damping rate, and are thus in the overdamped

regime [7].

4.3.2 A chain of torsional oscillators
An exciton delocalized along a polymer chain couples to

multiple rotational oscillators resulting in collective oscillator

dynamics. Eq. 31 and Eq. 33 indicate that torsional relaxation

only occurs if the monomers are in a staggered arrangement in

their groundstate, i.e., θ0n � (−1)nθ0. In this case the torque acts to
planarize the chain. Furthermore, since the torsional motion is

slow, the self-trapped exciton-polaron thus formed is ‘heavy’ and

in the under-damped regime becomes self-localized on a

timescale of a single torsional period, i.e., 200–600 fs. In this

limit the relaxed staggered bond angle displacement mirrors the

exciton density. Thus, the exciton is localized precisely as for a

‘classical’ Landau polaron and is spread over ~ 10 monomers

[73]. The time-evolution of the staggered angular displacement,

FIGURE 9
The time dependence of the staggered angular displacement, 〈ϕn〉× (−1)n. The change of dihedral angle is Δθn = (ϕn+1 − ϕn), showing local
planarization for a PPP chain of 21 monomers. The inset shows the time dependence of the exciton density, 〈Nn〉, showing exciton density
localization after a single torsional period (~ 200 fs). In the long-time limit (i.e., t ≳ 400 fs) 〈ϕn〉∝〈Nn〉× (−1)n, illustrating classical (Landau) polaron
formation. Reproduced from J. Chem. Phys. 149, 214107 (2018) with the permission of AIP publishing.
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〈ϕn〉× (−1)n, is shown in Figure 9 illustrating that these

displacements reach their equilibrated values after two

torsional periods (i.e., t ≳ 400 fs). The inset also displays the

time-evolution of the exciton density, 〈Nn〉, showing exciton

density localization after a single torsional period (~ 200 fs).

So far we have described how exciton coupling to torsional

modes causes a spatially varying planarization of the monomers

that acts as a one-dimensional potential which self-localizes the

exciton. The exciton ‘digs a hole for itself’, forming an exciton-

polaron [53]. Some researchers [11], however, argue that

torsional relaxation causes an exciton to become more

delocalized. A mechanism that can cause exciton

delocalization occurs if the disorder-induced localization

length is shorter than the intrinsic exciton-polaron size. Then,

in this case for freely rotating monomers, the stiffer elastic

potential in the excited state causes a decrease both in the

variance of the dihedral angular distribution, σ2θ � kBT/Krot,

and the mean dihedral angle, θ0. This, in turn, means that the

exciton band width, |4J|, increases and the diagonal disorder [22],

σJ = JSEσθ sin 2θ0, decreases. Hence, the disorder-induced

localization, Lloc ~ (|J|/σJ)2/3, increases (see Section 3.2).

4.4 Summary
The conclusions that we draw from Section 4 are that a band

edge excitation (i.e., a LEGS, which is an exciton spanning a

single chromophore) undergoes ultrafast exciton site

decoherence via its coupling to fast C-C bond stretches. It

subsequently couples to slow torsional modes causing

planarization and exciton density localization on the

chromophore. A hot exciton (i.e., a QEES) also undergoes

ultrafast exciton site decoherence. However, exciton density

localization within a chromophore only occurs after

localization onto the chromophore via a stochastic interaction

with the environment.

On conformationally disordered polymer, exciton site

decoherence causes ultrafast fluorescence depolarization [31],

as observed by Wells and Blank [3]. Subsequent exciton density

localization causes additional fluorescence depolarization

[2, 3, 75].

5 Intrachain exciton motion

The last section described the relaxation and localization

of higher energy quasiextended excited states onto

chromophores, and the subsequent torsional relaxation and

localization on the chromophore into an exciton-polaron. We

now consider the relaxation and dynamics of these relaxed

excitons caused by dynamical disorder arising from the

stochastic torsional fluctuations experienced by a polymer

in a solvent.

Environmentally-induced intrachain exciton relaxation in

poly(phenylene ethynylene) was modeled by Albu and Yaron

[70] using the Frenkel exciton model supplemented by the

torsional degrees of freedom, i.e., Ĥ � ĤF + Ĥrot (given by

Eq. 2 and 30, respectively). Fast vibrational modes were

neglected because although they cause self-trapping, they do

not cause self-localization, and these modes can be assumed to

respond instantaneously to the torsional modes. The polymer-

solvent interactions were modeled by the Langevin equation. For

chains longer than the exciton localization length the excited-

state relaxation showed biexponential behavior with a shorter

relaxation time of a few ps and a longer relaxation time of tens

of ps.

After photoexcitation of the n = 2 (charge-transfer) exciton in

oligofluorenes, Clark et al. [76] reported torsional relaxation on

sub-100 fs timescales. Since this timescale is faster than the

natural rotational period of an undamped monomer, they

ascribed it to the electronic energy being rapidly converted to

kinetic energy via nonadiabatic transitions. They argue that this

is analogous to inertial solvent reorganization.

Tozer and Barford [77] using the same model as Albu and

Yaron to model intrachain exciton motion in PPP where the

exciton dynamics were simulated on the assumption that at time

t + δt the new exciton target state is the eigenstate of Ĥ(t + δt)
with the largest overlap with the previous target state at time t .5

A more sophisticated simulation of exciton motion in poly

(p-phenylene vinylene) and oligothiophenes chains was

performed by Burghardt and coworkers [21, 78–80] where

high-frequency C-C bond stretches were also included, the

solvent was modeled by a set of harmonic oscillators with an

Ohmic spectral density, and the system was evolved via the

multilayer-MCTDH method. Their results, however, are in

quantitative agreement with those of Tozer and Barford in the

“low-temperature” limit (discussed in Section 5.3), namely

activationless, linearly temperature-dependent exciton

diffusion with exciton diffusion coefficients larger, but close to

experimental values.

The Brownian forces excerted by the solvent on the polymer

monomers have two consequences. First, as already noted in

Section 3.2, the instantaneous spatial dihedral angle

fluctuations Anderson localize the Frenkel center-of-mass

wavefunction. Second, the temporal dihedral angle

fluctuations cause the exciton to migrate via two distinct

transport processes.

At low temperatures there is small-displacement adiabatic

motion of the exciton-polaron as a whole along the polymer

chain, which we will characterize as a “crawling” motion. At

higher temperatures the torsional modes fluctuate enough to

cause the exciton to be thermally excited out of the self-localized

polaron state into a more delocalized LEGS or quasi-band QEES.

5 Although confirmed by solutions of the TDSE [77] this latter assumption
was shown by Lee andWillard [87] to be potentially problematic for the
nonadiabatic transport described in Section 5.4.
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While in this more delocalized state, the exciton momentarily

(transiently) exhibits quasi-band ballistic transport, before the

wavefunction stochastically collapses into an exciton-polaron in

a different region of the polymer chain (as already described in

Section 4.2). We will characterize this large-scale displacement as

a non-adiabatic “skipping” motion.

The thermally-activated, slow motion, large amplitude

torsional fluctuations therefore play two competing roles.

First, they localize the exciton (either by polaron formation or

Anderson localization) and second they delocalize the exciton

(either by crawling or skipping). This process of quantum

transport in molecular systems in its various flavors is often

referred to in the literature as environment-assisted quantum

transport [81] or transient (de)localization [82], and it applies

equally to excitons and charges [82–84].

The possible observation via two-dimensional coherence

spectroscopy of torsionally-induced exciton dynamics has

recently been discussed in Refs. [85, 86].

Before describing the details of these types of motion, we first

describe a model of solvent dynamics and consider again exciton-

polaron formation in a polymer subject to Brownian fluctuations.

5.1 Solvent dynamics

If the solvent molecules are subject to spatially and temporally

uncorrelated Brownian fluctuations, then the monomer rotational

dynamics are controlled by the Langevin equation

dLn t( )
dt

� Γn t( ) + Rn t( ) − γLn t( ), (39)

where Γn(t) is the systematic torque given by Eq. 32.

Rn(t) is the stochastic torque on the monomer due to the

random fluctuations in the solvent and γ is the friction coefficient

for the specific solvent. From the fluctuation-dissipation

theorem, the distribution of random torques is given by

〈Rm t( )Rn 0( )〉 � 2IγkBTδmnδ t( ), (40)

which are typically sampled from a Gaussian distribution with a

standard deviation of σR � (2IγkBT/Δt)12. As a consequence of

these Brownian fluctuations the monomer rotations are

characterized by the autocorrelation function [88],

〈δϕ t( )δϕ 0( )〉 � 〈δϕ2〉 cos ωt( ) + γ

2ω
( ) sin ωt( )( ) exp −γt/2( ),

(41)
where 〈δϕ2〉 � kBT/Krot, Krot is the stiffness,ω � (ω2

rot − γ2/4)1/2,
and ωrot � (Krot/I)1/2 is the angular frequency of the torsional

mode.

The monomer rotations imply time-dependent dihedral

angles, Δθn(t) = (ϕn+1(t) − ϕn(t)), which in turn - by virtue of

Eq. 30 - causes time-dependent exciton transfer integrals. It is this

time-dependence that drives the intrachain exciton dynamics.

5.2 Polaron formation

As we saw in Section 4.3, at zero temperature torsional modes

couple to the exciton, forming an exciton-polaron. At finite

temperatures, however, a combination of factors affect the

localization of the exciton. First, the exciton will still attempt

to form a polaron. However, the thermally induced fluctuations

in the torsional angles will affect the size of this exciton-polaron,

as there is a non-negligible probability that the exciton will be

excited out of its polaron potential well into a more delocalized

state at high enough temperatures. Second, the exciton states will

be Anderson localized by the instantaneous torsional disorder.

Figure 10 shows how the average localization length varies

with temperature both with and without coupling between the

exciton and the torsional modes (i.e., “self-trapped” and “free”

exciton, respectively). As described in Section 3.2, the localization

length for the “free” exciton is determined by Anderson

localization. For small angular displacements from equilibrium

a Gaussian distribution of dihedral angles implies a Gaussian

distribution of exciton transfer integrals. Then, as confirmed by

the simulation results shown in Figure 10, from single-parameter

scaling theory, Lfreeloc ∝ σ−2/3θ � 〈δθ2〉−1/3 ∝T−1/3.
In contrast, the localization length of the “self-trapped”

exciton slowly increases with temperature because of the

thermal excitation of the exciton from the self-localized

FIGURE 10
The exciton localization length as a function of temperature
for the “free” (i.e., “untrapped”) exciton (red circles) and exciton-
polaron (i.e., “self-trapped”) (black squares). Increasing the
temperature causes a minor increase in the size of the
exciton-polaron. This increase in size arises from the exciton
escaping from the polaron potential well and being excited into a
LEGS or QEES. The polaron binding energy is high enough for
excitons in PPP that this is a rare occurrence even at high
temperatures. The untrapped exciton localization length obeys
Lfreeloc ∝T−1/3. The lengths coincide when kBT ~ the exciton-polaron
binding energy. Reproduced from J. Chem. Phys. 143, 084102
(2015) with the permission of AIP publishing.
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polaron to a more delocalized LEGS or QEES. The two values

coincide when kBT equals the exciton-polaron binding energy

(i.e., T ~ 1500 K in PPP).

5.3 Adiabatic “crawling” motion

At low temperatures (≲ 100 K) the exciton has only a small

amount of thermal energy, and not enough to regularly break free

from its polaronic torsional distortions. Thus, the exciton-

polaron migrates quasi-adiabatically and diffusively as a single

unit. This is a collective motion of the exciton and the torsional

degrees of freedom, as the torsional planarization accompanies

the exciton. Simulations confirm random walk motion [77], as

the mean-square-distance traveled by the exciton-polaron is

proportional to time, i.e., 〈L2〉 = 2DA(T)t, where DA is the

diffusion coefficient. Since the migration of the exciton-

polaron is an activationless process, at low temperatures it

obeys the Einstein-Smoluchowski equation, DA(T) = μkBT,

where μ is the mobility of the particle.

The time taken for an exciton to diffuse a distance L along the

chain is determined by the equation for a one-dimensional

random walk, i.e., τD = 〈L2〉/2D. As shown in Figure 10, the

typical exciton-polaron localization length is ~ 12 monomers or

~ 6 nm in PPP. This characteristic length scale implies a

characteristic timescale, namely the time taken for the exciton

to diffuse along a chromophore length. As shown in Table 3,

these timescales are typically 3–30 ps at room temperature

depending on the solvent friction coefficient, being shorter at

higher temperatures and smaller damping rates. As we show in

Section 5, these timescales are an order of magnitude shorter than

Förster transfer times in the condensed phase.

As the exciton-polaron migrates along the polymer chain it

experiences a different potential energy landscape, so its energy

will also fluctuate on a timescale ~ τD. Interestingly, these

timescales are consistent with the longer timescale found

experimentally in biexponential fits of relaxation processes of

polymers in solution (see Table 1) and correspond to the longer

timescale simulated by Albu and Yaron [70] in longer polymers.

As the inverse of these timescales is much smaller than the typical

fluctuations in energy (given when ϕ0 = 0 by σϵ ~ JSEσ2ϕ ≃ 0.1

eV), the associated emission spectra will exhibit inhomogeneous

broadening.

5.4 Nonadiabatic “skipping” motion

At higher temperatures, adiabatic “crawling”migration of the

exciton-polaron, as described above, still occurs. However, a

second non-adiabatic mechanism for the dynamics plays an

important role. This mechanism involves the exciton-polaron

being excited to a high enough energy by the thermal fluctuations

to be excited out of the polaron potential well, resulting in a

breakdown of the polaron and the exciton to enter an untrapped

local exciton ground state (LEGS), or a higher energy quasi-

extended exciton state (QEES), as illustrated in Figure 2. Once in

this more delocalized state the exciton has quasi-band

characteristics and travels quasi-ballistically.

As described in Section 4.2, however, on a sub-ps timescale

the hot, delocalized exciton will shed some of its excess kinetic

energy and stochastically relax back into an exciton-polaron. As a

result, the time-averaged exciton localization length calculations

of Figure 10 show only a slight increase in localization length with

increasing temperatures, as the majority of its lifetime is still

spent in self-localized exciton-polarons.

TABLE 3 Calculated intrachain adiabatic exciton diffusion
coefficients, DA, and times, τD, in PPP from Ref. [77]. τD is the time
taken for an exciton to diffuse along a chromophore of linear size
6 nm in a solvent at temperature, T, with a damping rate γ. From
simulations [77], τD ~ γ1/2/T. Hegger et al. [80] obtained DA ~ 10–2

cm2s−1 in oligothiophenes at 300 K and γ = 5 × 1012 s−1.

γ (s−1) T (K) DA (cm2s−1) τD (ps)

1011 300 6.0 × 10–2 3.0

1011 100 2.0 × 10–2 9.0

1012 300 2.7 × 10–2 6.7

1012 100 9.0 × 10–3 20

1013 300 6.0 × 10–3 30

1013 100 2.0 × 10–3 90
FIGURE 11
A schematic diagram representing intrachain transient
exciton delocalization. The green, red and black horizontal lines
represent the spatial extent of exciton-polarons, local exciton
ground states (LEGSs) and quasiextended states (QEESs),
respectively. (1) The exciton is thermally excited from its bound
polaron state to a QEES. (2) Motion in the delocalized QEES is
quasiballistic over long distances. (3) The exciton stochastically
relaxes onto a LEGS (see Section 4.2). (4) Torsional relaxation
causes an exciton-polaron (see Section 4.3).
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The requirement that the exciton is excited out of the

polaron potential well means that this process is activated.

Thus, from a simple Fermi golden rule analysis it can be

shown that [89].

DNA T( ) ~ 〈δθ2〉 × ℓQEES × exp − ΔE
kBT

( ), (42)

where 〈δθ2〉 is the variance of the dihedral angles, ℓQEES is the

QEES localization length, and ΔE is the exciton-polaron binding

energy. Since 〈δθ2〉~ T and ℓQEES ~ T−1/3, this implies that

DNA T( ) ~ T2/3 exp − ΔE
kBT

( ). (43)

At 300 K DNA is approximately twice as large as DA and thus

the overall diffusion coefficient is considerably enhanced by

this skipping motion, which is schematically illustrated in

Figure 11.

The role of exciton transport in disordered one-dimensional

systems via higher-energy quasi-band states has been discussed

in Ref. [68], where in that work phonons in the condensed phase

environment induced non-adiabatic transitions.

6 Interchain exciton motion

The stochastic, torsionally-induced intrachain exciton diffusion in

polymers in solution described in the last section is not expected to be

the primary cause of exciton diffusion in polymers in the condensed

phase. Instead, owing to restricted monomer rotations and the

proximity of neighboring chains, exciton transfer is determined by

Coulomb-induced, Förster-like processes.Moreover, since dissipation

rates are typically [63, 64] 1012–1013 s−1, whereas exciton transfer rates

are typically 109–1011 s−1, except for timescales less than ~ 1 ps,

exciton migration is an incoherent or diffusive process [90, 91].

We can derive the timescale after which incoherent

processes dominate by considering a simple model of

exciton transport in a cubic lattice, where each site

represents a chromophore. Assuming an exciton transfer

integral, J, between neighboring sites and an exciton

dephasing rate, γ, Reineker [92] showed that the exciton

mean-square displacement follows

〈r2 t( )〉 � 3a2
J2

Z2γ
( ) 2t + exp −2γt( ) − 1[ ]( ), (44)

where a is the lattice parameter. For short times, i.e., t≪ γ−1, the

motion is ballistic:

〈r2 t( )〉 → 6a2J2t2, (45)

whereas for long times, i.e., t ≫ γ−1, the motion is diffusive:

〈r2 t( )〉 → 6a2
J2

Z2γ
( )t, (46)

where J2/Z2γ is the ‘derived’ Förster transfer rate, kF, andD = a2kF
is the diffusion coefficient. As shown in Ref. [90], for the short

times t ≲ γ−1 when coherent exciton transport is predicted, both

exciton diffusion lengths and spectral diffusion are larger than for

incoherent transport.

Early models of incoherent exciton transport assumed that

the donors and acceptors are point-dipoles whose energy

distribution is a Gaussian random variable [93–95]. An

advantage of these models is that they allow for analytical

analysis, for example predicting that the diffusion length

increases with decreasing disorder and increasing temperature

[96]. In particular, at high temperatures the pseudoequilibrium

diffusion coefficient, D(T), satisfies [97].

D T( ) � D0 exp − T0/T( )2[ ], (47)

where T0 is proportional to the width of the Gaussian disorder,

while at low temperatures it is exponentially activated. The

analytical results on model systems also reproduce some

experimental features, such as the time-dependence of spectral

diffusion. A disadvantage, however, is that there is no

quantitative link between the model and actual polymer

conformations and morphology.

More recent approaches have attempted to make the link

between random polymer conformations and the energetic and

spatial distributions of the donors and acceptors via the concept

of extended chromophores [42, 98–100] and using transition

densities to compute transfer integrals. However, the usual

practice has been to arbitrarily define chromophores via a

minimum threshold in the p-orbital overlaps, and then obtain

a distribution of energies by assuming that the excitons delocalize

freely on the chromophores thus defined.

As discussed in Section 3.2, an unambiguous link between

polymer conformations and chromophores may be made by

defining chromophores via the spatial extent of local exciton

ground states (LEGSs). Using this insight, a more realistic first-

principles model that accounts for polymer conformations can be

developed [89, 101]. This is described in Section 6.1, while its

predictions and comparisons to experimental observations are

described in Section 6.2.

6.1 Modified Förster theory

The Förster resonance exciton transfer (FRET) rate from a

donor (D) to an acceptor (A) has the general Golden rule form

kDA � 2π
Z

( ) JDA| |2 ∫D E( )A E( )dE, (48)

where JDA is the Coulomb-induced donor-acceptor transfer

integral defined by Eq. 3. As we remarked in Section 3.1, the

transition density vanishes for odd-parity singlet excitons; it also

vanishes for all triplet excitons.
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D(E) and A(E) are the donor and acceptor spectral functions,

respectively, defined by

D E( ) � ∑
v

FD
0vδ E + ED

0v( ) (49)

and

A E( ) � ∑
v

FA
0vδ E − EA

0v( ), (50)

where F0v is the effective Franck-Condon factor, defined in Eq.

52. EA
0v � (EA

00 + vZωvib) is the excitation energy of the acceptor,

while ED
0v � −(ED

00 − vZωvib) is the de-excitation energy of the

donor.

The link between actual polymer conformations and a

realistic model of exciton diffusion is made by realising that

the donors and acceptors for exciton transfer are LEGSs

(i.e., chromophores). This assumption is based on the

observation that exciton transfer occurs at a much slower

rate than state interconversion, so the donors are LEGSs, while

the spectral overlap between LEGSs and higher energy QEESs

is small, so the acceptors are also LEGSs. Moreover, the

energetic and spatial distribution of LEGSs is entirely

determined by the conformational and site disorder, as

described in Section 3.2. Finally, polaronic effects are

incorporated by an effective Huang-Rhys factor for each

chromophore and the Condon approximation may be

assumed as C-C vibrational modes do not cause exciton

self-localization.

Then, as proved rigorously in Ref. [89]:

1) JDA is evaluated by invoking the Condon approximation and

using the line-dipole approximation [15, 102].

JDA � 1
4πεrε0

( ) ∑
n∈D
n′∈A

κnn′
R3
nn′
μDΨD n( )μAΨA n′( ), (51)

where Ψ(n) is the LEGS center-of-mass wavefunction on

monomer n determined from the disordered Frenkel exciton

model (Eq. 2). Since the spatial extent of Ψ(n) defines a

chromophore, the sum over n and n′ is implicitly over

monomers of a donor and acceptor chromophore,

respectively. μX is the transition dipole moment of a single

monomer of the donor (X = D) or acceptor (X = A)

chromophores (so μXΨX(n) is the transition dipole moment of

monomer n as part of the chromophore). κnn′ is the orientational

factor, defined in Eq. 5, and Rnn’ is the separation of monomers

on the donor and acceptor chromophores. The line-dipole

approximation is valid when the monomer sizes are much

smaller than their separation on the donor and acceptor

chromophores; it reduces to the point-dipole approximation

when the chromophore sizes are much smaller than their

separation.

2) The spectral functions describe “polaronic” effects, by

containing effective Franck-Condon factors which describe

the chromophores coupling to effective modes with reduced

Huang-Rhys parameters:

F0v � Seff( )v exp −Seff( )
v!

, (52)

where Seff = S/PN, S is the local Huang-Rhys parameter (defined

by Eq. 22) and PN � (∑n|Ψn|4)−1 is the participation number (or

size) of the chromophore [20].

3) Similarly, the 0–0 transition energy is defined by E00 = (Evert −

Erelax), where Evert is determined from the Frenkel exciton

model and Erelax = ZωSeff is the effective reorganisation energy

for the effective mode.

6.2 Condensed-phase exciton diffusion
via FRET

We might attempt to anticipate the results of the simulation

of exciton diffusion from the properties of the exciton transfer

rate, kDA. When the chromophore size, L, is much smaller than

the donor-acceptor separation, R, the point-dipole

approximation is valid. In this limit kDA ~ L2/R6 and thus the

hopping rate increases with increasing chromophore size, but is

short range. Conversely, when the chromophore size is much

larger than the donor-acceptor separation, the line-dipole

approximation predicts that for straight, parallel or collinear

chromophores [103–105] kDA ~ 1/(LR)2 and thus the hopping

FIGURE 12
The density of states for absorbing LEGSs (solid line) and
emitting trap states (dashed line) for an ensemble of PPV chains,
with a Gaussian distribution of ϕ0 and ϕ, as described in the main
text. 〈ϕ0〉 = 10°, σϕ0 � 50, and σϕ = 5°. Reproduced from
J. Chem. Phys. 141, 164103 (2014) with the permission of AIP
publishing.
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rate decreases with increasing chromophore size, but is longer

ranged.

In practice, Monte Carlo simulations assuming a statistical

model of random polymer conformations find that the exciton

hopping rate is essentially independent of disorder and hence of

chromophore size. This is presumably because neither the

assumption of straight, parallel chromophores nor point dipoles

are generally valid. These simulations also show that the average

time taken for the first exciton hop to occur after photoexcitation is

~ 10 ps, whereas the time intervals between hops just prior to

radiative recombination is over 10 times longer, and indeed

becoming so long that a radiative transition is competitive. This

increase in hopping time intervals occurs because as an exciton

diffuses through the polymer system it continuously looses energy.

Thus, the energetic condition for exciton transfer to occur, namely

EA ≤ ED, becomes harder to satisfy and in general the spectral

overlap between the donor and acceptor decreases. As the excitons

diffuse they eventually become trapped in ‘emissive’ chromophores,

from which they radiate. As shown in Figure 12, these emissive

chromophores occupy the low energy tail of the LEGSs density of

states. Their quasi-Gaussian distribution explains spectral diffusion

[95, 106]: a time-dependent change in the fluorescence energy,

satisfying E ∝ − log t.

Typically, the average hop distance is between 4 nm (for

strong disorder giving an average chromophore length of 8 nm)

to 6 nm (for weak disorder giving an average chromophore

length of 30 nm). On average, an exciton only makes four

hops before radiating, and thus average diffusion lengths are

between ~ 8 − 12 nm, being longer for more ordered systems.

These theoretical predictions are consistent with experimental

values obtained via various techniques [107–109] (see Köhler

and Bässler [16] for further experimental references). The

diffusion length is remarkably insensitive to disorder, and

from simulation satisfies LD ~ L1/4loc ~ σ−1/6; a result that can be

explained by the spatial distribution of chromophores in

randomly coiled polymers [101].

An interesting prediction of Anderson localization is that for

the same mean dihedral angle lower energy chromophores are

shorter than higher energy chromophores. Now, as the intensity

ratio of the vibronic peaks in the emission spectrum, I00/I01, is

proportional to the chromophore size [20, 22, 110, 111], i.e.,

I00
I01

∝
1
Seff

� 〈PN〉
S

, (53)

spectral diffusion also implies that I00/I01 reduces in time, as a

observed in time-resolved photoluminescence spectra in MEH-

PPV (see Figure 3 of Ref. [106]). According to simulations [89],

I00/I01 ∝ − log t.

Some of the key features of exciton relaxation and dynamics

described in this review are nicely encapsulated by Figure 13.

This figure shows the simulated absorption to all absorbing

states, the fluorescence via emission from all LEGSs (which

occurs in the absence of exciton migration), and the time-

integrated fluorescence following exciton migration and

emission from ‘trap’ chromophores.

• The absorption spectrum and the emission spectrum

assuming no exciton migration are broadly a mirror

image. However, the absorption is broader and has a

high energy tail as absorption occurs to both LEGSs and

QEESs (as also shown in Figure 3B), whereas, from Kasha’s

law, emission occurs only from LEGSs following

interconversion from QEESs.

• The emission following exciton migration is red-shifted,

because the emissive states are in the low-energy tail of the

density of states (as shown in Figure 12).

• Since the disorder is static, the optical spectrum exhibits

inhomogeneous broadening with a Gaussian distribution

[112], narrowed because of exchange narrowing [44, 45].

• The inhomogeneous broadening of the post-migration

emission is further narrowed, because the emissive states

have a narrower density of states than LEGSs.

• Similarly the intensity ratio, I00/I01, decreases, because on

average emissive chromophores have shorter conjugation

lengths than LEGSs.

6.3 Transient exciton delocalization in the
condensed phase

The previous section described exciton diffusion via

FRET in typically conformationally disordered polymer

systems. These systems have exciton diffusion lengths of

ca. 10 nm. Recently, however, much longer diffusion

FIGURE 13
The calculated optical spectra of PPV assuming a statistical
model of random polymer conformations. Exciton migration prior
to emission causes a red-shift in energy, a narrowing of the
inhomogeneous broadening, and a decrease in I00/I01.
Reproduced from J. Chem. Phys. 141, 164103 (2014) with the
permission of AIP publishing.
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lengths of ca. 300 nm have been reported in highly ordered

poly (3-hexylthiophene) (P3HT) nanofiber films [113]. The

mechanism proposed for this process by Beljonne et al. [114]

is transient exciton delocalization (described in Section 5.4

for intrachain exciton diffusion), with the added ingredient of

long-range exciton transfer integrals. Specifically, they

propose that ordered P3HT chains form one-dimensional

H-aggregate stacks. Then, low frequency, large amplitude

interchain vibrational motion thermally induce transitions

from low-energy localized exciton states to higher-energy

delocalized states that span multiple P3HT chains along the

stack. The transient occupation of these delocalized states

followed by stochastic relaxation into localized states (as

illustrated in Figure 11) facilitates long-range exciton hops.

Crucially, this mechanism relies on the long-range (1/R)

exciton transfer integrals, predicted when the chain size

exceeds the interchain separations [102].

There can be little doubt, whatever the precise mechanism of

exciton transfer (e.g., via FRET or vibrational motion), that highly

ordered polymeric systems with bands of extended exciton states

significantly facilitates exciton transport.

7 Summary and concluding remarks

We have reviewed the various exciton dynamical processes in

conjugated polymer systems. In summary, they are:

• Following photoexcitation, the initial dynamical

process in a conjugated polymer is the quantum

correlation of the exciton with phonons associated

with high-frequency C-C bond vibrations, thus

creating an exciton-polaron. This quantum

mechanical entanglement causes exciton-site

decoherence, which is manifest as sub-10 fs

fluorescence depolarization (see Section 4.1).

• Next, the energy that is transferred from the exciton to the

nuclei is dissipated into the environment on a timescale

determined by the strength of the system-bath interactions.

For a hot, delocalized exciton (i.e., a QEES) the system-

bath interactions cause the entangled exciton-nuclear

wavefunction to stochastically ‘collapse’ into a particular

localized exciton (i.e., a LEGS), causing the exciton density

to be localized on a ‘chromophore’ (see Section 4.2).

• The fate of an exciton on a chromophore is now strongly

dependent on the polymer chemical structure and the type

of environment. For underdamped, freely rotating

monomers, the coupling of the exciton to the low-

frequency torsional modes creates a self-localized

exciton-polaron, with associated planarization and

exciton-density localization (see Section 4.3).

• For a polymer in solution, dynamical disorder, originating

from stochastic, thermally-induced torsional fluctuations,

causes two-types of motion. At lower temperature they

cause the exciton-polaron to diffuse via a crawling motion

along the polymer chain; a process known as environment-

assisted quantum transport [81]. The diffusion coefficient

is linearly proportional to temperature (see Section 5.3). At

higher temperatures the larger torsional fluctuations cause

the exciton to be thermally excited from the polaron,

thereby momentarily (or transiently) occupying more

delocalized states where the exciton skips (or surfs)

quasi-ballistically. The exciton subsequently relaxes into

a localized exciton-polaron by the process described in

Section 4. This process is sometimes known as transient

delocalization. In this regime the diffusion coefficient is

exponentially activated (see Section 5.4).

• For a polymer in the condensed phase, the dominant post-

ps process is Förster resonant energy transfer (FRET) and

exciton diffusion. An exciton diffusing in the random

energy landscape soon gets trapped in chromophores

occupying the low-energy tail of the LEGSs density of

states, exhibiting log t spectral diffusion. An exciton

typically diffuses ~ 10 nm before radiative decay, with

the diffusion length weakly increasing with decreasing

disorder (see Section 6.2).

• Finally, highly ordered polymer films, implying bands of

thermally accessible quasiextended exciton states,

facilitates exciton transport with diffusion lengths of

> 100 nm (see Section 6.3).

In this reviewwe have argued that theoreticalmodeling of exciton

dynamics over multiple time and length scales is only realistically

possible by employing suitably parametrized coarse-grained exciton-

phonon models. Moreover, to correctly account for the ultrafast

processes of exciton-site decoherence and the relaxation of hot,

delocalized excitons onto chromophores, the exciton and

vibrational modes must be treated on the same quantum

mechanical basis and importantly the Ehrenfest approximation

must be abandoned. We have also repeatedly noted that spatial

and temporal disorder play a key role in exciton spectroscopy and

dynamics; and it is for this reason that exciton dynamics is conjugated

polymers is essentially an incoherent process.

In a previous review [14] we explained how spectroscopic

signatures are highly-dependent on polymer multiscale structures,

and how—in principle—good theoretical modeling of excitons and

spectroscopy can be used as a tool to predict these polymer structures.

This review builds on that prospectus by describing how time-

resolved spectroscopy can be understood via a theoretical

description of exciton dynamics coupled to information on

polymer multiscale structures. Again, the reverse proposition

follows: time-resolved spectroscopy coupled to a theoretical

description of exciton dynamics can be used to provide insights

into polymer multiscale structures.

As stated in the Introduction, an understanding of the

principles of exciton dynamics, relating this to multiscale
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polymer structures, and interpreting the associated spectroscopic

signatures are all key ingredients to developing structure-

function relationships and ultimately to developing rational

design strategies for polymer electronic devices.
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